Spaces:
Sleeping
Sleeping
# import part | |
import streamlit as st | |
from transformers import pipeline | |
# function part | |
# function part | |
def generate_image_caption(image_path): | |
"""Generates a caption for the given image using a pre-trained model.""" | |
img2caption = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") | |
result = img2caption(image_path) | |
return result[0]['generated_text'] | |
# text2story | |
def text2story(text): | |
pipe = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2") | |
story_text = pipe(text)[0]['generated_text'] | |
return story_text | |
def main(): | |
# App title | |
st.title("Streamlit Demo on Hugging Face") | |
# Write some text | |
st.write("Welcome to a demo app showcasing basic Streamlit components!") | |
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True) | |
#Stage 1: Image to Text | |
st.text('Processing img2text...') | |
image_caption = generate_image_caption(uploaded_image.name) | |
st.write(image_caption) | |
if __name__ == "__main__": | |
main() |