import gradio as gr from transformers import pipeline classifier = pipeline("text-classification", model='isom5240ust/bert-base-uncased-emotion', return_all_scores=True) def classify_text(text): results = classifier(text)[0] max_score = float('-inf') max_label = '' for result in results: if result['score'] > max_score: max_score = result['score'] max_label = result['label'] return max_label, max_score # Gradio interface iface = gr.Interface( fn=classify_text, inputs=gr.Textbox(placeholder="Enter text here..."), outputs=[ gr.Textbox(label="Label"), gr.Textbox(label="Score") ], title="Text Classification", description="Classification for 6 emotions: sadness, joy, love, anger, fear, surprise" ) iface.launch()