Upload 57 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- README.md +874 -11
- app.py +625 -0
- models/1.h5 +3 -0
- models/1/fingerprint.pb +3 -0
- models/1/saved_model.pb +3 -0
- models/1/variables/variables.data-00000-of-00001 +3 -0
- models/1/variables/variables.index +0 -0
- models/4.keras +3 -0
- requirements.txt +7 -0
- runtime.txt +1 -0
- static/content/android-icon-144x144.png +0 -0
- static/content/android-icon-192x192.png +0 -0
- static/content/android-icon-36x36.png +0 -0
- static/content/android-icon-48x48.png +0 -0
- static/content/android-icon-72x72.png +0 -0
- static/content/android-icon-96x96.png +0 -0
- static/content/apple-icon-114x114.png +0 -0
- static/content/apple-icon-120x120.png +0 -0
- static/content/apple-icon-144x144.png +0 -0
- static/content/apple-icon-152x152.png +0 -0
- static/content/apple-icon-180x180.png +0 -0
- static/content/apple-icon-57x57.png +0 -0
- static/content/apple-icon-60x60.png +0 -0
- static/content/apple-icon-72x72.png +0 -0
- static/content/apple-icon-76x76.png +0 -0
- static/content/apple-icon-precomposed.png +0 -0
- static/content/apple-icon.png +0 -0
- static/content/browserconfig.xml +2 -0
- static/content/favicon-16x16.png +0 -0
- static/content/favicon-32x32.png +0 -0
- static/content/favicon-96x96.png +0 -0
- static/content/favicon.ico +0 -0
- static/content/manifest.json +41 -0
- static/content/ms-icon-144x144.png +0 -0
- static/content/ms-icon-150x150.png +0 -0
- static/content/ms-icon-310x310.png +0 -0
- static/content/ms-icon-70x70.png +0 -0
- static/css/style.css +1334 -0
- static/js/script.js +988 -0
- static/uploads/20250711_012123_1cd053f6-0016-4680-a924-af15aecd7fb2___RS_LB_4414.JPG +0 -0
- static/uploads/20250711_012557_0eb24a67-a174-43db-86c7-cca8795942a2___RS_LB_4722.JPG +0 -0
- static/uploads/20250711_014017_2f81d148-c62f-4d3c-baf4-72b77abea41a___RS_Early.B_7493.JPG +0 -0
- static/uploads/20250711_015310_1e671694-5713-4568-b8ad-06f15688d25e___RS_Early.B_7659.JPG +0 -0
- static/uploads/20250711_015412_0a79700b-f834-41f5-ae51-6ceda6f67a48___RS_Early.B_8951.JPG +0 -0
- static/uploads/20250711_022739_414f6249-9f78-4af5-9593-9d5a7e7d979f___RS_HL_1918.JPG +0 -0
- static/uploads/20250711_234352_2f7b6898-a342-42a5-a0e5-a9f2bad7eaf1___RS_LB_2831.JPG +0 -0
- static/uploads/20250711_234419_0e7f0484-16eb-4183-b702-0a5b4f94d015___RS_LB_4000.JPG +0 -0
- static/uploads/20250711_234838_early1.jpeg +0 -0
- static/uploads/20250711_234852_healthy.jpeg +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
models/1/variables/variables.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
models/4.keras filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,11 +1,874 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🥔 Potato Skin Disease Detection Using Deep Learning
|
2 |
+
|
3 |
+
[](https://www.python.org/)
|
4 |
+
[](https://tensorflow.org/)
|
5 |
+
[](https://keras.io/)
|
6 |
+
[](LICENSE)
|
7 |
+
|
8 |
+
> 🔬 An AI-powered computer vision system for detecting and classifying potato skin diseases using deep learning techniques.
|
9 |
+
|
10 |
+
## 📋 Table of Contents
|
11 |
+
|
12 |
+
- [🎯 Project Overview](#-project-overview)
|
13 |
+
- [🌟 Features](#-features)
|
14 |
+
- [📊 Dataset](#-dataset)
|
15 |
+
- [🚀 Getting Started](#-getting-started)
|
16 |
+
- [💻 Usage](#-usage)
|
17 |
+
- [🏗️ Model Architecture](#-model-architecture)
|
18 |
+
- [📈 Results](#-results)
|
19 |
+
- [🚀 Next Steps](#-Next-Steps)
|
20 |
+
- [📄 License](#-license)
|
21 |
+
|
22 |
+
## 🎯 Project Overview
|
23 |
+
|
24 |
+
This project implements a **Convolutional Neural Network (CNN)** using TensorFlow/Keras to automatically detect and classify potato skin diseases from digital images. The system can identify three main categories:
|
25 |
+
|
26 |
+
- 🍃 **Healthy Potatoes**
|
27 |
+
- 🦠 **Early Blight Disease**
|
28 |
+
- 🍄 **Late Blight Disease**
|
29 |
+
|
30 |
+
### 🎥 Demo
|
31 |
+
|
32 |
+
<details>
|
33 |
+
<summary>Click to see sample predictions</summary>
|
34 |
+
|
35 |
+
```
|
36 |
+
Input: potato_image.jpg
|
37 |
+
Output: "Early Blight Disease" (Confidence: 94.2%)
|
38 |
+
```
|
39 |
+
|
40 |
+
</details>
|
41 |
+
|
42 |
+
## 🌟 Features
|
43 |
+
|
44 |
+
- ✅ **Multi-class Classification**: Detects 3 types of potato conditions
|
45 |
+
- ✅ **Data Augmentation**: Improves model robustness with image transformations
|
46 |
+
- ✅ **Interactive Visualization**: Displays sample images with predictions
|
47 |
+
- ✅ **Optimized Performance**: Uses caching and prefetching for faster training
|
48 |
+
- ✅ **Scalable Architecture**: Easy to extend to more disease types
|
49 |
+
- ✅ **Real-time Inference**: Fast prediction on new images
|
50 |
+
|
51 |
+
## 📊 Dataset
|
52 |
+
|
53 |
+
### 📈 Dataset Statistics
|
54 |
+
|
55 |
+
- **Total Images**: 2,152
|
56 |
+
- **Classes**: 3 (Early Blight, Late Blight, Healthy)
|
57 |
+
- **Image Size**: 256×256 pixels
|
58 |
+
- **Color Channels**: RGB (3 channels)
|
59 |
+
- **Data Split**: 80% Train, 10% Validation, 10% Test
|
60 |
+
|
61 |
+
## 📁 Project Structure
|
62 |
+
|
63 |
+
```
|
64 |
+
potato-disease-detection/
|
65 |
+
├── 📓 POTATO_Skin_Diseases_Detection_Using_Deep_Learning.ipynb
|
66 |
+
├── 📄 README.md
|
67 |
+
├── 📋 requirements.txt
|
68 |
+
├── 📁 PlantVillage/
|
69 |
+
│ ├── 📁 Potato___Early_blight/
|
70 |
+
│ ├── 📁 Potato___Late_blight/
|
71 |
+
│ └── 📁 Potato___healthy/
|
72 |
+
├── 📁 models/
|
73 |
+
│ └── 💾 trained_model.h5
|
74 |
+
└── 📁 results/
|
75 |
+
├── 📊 training_plots.png
|
76 |
+
└── 📈 confusion_matrix.png
|
77 |
+
```
|
78 |
+
|
79 |
+
📂 Root Directory/
|
80 |
+
├── 🐍 app.py # Main Flask application
|
81 |
+
├── 📦 requirements.txt # Dependencies
|
82 |
+
├── 🚀 run_flask_app.bat # Easy startup script
|
83 |
+
├── 📚 README_Flask.md # Complete documentation
|
84 |
+
├── 📂 templates/
|
85 |
+
│ └── 🌐 index.html # Web interface
|
86 |
+
└── 📂 static/
|
87 |
+
├── 📂 css/
|
88 |
+
│ └── 💄 style.css # Beautiful styling
|
89 |
+
└── 📂 js/
|
90 |
+
└── ⚡ script.js # Interactive functionality
|
91 |
+
|
92 |
+
## 🚀 Getting Started
|
93 |
+
|
94 |
+
### 📋 Prerequisites
|
95 |
+
|
96 |
+
```bash
|
97 |
+
Python 3.8+
|
98 |
+
TensorFlow 2.x
|
99 |
+
Matplotlib
|
100 |
+
NumPy
|
101 |
+
```
|
102 |
+
|
103 |
+
### ⚡ Quick Start and Installation
|
104 |
+
|
105 |
+
### 🐍 Environment Setup
|
106 |
+
|
107 |
+
```bash
|
108 |
+
# Create virtual environment
|
109 |
+
python -m venv potato_env
|
110 |
+
|
111 |
+
# Activate environment
|
112 |
+
# Windows:
|
113 |
+
potato_env\Scripts\activate
|
114 |
+
# macOS/Linux:
|
115 |
+
source potato_env/bin/activate
|
116 |
+
|
117 |
+
# Install packages
|
118 |
+
pip install -r requirements.txt
|
119 |
+
```
|
120 |
+
|
121 |
+
# Run Application
|
122 |
+
|
123 |
+
#### **Step 1: Install Dependencies**
|
124 |
+
|
125 |
+
```cmd
|
126 |
+
pip install -r requirements.txt
|
127 |
+
```
|
128 |
+
|
129 |
+
#### **Step 2: Run the Application**
|
130 |
+
|
131 |
+
```cmd
|
132 |
+
python app.py
|
133 |
+
```
|
134 |
+
|
135 |
+
#### **Step 3: Open Your Browser**
|
136 |
+
|
137 |
+
- **Main App**: http://localhost:5000
|
138 |
+
- **Health Check**: http://localhost:5000/health
|
139 |
+
|
140 |
+
## 💻 Usage
|
141 |
+
|
142 |
+
### 🔧 Training the Model
|
143 |
+
|
144 |
+
The notebook includes the complete pipeline:
|
145 |
+
|
146 |
+
1. **Data Loading & Preprocessing**
|
147 |
+
|
148 |
+
```python
|
149 |
+
# Load dataset
|
150 |
+
dataset = tf.keras.preprocessing.image_dataset_from_directory(
|
151 |
+
"PlantVillage",
|
152 |
+
image_size=(256, 256),
|
153 |
+
batch_size=32
|
154 |
+
)
|
155 |
+
```
|
156 |
+
|
157 |
+
2. **Data Augmentation**
|
158 |
+
|
159 |
+
```python
|
160 |
+
# Apply data augmentation
|
161 |
+
data_augmentation = tf.keras.Sequential([
|
162 |
+
tf.keras.layers.RandomFlip("horizontal_and_vertical"),
|
163 |
+
tf.keras.layers.RandomRotation(0.2)
|
164 |
+
])
|
165 |
+
```
|
166 |
+
|
167 |
+
3. **Model Configuration**
|
168 |
+
```python
|
169 |
+
IMAGE_SIZE = 256
|
170 |
+
BATCH_SIZE = 32
|
171 |
+
CHANNELS = 3
|
172 |
+
EPOCHS = 50
|
173 |
+
```
|
174 |
+
|
175 |
+
### 🎯 Making Predictions
|
176 |
+
|
177 |
+
```python
|
178 |
+
# Load your trained model
|
179 |
+
model = tf.keras.models.load_model('potato_disease_model.h5')
|
180 |
+
|
181 |
+
# Make prediction
|
182 |
+
prediction = model.predict(new_image)
|
183 |
+
predicted_class = class_names[np.argmax(prediction)]
|
184 |
+
```
|
185 |
+
|
186 |
+
## 🏗️ Model Architecture
|
187 |
+
|
188 |
+
### 🧠 Network Components
|
189 |
+
|
190 |
+
1. **Input Layer**: 256×256×3 RGB images
|
191 |
+
2. **Preprocessing**:
|
192 |
+
- Image resizing and rescaling (1.0/255)
|
193 |
+
- Data augmentation (RandomFlip, RandomRotation)
|
194 |
+
3. **Feature Extraction**: CNN layers for pattern recognition
|
195 |
+
4. **Classification**: Dense layers for final prediction
|
196 |
+
|
197 |
+
### ⚙️ Training Configuration
|
198 |
+
|
199 |
+
- **Optimizer**: Adam (recommended)
|
200 |
+
- **Loss Function**: Sparse Categorical Crossentropy
|
201 |
+
- **Metrics**: Accuracy
|
202 |
+
- **Epochs**: 50
|
203 |
+
- **Batch Size**: 32
|
204 |
+
|
205 |
+
## 📈 Results
|
206 |
+
|
207 |
+
### 📊 Performance Metrics
|
208 |
+
|
209 |
+
| Metric | Score |
|
210 |
+
| ------------------- | ----- |
|
211 |
+
| Training Accuracy | XX.X% |
|
212 |
+
| Validation Accuracy | XX.X% |
|
213 |
+
| Test Accuracy | XX.X% |
|
214 |
+
| F1-Score | XX.X% |
|
215 |
+
|
216 |
+
### 🎨 Visualization
|
217 |
+
|
218 |
+
The notebook includes:
|
219 |
+
|
220 |
+
- ✅ Sample image visualization
|
221 |
+
- ✅ Training/validation loss curves
|
222 |
+
- ✅ Confusion matrix
|
223 |
+
- ✅ Class-wise accuracy
|
224 |
+
|
225 |
+
# 🥔 Potato Disease Detection - Flask Web Application
|
226 |
+
|
227 |
+
A modern Flask web application for detecting potato diseases using deep learning. Upload images or use your camera to get instant disease predictions with confidence scores and treatment recommendations.
|
228 |
+
|
229 |
+
## ✨ Features
|
230 |
+
|
231 |
+
### 🖼️ **Dual Input Methods**
|
232 |
+
|
233 |
+
- **📁 File Upload**: Drag & drop or browse to select images
|
234 |
+
- **📸 Camera Capture**: Take photos directly from your device camera
|
235 |
+
|
236 |
+
### 🧠 **AI-Powered Detection**
|
237 |
+
|
238 |
+
- **🎯 Accurate Predictions**: Uses trained CNN model for disease detection
|
239 |
+
- **📊 Confidence Scores**: Shows prediction confidence with color-coded badges
|
240 |
+
- **📈 Probability Breakdown**: Displays probabilities for all disease classes
|
241 |
+
|
242 |
+
### 💡 **Smart Recommendations**
|
243 |
+
|
244 |
+
- **🏥 Treatment Advice**: Provides specific recommendations for each condition
|
245 |
+
- **🚨 Urgency Levels**: Different advice based on disease severity
|
246 |
+
- **📋 Downloadable Reports**: Generate and download analysis reports
|
247 |
+
|
248 |
+
### 🎨 **Modern Interface**
|
249 |
+
|
250 |
+
- **📱 Responsive Design**: Works perfectly on mobile and desktop
|
251 |
+
- **🌟 Beautiful UI**: Modern design with smooth animations
|
252 |
+
- **🔄 Real-time Analysis**: Instant predictions with loading indicators
|
253 |
+
|
254 |
+
## 🦠 Detected Diseases
|
255 |
+
|
256 |
+
1. **🍂 Early Blight** - Common fungal disease affecting potato leaves
|
257 |
+
2. **💀 Late Blight** - Serious disease that can destroy entire crops
|
258 |
+
3. **✅ Healthy** - No disease detected
|
259 |
+
|
260 |
+
## 🎯 How to Use
|
261 |
+
|
262 |
+
### **📁 Upload Method**
|
263 |
+
|
264 |
+
1. **Select Upload** tab (default)
|
265 |
+
2. **Drag & drop** an image or **click to browse**
|
266 |
+
3. **Click "Analyze Disease"** button
|
267 |
+
4. **View results** with predictions and recommendations
|
268 |
+
|
269 |
+
### **📸 Camera Method**
|
270 |
+
|
271 |
+
1. **Click Camera** tab
|
272 |
+
2. **Click "Start Camera"** (allow permissions)
|
273 |
+
3. **Click "Capture Photo"** when ready
|
274 |
+
4. **Click "Analyze Disease"** button
|
275 |
+
5. **View results** with predictions and recommendations
|
276 |
+
|
277 |
+
### **📊 Understanding Results**
|
278 |
+
|
279 |
+
- **🎯 Primary Diagnosis**: Main prediction with confidence score
|
280 |
+
- **📈 Probability Breakdown**: All disease probabilities
|
281 |
+
- **💡 Recommendations**: Treatment and care advice
|
282 |
+
- **📋 Download Report**: Save results as text file
|
283 |
+
|
284 |
+
## 🔧 Technical Details
|
285 |
+
|
286 |
+
- **🐍 Backend**: Flask 2.3+ with Python
|
287 |
+
- **🧠 AI Model**: TensorFlow/Keras CNN
|
288 |
+
- **🖼️ Image Processing**: PIL/Pillow for preprocessing
|
289 |
+
- **🎨 Frontend**: HTML5, CSS3, Vanilla JavaScript
|
290 |
+
- **📱 Camera**: WebRTC getUserMedia API
|
291 |
+
- **💾 Storage**: Local file system for uploads
|
292 |
+
|
293 |
+
## 📋 Requirements
|
294 |
+
|
295 |
+
- **🐍 Python**: 3.8+ (Recommended: 3.10+)
|
296 |
+
- **💻 OS**: Windows, macOS, or Linux
|
297 |
+
- **🧠 Memory**: 4GB+ RAM (8GB recommended)
|
298 |
+
- **💾 Storage**: ~2GB for dependencies and models
|
299 |
+
- **🌐 Browser**: Chrome, Firefox, Safari, Edge (latest versions)
|
300 |
+
|
301 |
+
## 🛠️ Troubleshooting
|
302 |
+
|
303 |
+
### ❌ **Model Not Loading**
|
304 |
+
|
305 |
+
```
|
306 |
+
Error: Model not loaded! Please check the model file path.
|
307 |
+
```
|
308 |
+
|
309 |
+
**Solution:**
|
310 |
+
|
311 |
+
- Ensure `models/1.h5` exists
|
312 |
+
- Check TensorFlow installation: `pip install tensorflow>=2.13.0`
|
313 |
+
|
314 |
+
### ❌ **Camera Not Working**
|
315 |
+
|
316 |
+
```
|
317 |
+
Could not access camera. Please check permissions.
|
318 |
+
```
|
319 |
+
|
320 |
+
**Solution:**
|
321 |
+
|
322 |
+
- Allow camera permissions in your browser
|
323 |
+
- Use HTTPS for camera access (or localhost)
|
324 |
+
- Check if another app is using the camera
|
325 |
+
|
326 |
+
### ❌ **Port Already in Use**
|
327 |
+
|
328 |
+
```
|
329 |
+
Address already in use
|
330 |
+
```
|
331 |
+
|
332 |
+
**Solution:**
|
333 |
+
|
334 |
+
- Close other Flask applications
|
335 |
+
- Change port in `app.py`: `app.run(port=5001)`
|
336 |
+
- Kill process: `taskkill /f /im python.exe` (Windows)
|
337 |
+
|
338 |
+
### ❌ **File Upload Issues**
|
339 |
+
|
340 |
+
```
|
341 |
+
Invalid file type or File too large
|
342 |
+
```
|
343 |
+
|
344 |
+
**Solution:**
|
345 |
+
|
346 |
+
- Use supported formats: PNG, JPG, JPEG
|
347 |
+
- Keep file size under 16MB
|
348 |
+
- Check image isn't corrupted
|
349 |
+
|
350 |
+
## 🎨 Customization
|
351 |
+
|
352 |
+
### **🎯 Add New Disease Classes**
|
353 |
+
|
354 |
+
1. Update `CLASS_NAMES` in `app.py`
|
355 |
+
2. Add descriptions in `CLASS_DESCRIPTIONS`
|
356 |
+
3. Update recommendations in `get_recommendations()`
|
357 |
+
4. Retrain model with new classes
|
358 |
+
|
359 |
+
## 📱 Mobile Responsiveness
|
360 |
+
|
361 |
+
The application is now **fully responsive** and optimized for mobile devices:
|
362 |
+
|
363 |
+
### 📲 Mobile Features:
|
364 |
+
|
365 |
+
- ✅ **Touch-friendly interface** with larger touch targets (44px minimum)
|
366 |
+
- ✅ **Responsive design** that adapts to screen sizes from 320px to desktop
|
367 |
+
- ✅ **Mobile camera support** with environment (back) camera preference
|
368 |
+
- ✅ **Optimized image display** for mobile viewports
|
369 |
+
- ✅ **Landscape/Portrait orientation** support
|
370 |
+
- ✅ **iOS Safari compatibility** with viewport fixes
|
371 |
+
- ✅ **Prevent accidental zoom** on form inputs
|
372 |
+
- ✅ **Touch-optimized drag & drop** for file uploads
|
373 |
+
|
374 |
+
### **🎨 Modify UI**
|
375 |
+
|
376 |
+
- **Colors**: Edit CSS variables in `style.css`
|
377 |
+
- **Layout**: Modify templates in `templates/`
|
378 |
+
- **Functionality**: Update JavaScript in `static/js/`
|
379 |
+
|
380 |
+
### **⚙️ Configuration**
|
381 |
+
|
382 |
+
- **Upload size**: Change `MAX_CONTENT_LENGTH` in `app.py`
|
383 |
+
- **Image size**: Modify `IMAGE_SIZE` parameter
|
384 |
+
- **Port**: Update `app.run(port=5000)` line
|
385 |
+
|
386 |
+
## 🔒 Security Notes
|
387 |
+
|
388 |
+
- **🚫 Production Use**: This is for development/research only
|
389 |
+
- **🔐 Secret Key**: Change `app.secret_key` for production
|
390 |
+
- **📁 File Validation**: Only accepts image files
|
391 |
+
- **💾 File Cleanup**: Consider automatic cleanup of old uploads
|
392 |
+
|
393 |
+
## 📈 Performance Tips
|
394 |
+
|
395 |
+
- **📸 Image Quality**: Use clear, well-lit potato leaf images
|
396 |
+
- **🎯 Focus**: Ensure leaves fill most of the frame
|
397 |
+
- **📏 Size**: Optimal size is 256x256 pixels or larger
|
398 |
+
- **🌟 Lighting**: Good natural lighting gives best results
|
399 |
+
|
400 |
+
## 🌐 Browser Compatibility
|
401 |
+
|
402 |
+
- ✅ **Chrome**: 90+
|
403 |
+
- ✅ **Firefox**: 88+
|
404 |
+
- ✅ **Safari**: 14+
|
405 |
+
- ✅ **Edge**: 90+
|
406 |
+
- ⚠️ **Mobile**: Camera features may vary
|
407 |
+
|
408 |
+
## 📄 API Endpoints
|
409 |
+
|
410 |
+
- `GET /` - Main web interface
|
411 |
+
- `POST /predict` - Upload image prediction
|
412 |
+
- `POST /predict_camera` - Camera image prediction
|
413 |
+
- `GET /health` - Application health check
|
414 |
+
|
415 |
+
## 🤝 Support
|
416 |
+
|
417 |
+
For issues or questions:
|
418 |
+
|
419 |
+
1. Check the troubleshooting section above
|
420 |
+
2. Verify your Python and dependencies versions
|
421 |
+
3. Ensure model files are in the correct location
|
422 |
+
4. Test with the provided sample images
|
423 |
+
|
424 |
+
---
|
425 |
+
|
426 |
+
## 🚀 Next Steps
|
427 |
+
|
428 |
+
### 🔮 Future Enhancements
|
429 |
+
|
430 |
+
- [ ] **Model Optimization**: Implement transfer learning with pre-trained models
|
431 |
+
- [ ] **Web Application**: Create a Flask/Streamlit web interface
|
432 |
+
- [ ] **Mobile App**: Develop a mobile application for field use
|
433 |
+
- [ ] **More Diseases**: Expand to detect additional potato diseases
|
434 |
+
- [ ] **Real-time Detection**: Implement live camera feed processing
|
435 |
+
- [ ] **API Development**: Create REST API for integration
|
436 |
+
|
437 |
+
### 🎯 Improvement Ideas
|
438 |
+
|
439 |
+
- [ ] **Hyperparameter Tuning**: Optimize model parameters
|
440 |
+
- [ ] **Cross-validation**: Implement k-fold cross-validation
|
441 |
+
- [ ] **Ensemble Methods**: Combine multiple models
|
442 |
+
- [ ] **Data Balancing**: Handle class imbalance if present
|
443 |
+
|
444 |
+
### 🐛 Bug Reports
|
445 |
+
|
446 |
+
If you find a bug, please create an issue with:
|
447 |
+
|
448 |
+
- Description of the problem
|
449 |
+
- Steps to reproduce
|
450 |
+
- Expected vs actual behavior
|
451 |
+
- System information
|
452 |
+
|
453 |
+
### 💡 Feature Requests
|
454 |
+
|
455 |
+
For new features, please provide:
|
456 |
+
|
457 |
+
- Clear description of the feature
|
458 |
+
- Use case and benefits
|
459 |
+
- Implementation suggestions```
|
460 |
+
|
461 |
+
# ==================DEBUGGING AND TROUBLESHOOTING GUIDE:===========================
|
462 |
+
|
463 |
+
# 🥔 Potato Disease Detection - Upload Functionality Guide
|
464 |
+
|
465 |
+
## 🚀 Quick Start
|
466 |
+
|
467 |
+
1. **Run the Application**:
|
468 |
+
|
469 |
+
```bash
|
470 |
+
python app.py
|
471 |
+
```
|
472 |
+
|
473 |
+
Or double-click `run_and_test.bat`
|
474 |
+
|
475 |
+
2. **Access the App**:
|
476 |
+
- Main app: http://localhost:5000
|
477 |
+
- Debug upload page: http://localhost:5000/debug
|
478 |
+
- Health check: http://localhost:5000/health
|
479 |
+
|
480 |
+
## 📋 Testing Upload Functionality
|
481 |
+
|
482 |
+
### Step 1: Check System Health
|
483 |
+
|
484 |
+
1. Go to http://localhost:5000/debug
|
485 |
+
2. Click "🔍 Check System Health"
|
486 |
+
3. Verify all items show ✅:
|
487 |
+
- Status: healthy
|
488 |
+
- Model Loaded: Yes
|
489 |
+
- Upload Dir Exists: Yes
|
490 |
+
- Upload Dir Writable: Yes
|
491 |
+
|
492 |
+
### Step 2: Test Upload Directory
|
493 |
+
|
494 |
+
1. Click "📂 Test Upload Directory"
|
495 |
+
2. Should show "Upload directory is working correctly"
|
496 |
+
|
497 |
+
### Step 3: Test Image Upload
|
498 |
+
|
499 |
+
1. Click "📁 Click here to select an image" or drag an image
|
500 |
+
2. Select a potato leaf image (JPG, PNG, JPEG)
|
501 |
+
3. Preview should appear
|
502 |
+
4. Click "🔬 Analyze Disease"
|
503 |
+
5. Results should show:
|
504 |
+
- Disease name and confidence
|
505 |
+
- Recommendations
|
506 |
+
- The analyzed image displayed
|
507 |
+
|
508 |
+
## 🔧 Troubleshooting Upload Issues
|
509 |
+
|
510 |
+
### Issue: "No file uploaded" Error
|
511 |
+
|
512 |
+
**Solutions:**
|
513 |
+
|
514 |
+
1. Ensure you're clicking the upload area or browse link
|
515 |
+
2. Check browser console for JavaScript errors (F12)
|
516 |
+
3. Try the debug page: http://localhost:5000/debug
|
517 |
+
4. **Mobile**: Tap firmly on upload area, wait for file picker
|
518 |
+
|
519 |
+
### Issue: File Not Saving
|
520 |
+
|
521 |
+
**Solutions:**
|
522 |
+
|
523 |
+
1. Check upload directory permissions:
|
524 |
+
```bash
|
525 |
+
mkdir static/uploads
|
526 |
+
```
|
527 |
+
2. Run as administrator if on Windows
|
528 |
+
3. Check disk space
|
529 |
+
4. **Mobile**: Ensure stable network connection
|
530 |
+
|
531 |
+
### Issue: Camera Not Working (Mobile)
|
532 |
+
|
533 |
+
**Solutions:**
|
534 |
+
|
535 |
+
1. **Grant camera permissions** when prompted
|
536 |
+
2. **Use HTTPS** for camera access on mobile (required by browsers)
|
537 |
+
3. **Check camera availability** - some devices block camera access
|
538 |
+
4. **Try different browsers** (Chrome/Safari work best)
|
539 |
+
5. **Close other camera apps** that might be using the camera
|
540 |
+
|
541 |
+
### Issue: Touch/Tap Not Working (Mobile)
|
542 |
+
|
543 |
+
**Solutions:**
|
544 |
+
|
545 |
+
1. **Clear browser cache** and reload
|
546 |
+
2. **Disable browser zoom** if enabled
|
547 |
+
3. **Try two-finger tap** if single tap doesn't work
|
548 |
+
4. **Check touch targets** - buttons should be at least 44px
|
549 |
+
5. **Restart browser app** on mobile device
|
550 |
+
|
551 |
+
### Issue: Image Too Small/Large on Mobile
|
552 |
+
|
553 |
+
**Solutions:**
|
554 |
+
|
555 |
+
1. **Portrait orientation** usually works better
|
556 |
+
2. **Pinch to zoom** on images if needed
|
557 |
+
3. **Landscape mode** available for wider screens
|
558 |
+
4. **Image auto-resizes** based on screen size
|
559 |
+
|
560 |
+
### Issue: Slow Performance on Mobile
|
561 |
+
|
562 |
+
**Solutions:**
|
563 |
+
|
564 |
+
1. **Close other browser tabs** to free memory
|
565 |
+
2. **Use smaller image files** (under 5MB recommended)
|
566 |
+
3. **Ensure good network connection** for uploads
|
567 |
+
4. **Clear browser cache** regularly
|
568 |
+
5. **Restart browser** if app becomes unresponsive
|
569 |
+
|
570 |
+
### Issue: Model Not Loading
|
571 |
+
|
572 |
+
**Solutions:**
|
573 |
+
|
574 |
+
1. Verify model file exists: `models/1.h5`
|
575 |
+
2. Install required packages:
|
576 |
+
```bash
|
577 |
+
pip install tensorflow pillow flask
|
578 |
+
```
|
579 |
+
|
580 |
+
### Issue: JavaScript Errors
|
581 |
+
|
582 |
+
**Solutions:**
|
583 |
+
|
584 |
+
1. Clear browser cache (Ctrl+F5)
|
585 |
+
2. Check browser console (F12)
|
586 |
+
3. Try a different browser
|
587 |
+
4. Disable browser extensions
|
588 |
+
|
589 |
+
### Issue: Image Not Displaying in Results
|
590 |
+
|
591 |
+
**Solutions:**
|
592 |
+
|
593 |
+
1. Check browser network tab (F12) for failed requests
|
594 |
+
2. Verify uploaded file in `static/uploads/` folder
|
595 |
+
3. Check Flask console for file save errors
|
596 |
+
|
597 |
+
## 🧪 Debug Features
|
598 |
+
|
599 |
+
### Console Logging
|
600 |
+
|
601 |
+
The JavaScript includes extensive console logging. Open browser developer tools (F12) to see:
|
602 |
+
|
603 |
+
- File selection events
|
604 |
+
- Upload progress
|
605 |
+
- Server responses
|
606 |
+
- Error details
|
607 |
+
|
608 |
+
### Debug Endpoints
|
609 |
+
|
610 |
+
- `/health` - System status
|
611 |
+
- `/debug/upload-test` - Upload directory test
|
612 |
+
- `/debug` - Interactive upload test page
|
613 |
+
|
614 |
+
### Manual Testing
|
615 |
+
|
616 |
+
1. **File Input Test**:
|
617 |
+
|
618 |
+
```javascript
|
619 |
+
document.getElementById("fileInput").click();
|
620 |
+
```
|
621 |
+
|
622 |
+
2. **Check Selected File**:
|
623 |
+
|
624 |
+
```javascript
|
625 |
+
console.log(selectedFile);
|
626 |
+
```
|
627 |
+
|
628 |
+
3. **Test FormData**:
|
629 |
+
```javascript
|
630 |
+
const formData = new FormData();
|
631 |
+
formData.append("file", selectedFile);
|
632 |
+
console.log([...formData.entries()]);
|
633 |
+
```
|
634 |
+
|
635 |
+
## 💡 Tips for Success
|
636 |
+
|
637 |
+
1. **Use supported image formats**: JPG, PNG, JPEG, GIF
|
638 |
+
2. **Keep file size under 16MB**
|
639 |
+
3. **Use clear potato leaf images**
|
640 |
+
4. **Check browser compatibility** (modern browsers work best)
|
641 |
+
5. **Enable JavaScript**
|
642 |
+
6. **Allow camera permissions** (for camera capture feature)
|
643 |
+
|
644 |
+
## 🆘 Getting Help
|
645 |
+
|
646 |
+
If upload functionality still doesn't work:
|
647 |
+
|
648 |
+
1. **Check Flask console output** for error messages
|
649 |
+
2. **Check browser console** (F12 → Console tab)
|
650 |
+
3. **Try the debug page** at `/debug`
|
651 |
+
4. **Test with different image files**
|
652 |
+
5. **Restart the Flask app**
|
653 |
+
6. **Check file permissions** on the upload directory
|
654 |
+
|
655 |
+
## 🎯 Expected Results
|
656 |
+
|
657 |
+
After successful upload and analysis:
|
658 |
+
|
659 |
+
- ✅ Disease classification (Early Blight, Late Blight, or Healthy)
|
660 |
+
- ✅ Confidence percentage
|
661 |
+
- ✅ Treatment recommendations
|
662 |
+
- ✅ Analyzed image displayed in results
|
663 |
+
- ✅ Timestamp of analysis
|
664 |
+
|
665 |
+
# PDF Report Download Upgrade Guide
|
666 |
+
|
667 |
+
## 🎉 New Features Added
|
668 |
+
|
669 |
+
### ✨ **PDF Format**
|
670 |
+
|
671 |
+
- Professional PDF reports instead of simple text files
|
672 |
+
- Includes header, footer, tables, and proper formatting
|
673 |
+
- Company branding and professional layout
|
674 |
+
|
675 |
+
### 📁 **Folder Selection**
|
676 |
+
|
677 |
+
- Choose where to save your PDF reports
|
678 |
+
- Modern file picker dialog (supported browsers)
|
679 |
+
- Automatic fallback to default downloads folder
|
680 |
+
|
681 |
+
### 🎨 **Enhanced Report Content**
|
682 |
+
|
683 |
+
- **Report Header**: Timestamp, analysis method, model version
|
684 |
+
- **Analyzed Image**: Embedded image (if available)
|
685 |
+
- **Diagnosis Section**: Disease name, confidence, risk assessment
|
686 |
+
- **Probability Breakdown**: Table showing all class probabilities
|
687 |
+
- **Treatment Recommendations**: Numbered list of actionable advice
|
688 |
+
- **Professional Footer**: Branding and copyright information
|
689 |
+
|
690 |
+
## 🚀 Installation Requirements
|
691 |
+
|
692 |
+
Add to your `requirements.txt`:
|
693 |
+
|
694 |
+
```
|
695 |
+
reportlab>=4.0.0
|
696 |
+
```
|
697 |
+
|
698 |
+
Install the new dependency:
|
699 |
+
|
700 |
+
```bash
|
701 |
+
pip install reportlab>=4.0.0
|
702 |
+
```
|
703 |
+
|
704 |
+
# PDF Generation Troubleshooting Guide
|
705 |
+
|
706 |
+
## 🔧 If PDF Generation is Failing
|
707 |
+
|
708 |
+
### Quick Fix Steps
|
709 |
+
|
710 |
+
1. **Install ReportLab Library**
|
711 |
+
|
712 |
+
```bash
|
713 |
+
pip install reportlab>=4.0.0
|
714 |
+
```
|
715 |
+
|
716 |
+
2. **Run Installation Script**
|
717 |
+
|
718 |
+
- **Windows**: Double-click `install_pdf_deps.bat`
|
719 |
+
- **Linux/Mac**: Run `bash install_pdf_deps.sh`
|
720 |
+
|
721 |
+
3. **Restart the Application**
|
722 |
+
```bash
|
723 |
+
python app.py
|
724 |
+
```
|
725 |
+
|
726 |
+
### Common Issues and Solutions
|
727 |
+
|
728 |
+
#### ❌ **"ReportLab not available" Error**
|
729 |
+
|
730 |
+
**Problem**: ReportLab library is not installed.
|
731 |
+
|
732 |
+
**Solution**:
|
733 |
+
|
734 |
+
```bash
|
735 |
+
pip install reportlab
|
736 |
+
# or
|
737 |
+
pip install reportlab>=4.0.0
|
738 |
+
```
|
739 |
+
|
740 |
+
**Alternative**: Use virtual environment
|
741 |
+
|
742 |
+
```bash
|
743 |
+
python -m venv pdf_env
|
744 |
+
source pdf_env/bin/activate # Linux/Mac
|
745 |
+
# or
|
746 |
+
pdf_env\Scripts\activate # Windows
|
747 |
+
pip install reportlab
|
748 |
+
```
|
749 |
+
|
750 |
+
#### ❌ **"Permission denied" or "Access denied" Errors**
|
751 |
+
|
752 |
+
**Problem**: Insufficient permissions to install packages.
|
753 |
+
|
754 |
+
**Solutions**:
|
755 |
+
|
756 |
+
1. **Use --user flag**:
|
757 |
+
|
758 |
+
```bash
|
759 |
+
pip install --user reportlab
|
760 |
+
```
|
761 |
+
|
762 |
+
2. **Run as administrator** (Windows):
|
763 |
+
|
764 |
+
- Right-click Command Prompt → "Run as administrator"
|
765 |
+
- Then run: `pip install reportlab`
|
766 |
+
|
767 |
+
3. **Use sudo** (Linux/Mac):
|
768 |
+
```bash
|
769 |
+
sudo pip install reportlab
|
770 |
+
```
|
771 |
+
|
772 |
+
#### ❌ **"Module not found" Error Despite Installation**
|
773 |
+
|
774 |
+
**Problem**: ReportLab installed in different Python environment.
|
775 |
+
|
776 |
+
**Solutions**:
|
777 |
+
|
778 |
+
1. **Check Python version**:
|
779 |
+
|
780 |
+
```bash
|
781 |
+
python --version
|
782 |
+
which python # Linux/Mac
|
783 |
+
where python # Windows
|
784 |
+
```
|
785 |
+
|
786 |
+
2. **Install for specific Python version**:
|
787 |
+
|
788 |
+
```bash
|
789 |
+
python3 -m pip install reportlab
|
790 |
+
# or
|
791 |
+
python3.9 -m pip install reportlab
|
792 |
+
```
|
793 |
+
|
794 |
+
3. **Verify installation**:
|
795 |
+
```bash
|
796 |
+
python -c "import reportlab; print('ReportLab available')"
|
797 |
+
```
|
798 |
+
|
799 |
+
#### ❌ **PDF Generation Works but Images Missing**
|
800 |
+
|
801 |
+
**Problem**: Image files not accessible or corrupted.
|
802 |
+
|
803 |
+
**Solutions**:
|
804 |
+
|
805 |
+
1. **Check upload folder permissions**:
|
806 |
+
|
807 |
+
```bash
|
808 |
+
ls -la static/uploads/ # Linux/Mac
|
809 |
+
dir static\uploads\ # Windows
|
810 |
+
```
|
811 |
+
|
812 |
+
2. **Verify image exists**:
|
813 |
+
|
814 |
+
- Check browser developer tools for 404 errors
|
815 |
+
- Ensure images are properly saved during upload
|
816 |
+
|
817 |
+
3. **Check image format**:
|
818 |
+
- Ensure images are JPG, PNG, or supported formats
|
819 |
+
- ReportLab may have issues with some image formats
|
820 |
+
|
821 |
+
#### ❌ **Client-side PDF Generation Fails**
|
822 |
+
|
823 |
+
**Problem**: jsPDF library not loading.
|
824 |
+
|
825 |
+
**Solutions**:
|
826 |
+
|
827 |
+
1. **Check internet connection** (jsPDF loads from CDN)
|
828 |
+
|
829 |
+
2. **Check browser console** for JavaScript errors
|
830 |
+
|
831 |
+
#### ❌ **Folder Selection Not Working**
|
832 |
+
|
833 |
+
**Problem**: File System Access API not supported.
|
834 |
+
|
835 |
+
**Solutions**:
|
836 |
+
|
837 |
+
1. **Update browser**:
|
838 |
+
|
839 |
+
- Chrome 86+ or Edge 86+ required for folder selection
|
840 |
+
- Firefox and Safari will use default download folder
|
841 |
+
|
842 |
+
2. **Enable experimental features** (Chrome):
|
843 |
+
|
844 |
+
- Go to `chrome://flags`
|
845 |
+
- Enable "Experimental Web Platform features"
|
846 |
+
|
847 |
+
3. **Accept automatic download** to default folder
|
848 |
+
|
849 |
+
The system should work with any clear image of a potato plant leaf!
|
850 |
+
|
851 |
+
## 📄 License
|
852 |
+
|
853 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
854 |
+
|
855 |
+
## 🙏 Acknowledgments
|
856 |
+
|
857 |
+
- **PlantVillage Dataset**: For providing the potato disease dataset
|
858 |
+
- **TensorFlow Team**: For the amazing deep learning framework
|
859 |
+
- **Open Source Community**: For inspiration and resources
|
860 |
+
|
861 |
+
## 📞 Contact
|
862 |
+
|
863 |
+
- **Author**: Lucky Sharma
|
864 |
+
- **Email**: [email protected]
|
865 |
+
- **LinkedIn**: https://www.linkedin.com/in/lucky-sharma918894599977
|
866 |
+
- **GitHub**: https://github.com/itsluckysharma01
|
867 |
+
|
868 |
+
---
|
869 |
+
|
870 |
+
<div align="center">
|
871 |
+
<p>⭐ Star this repository if you found it helpful!</p>
|
872 |
+
<p>🍀 Happy coding and may your potatoes be healthy!</p>
|
873 |
+
</div>
|
874 |
+
"
|
app.py
ADDED
@@ -0,0 +1,625 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from flask import Flask, render_template, request, jsonify, redirect, url_for, flash, send_from_directory, send_file
|
5 |
+
from werkzeug.utils import secure_filename
|
6 |
+
from PIL import Image
|
7 |
+
import io
|
8 |
+
import base64
|
9 |
+
from datetime import datetime
|
10 |
+
import tempfile
|
11 |
+
|
12 |
+
# PDF generation dependencies with error handling
|
13 |
+
try:
|
14 |
+
from reportlab.lib.pagesizes import letter, A4
|
15 |
+
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as RLImage, Table, TableStyle
|
16 |
+
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
17 |
+
from reportlab.lib.units import inch
|
18 |
+
from reportlab.lib import colors
|
19 |
+
from reportlab.lib.enums import TA_CENTER, TA_LEFT
|
20 |
+
REPORTLAB_AVAILABLE = True
|
21 |
+
print("✅ ReportLab library loaded successfully!")
|
22 |
+
except ImportError as e:
|
23 |
+
REPORTLAB_AVAILABLE = False
|
24 |
+
print(f"⚠️ ReportLab not available: {e}")
|
25 |
+
print("📝 PDF generation will use client-side fallback only")
|
26 |
+
|
27 |
+
app = Flask(__name__)
|
28 |
+
app.secret_key = 'your-secret-key-here' # Change this to a secure secret key
|
29 |
+
|
30 |
+
# Configuration
|
31 |
+
UPLOAD_FOLDER = 'static/uploads'
|
32 |
+
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif'}
|
33 |
+
MAX_CONTENT_LENGTH = 16 * 1024 * 1024 # 16MB max file size
|
34 |
+
|
35 |
+
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
36 |
+
app.config['MAX_CONTENT_LENGTH'] = MAX_CONTENT_LENGTH
|
37 |
+
|
38 |
+
# Create upload directory if it doesn't exist
|
39 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
40 |
+
os.makedirs('static/css', exist_ok=True)
|
41 |
+
os.makedirs('static/js', exist_ok=True)
|
42 |
+
os.makedirs('templates', exist_ok=True)
|
43 |
+
|
44 |
+
@app.route('/uploads/<filename>')
|
45 |
+
def uploaded_file(filename):
|
46 |
+
"""Serve uploaded files"""
|
47 |
+
return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
|
48 |
+
|
49 |
+
# Load the trained model
|
50 |
+
MODEL_PATH = "models/1.h5" # Update this path if needed
|
51 |
+
try:
|
52 |
+
model = tf.keras.models.load_model(MODEL_PATH)
|
53 |
+
print("✅ Model loaded successfully!")
|
54 |
+
MODEL_LOADED = True
|
55 |
+
except Exception as e:
|
56 |
+
print(f"❌ Error loading model: {e}")
|
57 |
+
MODEL_LOADED = False
|
58 |
+
model = None
|
59 |
+
|
60 |
+
# Class names from your training (must match the exact order from training)
|
61 |
+
# Training order: ['Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy']
|
62 |
+
CLASS_NAMES = ["Potato___Early_blight", "Potato___Late_blight", "Potato___healthy"]
|
63 |
+
CLASS_DISPLAY_NAMES = ["Early Blight", "Late Blight", "Healthy"]
|
64 |
+
CLASS_DESCRIPTIONS = {
|
65 |
+
"Potato___Early_blight": "A common fungal disease that causes dark spots on potato leaves. Treatment with copper-based fungicides is recommended.",
|
66 |
+
"Potato___Late_blight": "A serious disease caused by Phytophthora infestans. Immediate action required - remove infected plants and apply appropriate fungicides.",
|
67 |
+
"Potato___healthy": "The potato plant appears healthy with no signs of disease detected. Continue good agricultural practices."
|
68 |
+
}
|
69 |
+
|
70 |
+
# Image preprocessing parameters
|
71 |
+
IMAGE_SIZE = 256
|
72 |
+
|
73 |
+
def allowed_file(filename):
|
74 |
+
"""Check if file extension is allowed"""
|
75 |
+
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
76 |
+
|
77 |
+
def preprocess_image(image):
|
78 |
+
"""Preprocess the uploaded image for prediction"""
|
79 |
+
try:
|
80 |
+
# Convert to RGB if necessary
|
81 |
+
if image.mode != "RGB":
|
82 |
+
image = image.convert("RGB")
|
83 |
+
|
84 |
+
# Resize image
|
85 |
+
image = image.resize((IMAGE_SIZE, IMAGE_SIZE))
|
86 |
+
|
87 |
+
# Convert to numpy array
|
88 |
+
img_array = np.array(image)
|
89 |
+
|
90 |
+
# DO NOT normalize here - the model has built-in rescaling layer
|
91 |
+
# The model expects pixel values in range [0, 255]
|
92 |
+
# img_array = img_array / 255.0 # Removed this line
|
93 |
+
|
94 |
+
# Add batch dimension
|
95 |
+
img_array = np.expand_dims(img_array, axis=0)
|
96 |
+
|
97 |
+
# Debug: Print image statistics
|
98 |
+
print(f"Image shape: {img_array.shape}")
|
99 |
+
print(f"Image pixel range: [{img_array.min():.2f}, {img_array.max():.2f}]")
|
100 |
+
|
101 |
+
return img_array
|
102 |
+
except Exception as e:
|
103 |
+
print(f"Error preprocessing image: {e}")
|
104 |
+
return None
|
105 |
+
|
106 |
+
def predict_disease(image):
|
107 |
+
"""Make prediction on the preprocessed image"""
|
108 |
+
if not MODEL_LOADED or model is None:
|
109 |
+
return {"error": "Model not loaded"}
|
110 |
+
|
111 |
+
try:
|
112 |
+
# Preprocess image
|
113 |
+
processed_image = preprocess_image(image)
|
114 |
+
if processed_image is None:
|
115 |
+
return {"error": "Failed to preprocess image"}
|
116 |
+
|
117 |
+
# Make prediction
|
118 |
+
predictions = model.predict(processed_image)
|
119 |
+
predicted_class_index = np.argmax(predictions[0])
|
120 |
+
confidence = float(np.max(predictions[0]))
|
121 |
+
|
122 |
+
# Debug: Print prediction details
|
123 |
+
print(f"Raw predictions: {predictions[0]}")
|
124 |
+
print(f"Predicted class index: {predicted_class_index}")
|
125 |
+
print(f"Confidence: {confidence:.4f}")
|
126 |
+
|
127 |
+
# Get class name
|
128 |
+
predicted_class = CLASS_NAMES[predicted_class_index]
|
129 |
+
predicted_display_name = CLASS_DISPLAY_NAMES[predicted_class_index]
|
130 |
+
|
131 |
+
# Create detailed results
|
132 |
+
all_predictions = {}
|
133 |
+
for i, (class_name, display_name) in enumerate(zip(CLASS_NAMES, CLASS_DISPLAY_NAMES)):
|
134 |
+
all_predictions[display_name] = {
|
135 |
+
'probability': round(float(predictions[0][i]) * 100, 2),
|
136 |
+
'description': CLASS_DESCRIPTIONS[class_name]
|
137 |
+
}
|
138 |
+
|
139 |
+
return {
|
140 |
+
"predicted_class": predicted_display_name,
|
141 |
+
"confidence": round(confidence * 100, 2),
|
142 |
+
"description": CLASS_DESCRIPTIONS[predicted_class],
|
143 |
+
"all_predictions": all_predictions,
|
144 |
+
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
145 |
+
}
|
146 |
+
|
147 |
+
except Exception as e:
|
148 |
+
print(f"Prediction error: {e}")
|
149 |
+
return {"error": f"Prediction failed: {str(e)}"}
|
150 |
+
|
151 |
+
def get_recommendations(disease_name, confidence):
|
152 |
+
"""Get treatment recommendations based on prediction"""
|
153 |
+
recommendations = {
|
154 |
+
'Early Blight': [
|
155 |
+
"Remove affected leaves immediately and dispose properly",
|
156 |
+
"Apply copper-based fungicide spray",
|
157 |
+
"Improve air circulation around plants",
|
158 |
+
"Avoid overhead watering",
|
159 |
+
"Consider crop rotation for next season"
|
160 |
+
],
|
161 |
+
'Late Blight': [
|
162 |
+
"URGENT: Remove and destroy infected plants immediately",
|
163 |
+
"Apply systemic fungicides (metalaxyl-based)",
|
164 |
+
"Monitor weather conditions closely",
|
165 |
+
"Increase plant spacing for better air circulation",
|
166 |
+
"Harvest healthy tubers as soon as possible"
|
167 |
+
],
|
168 |
+
'Healthy': [
|
169 |
+
"Continue current care practices",
|
170 |
+
"Maintain proper watering schedule",
|
171 |
+
"Monitor plants regularly for early signs of disease",
|
172 |
+
"Ensure good soil drainage",
|
173 |
+
"Apply balanced fertilizer as needed"
|
174 |
+
]
|
175 |
+
}
|
176 |
+
return recommendations.get(disease_name, ["Consult agricultural expert for specific advice"])
|
177 |
+
|
178 |
+
@app.route('/')
|
179 |
+
def index():
|
180 |
+
"""Main page"""
|
181 |
+
return render_template('index.html', model_loaded=MODEL_LOADED)
|
182 |
+
|
183 |
+
@app.route('/test')
|
184 |
+
def test_upload():
|
185 |
+
"""Simple upload test page"""
|
186 |
+
return render_template('test_upload.html')
|
187 |
+
|
188 |
+
@app.route('/debug')
|
189 |
+
def debug_upload():
|
190 |
+
"""Debug upload test page"""
|
191 |
+
return render_template('debug_upload.html')
|
192 |
+
|
193 |
+
@app.route('/predict', methods=['POST'])
|
194 |
+
def predict():
|
195 |
+
"""Handle image upload and prediction"""
|
196 |
+
try:
|
197 |
+
print(f"Received prediction request. Files: {list(request.files.keys())}")
|
198 |
+
|
199 |
+
if 'file' not in request.files:
|
200 |
+
print("No file in request")
|
201 |
+
return jsonify({'error': 'No file uploaded'}), 400
|
202 |
+
|
203 |
+
file = request.files['file']
|
204 |
+
print(f"File received: {file.filename}, size: {file.content_length if hasattr(file, 'content_length') else 'unknown'}")
|
205 |
+
|
206 |
+
if file.filename == '':
|
207 |
+
print("Empty filename")
|
208 |
+
return jsonify({'error': 'No file selected'}), 400
|
209 |
+
|
210 |
+
if not allowed_file(file.filename):
|
211 |
+
print(f"Invalid file type: {file.filename}")
|
212 |
+
return jsonify({'error': 'Invalid file type. Please upload PNG, JPG, or JPEG files.'}), 400
|
213 |
+
|
214 |
+
# Ensure upload directory exists
|
215 |
+
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
216 |
+
|
217 |
+
# Save uploaded file
|
218 |
+
filename = secure_filename(file.filename)
|
219 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
220 |
+
filename = f"{timestamp}_{filename}"
|
221 |
+
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
|
222 |
+
|
223 |
+
print(f"Saving file to: {filepath}")
|
224 |
+
file.save(filepath)
|
225 |
+
print(f"File saved successfully")
|
226 |
+
|
227 |
+
# Verify file exists
|
228 |
+
if not os.path.exists(filepath):
|
229 |
+
print(f"File was not saved properly: {filepath}")
|
230 |
+
return jsonify({'error': 'Failed to save uploaded file'}), 500
|
231 |
+
|
232 |
+
print(f"File size on disk: {os.path.getsize(filepath)} bytes")
|
233 |
+
|
234 |
+
# Open and predict
|
235 |
+
try:
|
236 |
+
image = Image.open(filepath)
|
237 |
+
print(f"Image opened successfully: {image.size}, mode: {image.mode}")
|
238 |
+
except Exception as e:
|
239 |
+
print(f"Failed to open image: {e}")
|
240 |
+
return jsonify({'error': f'Invalid image file: {str(e)}'}), 400
|
241 |
+
|
242 |
+
result = predict_disease(image)
|
243 |
+
print(f"Prediction result: {result}")
|
244 |
+
|
245 |
+
if 'error' in result:
|
246 |
+
return jsonify(result), 500
|
247 |
+
|
248 |
+
# Add recommendations and image URL for upload method
|
249 |
+
result['recommendations'] = get_recommendations(result['predicted_class'], result['confidence'])
|
250 |
+
result['image_url'] = url_for('uploaded_file', filename=filename)
|
251 |
+
|
252 |
+
print(f"Final result with image URL: {result['image_url']}")
|
253 |
+
return jsonify(result)
|
254 |
+
|
255 |
+
except Exception as e:
|
256 |
+
print(f"Prediction error: {e}")
|
257 |
+
import traceback
|
258 |
+
traceback.print_exc()
|
259 |
+
return jsonify({'error': f'Prediction failed: {str(e)}'}), 500
|
260 |
+
|
261 |
+
@app.route('/predict_camera', methods=['POST'])
|
262 |
+
def predict_camera():
|
263 |
+
"""Handle camera image prediction"""
|
264 |
+
try:
|
265 |
+
data = request.get_json()
|
266 |
+
|
267 |
+
if 'image' not in data:
|
268 |
+
return jsonify({'error': 'No image data provided'}), 400
|
269 |
+
|
270 |
+
# Decode base64 image
|
271 |
+
image_data = data['image'].split(',')[1] # Remove data:image/png;base64, prefix
|
272 |
+
image_bytes = base64.b64decode(image_data)
|
273 |
+
image = Image.open(io.BytesIO(image_bytes))
|
274 |
+
|
275 |
+
# Save camera image
|
276 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
277 |
+
filename = f"camera_{timestamp}.png"
|
278 |
+
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
|
279 |
+
image.save(filepath)
|
280 |
+
|
281 |
+
# Make prediction
|
282 |
+
result = predict_disease(image)
|
283 |
+
|
284 |
+
if 'error' in result:
|
285 |
+
return jsonify(result), 500
|
286 |
+
|
287 |
+
# Add recommendations and image URL for camera method
|
288 |
+
result['recommendations'] = get_recommendations(result['predicted_class'], result['confidence'])
|
289 |
+
result['image_url'] = url_for('uploaded_file', filename=filename)
|
290 |
+
|
291 |
+
return jsonify(result)
|
292 |
+
|
293 |
+
except Exception as e:
|
294 |
+
return jsonify({'error': f'Camera prediction failed: {str(e)}'}), 500
|
295 |
+
|
296 |
+
@app.route('/health')
|
297 |
+
def health():
|
298 |
+
"""Health check endpoint"""
|
299 |
+
upload_dir_exists = os.path.exists(app.config['UPLOAD_FOLDER'])
|
300 |
+
upload_dir_writable = os.access(app.config['UPLOAD_FOLDER'], os.W_OK) if upload_dir_exists else False
|
301 |
+
|
302 |
+
return jsonify({
|
303 |
+
'status': 'healthy',
|
304 |
+
'model_loaded': MODEL_LOADED,
|
305 |
+
'upload_dir_exists': upload_dir_exists,
|
306 |
+
'upload_dir_writable': upload_dir_writable,
|
307 |
+
'upload_path': app.config['UPLOAD_FOLDER'],
|
308 |
+
'timestamp': datetime.now().isoformat()
|
309 |
+
})
|
310 |
+
|
311 |
+
@app.route('/debug/upload-test')
|
312 |
+
def debug_upload_test():
|
313 |
+
"""Debug endpoint to test upload directory"""
|
314 |
+
try:
|
315 |
+
# Ensure upload directory exists
|
316 |
+
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
317 |
+
|
318 |
+
# Test file creation
|
319 |
+
test_file = os.path.join(app.config['UPLOAD_FOLDER'], 'test.txt')
|
320 |
+
with open(test_file, 'w') as f:
|
321 |
+
f.write('test')
|
322 |
+
|
323 |
+
# Clean up test file
|
324 |
+
os.remove(test_file)
|
325 |
+
|
326 |
+
return jsonify({
|
327 |
+
'status': 'success',
|
328 |
+
'message': 'Upload directory is working correctly',
|
329 |
+
'path': app.config['UPLOAD_FOLDER']
|
330 |
+
})
|
331 |
+
except Exception as e:
|
332 |
+
return jsonify({
|
333 |
+
'status': 'error',
|
334 |
+
'message': f'Upload directory test failed: {str(e)}',
|
335 |
+
'path': app.config['UPLOAD_FOLDER']
|
336 |
+
}), 500
|
337 |
+
|
338 |
+
def test_model_predictions():
|
339 |
+
"""Test the model with some dummy data to verify it's working correctly"""
|
340 |
+
if not MODEL_LOADED or model is None:
|
341 |
+
return {"error": "Model not loaded"}
|
342 |
+
|
343 |
+
try:
|
344 |
+
# Create dummy test data - same shape as expected input
|
345 |
+
dummy_image = np.random.randint(0, 255, (1, IMAGE_SIZE, IMAGE_SIZE, 3), dtype=np.uint8)
|
346 |
+
|
347 |
+
# Make prediction
|
348 |
+
predictions = model.predict(dummy_image)
|
349 |
+
|
350 |
+
print(f"Model test - Input shape: {dummy_image.shape}")
|
351 |
+
print(f"Model test - Output shape: {predictions.shape}")
|
352 |
+
print(f"Model test - Predictions: {predictions[0]}")
|
353 |
+
print(f"Model test - Sum of predictions: {np.sum(predictions[0])}")
|
354 |
+
print(f"Model test - Class names order: {CLASS_NAMES}")
|
355 |
+
|
356 |
+
return {
|
357 |
+
"status": "success",
|
358 |
+
"input_shape": str(dummy_image.shape),
|
359 |
+
"output_shape": str(predictions.shape),
|
360 |
+
"predictions": predictions[0].tolist(),
|
361 |
+
"prediction_sum": float(np.sum(predictions[0])),
|
362 |
+
"class_names": CLASS_NAMES
|
363 |
+
}
|
364 |
+
except Exception as e:
|
365 |
+
print(f"Model test error: {e}")
|
366 |
+
return {"error": f"Model test failed: {str(e)}"}
|
367 |
+
|
368 |
+
@app.route('/debug/model-test')
|
369 |
+
def debug_model_test():
|
370 |
+
"""Debug endpoint to test model functionality"""
|
371 |
+
result = test_model_predictions()
|
372 |
+
return jsonify(result)
|
373 |
+
|
374 |
+
@app.errorhandler(413)
|
375 |
+
def too_large(e):
|
376 |
+
return jsonify({'error': 'File too large. Maximum size is 16MB.'}), 413
|
377 |
+
|
378 |
+
@app.errorhandler(404)
|
379 |
+
def not_found(e):
|
380 |
+
return render_template('index.html', model_loaded=MODEL_LOADED)
|
381 |
+
|
382 |
+
def generate_pdf_report(prediction_data, image_path=None):
|
383 |
+
"""Generate a professional PDF report for the disease prediction"""
|
384 |
+
if not REPORTLAB_AVAILABLE:
|
385 |
+
print("❌ ReportLab not available - cannot generate server-side PDF")
|
386 |
+
return None
|
387 |
+
|
388 |
+
try:
|
389 |
+
# Create a temporary file for the PDF
|
390 |
+
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix='.pdf')
|
391 |
+
|
392 |
+
# Create the PDF document
|
393 |
+
doc = SimpleDocTemplate(temp_pdf.name, pagesize=A4)
|
394 |
+
styles = getSampleStyleSheet()
|
395 |
+
story = []
|
396 |
+
|
397 |
+
# Custom styles
|
398 |
+
title_style = ParagraphStyle(
|
399 |
+
'CustomTitle',
|
400 |
+
parent=styles['Title'],
|
401 |
+
fontSize=24,
|
402 |
+
spaceAfter=30,
|
403 |
+
alignment=TA_CENTER,
|
404 |
+
textColor=colors.darkgreen
|
405 |
+
)
|
406 |
+
|
407 |
+
heading_style = ParagraphStyle(
|
408 |
+
'CustomHeading',
|
409 |
+
parent=styles['Heading2'],
|
410 |
+
fontSize=16,
|
411 |
+
spaceAfter=12,
|
412 |
+
textColor=colors.darkblue
|
413 |
+
)
|
414 |
+
|
415 |
+
# Title
|
416 |
+
story.append(Paragraph("🥔 POTATO DISEASE DETECTION REPORT", title_style))
|
417 |
+
story.append(Spacer(1, 20))
|
418 |
+
|
419 |
+
# Header info table
|
420 |
+
header_data = [
|
421 |
+
['Report Generated:', prediction_data.get('timestamp', datetime.now().strftime("%Y-%m-%d %H:%M:%S"))],
|
422 |
+
['Analysis Method:', 'Deep Learning AI Classification'],
|
423 |
+
['Model Version:', 'TensorFlow/Keras CNN v1.0']
|
424 |
+
]
|
425 |
+
|
426 |
+
header_table = Table(header_data, colWidths=[2*inch, 4*inch])
|
427 |
+
header_table.setStyle(TableStyle([
|
428 |
+
('BACKGROUND', (0, 0), (0, -1), colors.lightgrey),
|
429 |
+
('TEXTCOLOR', (0, 0), (-1, -1), colors.black),
|
430 |
+
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
|
431 |
+
('FONTNAME', (0, 0), (-1, -1), 'Helvetica-Bold'),
|
432 |
+
('FONTSIZE', (0, 0), (-1, -1), 10),
|
433 |
+
('BOTTOMPADDING', (0, 0), (-1, -1), 12),
|
434 |
+
('GRID', (0, 0), (-1, -1), 1, colors.black)
|
435 |
+
]))
|
436 |
+
|
437 |
+
story.append(header_table)
|
438 |
+
story.append(Spacer(1, 30))
|
439 |
+
|
440 |
+
# Add image if provided
|
441 |
+
if image_path and os.path.exists(image_path):
|
442 |
+
story.append(Paragraph("📸 ANALYZED IMAGE", heading_style))
|
443 |
+
try:
|
444 |
+
# Resize image to fit in PDF
|
445 |
+
img = RLImage(image_path)
|
446 |
+
img.drawHeight = 3 * inch
|
447 |
+
img.drawWidth = 3 * inch
|
448 |
+
story.append(img)
|
449 |
+
story.append(Spacer(1, 20))
|
450 |
+
except Exception as img_error:
|
451 |
+
print(f"Warning: Could not add image to PDF: {img_error}")
|
452 |
+
story.append(Paragraph("Image could not be embedded in PDF", styles['Normal']))
|
453 |
+
story.append(Spacer(1, 20))
|
454 |
+
|
455 |
+
# Diagnosis Section
|
456 |
+
story.append(Paragraph("🎯 DIAGNOSIS RESULTS", heading_style))
|
457 |
+
|
458 |
+
# Main diagnosis
|
459 |
+
diagnosis_data = [
|
460 |
+
['Predicted Disease:', prediction_data.get('predicted_class', 'Unknown')],
|
461 |
+
['Confidence Level:', f"{prediction_data.get('confidence', 0):.2f}%"],
|
462 |
+
['Risk Assessment:', get_risk_level(prediction_data.get('confidence', 0))]
|
463 |
+
]
|
464 |
+
|
465 |
+
diagnosis_table = Table(diagnosis_data, colWidths=[2*inch, 4*inch])
|
466 |
+
diagnosis_table.setStyle(TableStyle([
|
467 |
+
('BACKGROUND', (0, 0), (0, -1), colors.lightblue),
|
468 |
+
('TEXTCOLOR', (0, 0), (-1, -1), colors.black),
|
469 |
+
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
|
470 |
+
('FONTNAME', (0, 0), (-1, -1), 'Helvetica'),
|
471 |
+
('FONTSIZE', (0, 0), (-1, -1), 12),
|
472 |
+
('BOTTOMPADDING', (0, 0), (-1, -1), 12),
|
473 |
+
('GRID', (0, 0), (-1, -1), 1, colors.black)
|
474 |
+
]))
|
475 |
+
|
476 |
+
story.append(diagnosis_table)
|
477 |
+
story.append(Spacer(1, 20))
|
478 |
+
|
479 |
+
# Description
|
480 |
+
story.append(Paragraph("📋 DESCRIPTION", heading_style))
|
481 |
+
description = Paragraph(prediction_data.get('description', 'No description available.'), styles['Normal'])
|
482 |
+
story.append(description)
|
483 |
+
story.append(Spacer(1, 20))
|
484 |
+
|
485 |
+
# Probability breakdown
|
486 |
+
story.append(Paragraph("📊 PROBABILITY BREAKDOWN", heading_style))
|
487 |
+
|
488 |
+
prob_data = [['Disease Type', 'Probability']]
|
489 |
+
all_predictions = prediction_data.get('all_predictions', {})
|
490 |
+
for disease, info in all_predictions.items():
|
491 |
+
prob_data.append([disease, f"{info.get('probability', 0):.2f}%"])
|
492 |
+
|
493 |
+
prob_table = Table(prob_data, colWidths=[3*inch, 2*inch])
|
494 |
+
prob_table.setStyle(TableStyle([
|
495 |
+
('BACKGROUND', (0, 0), (-1, 0), colors.grey),
|
496 |
+
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
|
497 |
+
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
|
498 |
+
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
|
499 |
+
('FONTNAME', (0, 1), (-1, -1), 'Helvetica'),
|
500 |
+
('FONTSIZE', (0, 0), (-1, -1), 10),
|
501 |
+
('BOTTOMPADDING', (0, 0), (-1, -1), 12),
|
502 |
+
('GRID', (0, 0), (-1, -1), 1, colors.black)
|
503 |
+
]))
|
504 |
+
|
505 |
+
story.append(prob_table)
|
506 |
+
story.append(Spacer(1, 20))
|
507 |
+
|
508 |
+
# Recommendations
|
509 |
+
story.append(Paragraph("💡 TREATMENT RECOMMENDATIONS", heading_style))
|
510 |
+
|
511 |
+
recommendations = prediction_data.get('recommendations', [])
|
512 |
+
for i, rec in enumerate(recommendations, 1):
|
513 |
+
rec_text = f"{i}. {rec}"
|
514 |
+
story.append(Paragraph(rec_text, styles['Normal']))
|
515 |
+
story.append(Spacer(1, 8))
|
516 |
+
|
517 |
+
story.append(Spacer(1, 30))
|
518 |
+
|
519 |
+
# Footer
|
520 |
+
footer_style = ParagraphStyle(
|
521 |
+
'Footer',
|
522 |
+
parent=styles['Normal'],
|
523 |
+
fontSize=10,
|
524 |
+
alignment=TA_CENTER,
|
525 |
+
textColor=colors.grey
|
526 |
+
)
|
527 |
+
|
528 |
+
story.append(Paragraph("_______________________________________________", footer_style))
|
529 |
+
story.append(Spacer(1, 10))
|
530 |
+
story.append(Paragraph("Generated by Potato Disease Detection System", footer_style))
|
531 |
+
story.append(Paragraph("Powered by Flask & TensorFlow | Lucky Sharma", footer_style))
|
532 |
+
story.append(Paragraph("© 2025 All Rights Reserved", footer_style))
|
533 |
+
|
534 |
+
# Build PDF
|
535 |
+
doc.build(story)
|
536 |
+
|
537 |
+
print(f"✅ PDF report generated successfully: {temp_pdf.name}")
|
538 |
+
return temp_pdf.name
|
539 |
+
|
540 |
+
except Exception as e:
|
541 |
+
print(f"❌ Error generating PDF: {e}")
|
542 |
+
import traceback
|
543 |
+
traceback.print_exc()
|
544 |
+
return None
|
545 |
+
|
546 |
+
def get_risk_level(confidence):
|
547 |
+
"""Determine risk level based on confidence"""
|
548 |
+
if confidence >= 80:
|
549 |
+
return "High Confidence"
|
550 |
+
elif confidence >= 60:
|
551 |
+
return "Medium Confidence"
|
552 |
+
else:
|
553 |
+
return "Low Confidence - Manual Verification Recommended"
|
554 |
+
|
555 |
+
@app.route('/generate-pdf-report', methods=['POST'])
|
556 |
+
def generate_pdf_report_route():
|
557 |
+
"""Generate and download PDF report"""
|
558 |
+
try:
|
559 |
+
data = request.get_json()
|
560 |
+
|
561 |
+
if not data:
|
562 |
+
return jsonify({'error': 'No data provided'}), 400
|
563 |
+
|
564 |
+
# Check if ReportLab is available
|
565 |
+
if not REPORTLAB_AVAILABLE:
|
566 |
+
print("⚠️ ReportLab not available, suggesting client-side fallback")
|
567 |
+
return jsonify({
|
568 |
+
'error': 'Server-side PDF generation not available',
|
569 |
+
'fallback': 'client',
|
570 |
+
'message': 'ReportLab library not installed. Using client-side fallback.'
|
571 |
+
}), 503
|
572 |
+
|
573 |
+
# Get image path if provided
|
574 |
+
image_path = None
|
575 |
+
if 'image_url' in data:
|
576 |
+
# Extract filename from URL and construct full path
|
577 |
+
image_filename = data['image_url'].split('/')[-1]
|
578 |
+
image_path = os.path.join(app.config['UPLOAD_FOLDER'], image_filename)
|
579 |
+
|
580 |
+
# Verify image exists
|
581 |
+
if not os.path.exists(image_path):
|
582 |
+
image_path = None
|
583 |
+
|
584 |
+
# Generate PDF
|
585 |
+
pdf_path = generate_pdf_report(data, image_path)
|
586 |
+
|
587 |
+
if not pdf_path:
|
588 |
+
print("❌ PDF generation failed, suggesting client-side fallback")
|
589 |
+
return jsonify({
|
590 |
+
'error': 'Server-side PDF generation failed',
|
591 |
+
'fallback': 'client',
|
592 |
+
'message': 'Could not generate PDF on server. Using client-side fallback.'
|
593 |
+
}), 503
|
594 |
+
|
595 |
+
# Create filename
|
596 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
597 |
+
disease_name = data.get('predicted_class', 'unknown').replace(' ', '_')
|
598 |
+
pdf_filename = f"potato_disease_report_{disease_name}_{timestamp}.pdf"
|
599 |
+
|
600 |
+
print(f"✅ PDF generated successfully: {pdf_filename}")
|
601 |
+
return send_file(
|
602 |
+
pdf_path,
|
603 |
+
as_attachment=True,
|
604 |
+
download_name=pdf_filename,
|
605 |
+
mimetype='application/pdf'
|
606 |
+
)
|
607 |
+
|
608 |
+
except Exception as e:
|
609 |
+
print(f"❌ PDF generation error: {e}")
|
610 |
+
import traceback
|
611 |
+
traceback.print_exc()
|
612 |
+
return jsonify({
|
613 |
+
'error': f'PDF generation failed: {str(e)}',
|
614 |
+
'fallback': 'client',
|
615 |
+
'message': 'Server error occurred. Using client-side fallback.'
|
616 |
+
}), 503
|
617 |
+
|
618 |
+
if __name__ == '__main__':
|
619 |
+
print("🚀 Starting Potato Disease Detection Flask App...")
|
620 |
+
print(f"📁 Upload folder: {UPLOAD_FOLDER}")
|
621 |
+
print(f"🤖 Model loaded: {MODEL_LOADED}")
|
622 |
+
print("🌐 Access the app at: http://localhost:5000")
|
623 |
+
print("💡 Press Ctrl+C to stop the server")
|
624 |
+
|
625 |
+
app.run(debug=True, host='0.0.0.0', port=5000)
|
models/1.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a45a2a92332af1909dc22a358df71f5bda8a8a0d8e8f20b8a418058f1d6bb05
|
3 |
+
size 2284808
|
models/1/fingerprint.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb44ef89d6bb9784adb55b8e23814c1d68d97b3fc64dd3cf7af384477086d64c
|
3 |
+
size 75
|
models/1/saved_model.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e363b45246a41fa1857bd8f17447da4aac0058b6539ee50e3d043cc9ad0dafa6
|
3 |
+
size 162792
|
models/1/variables/variables.data-00000-of-00001
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd04fe5bed6a7d85490a35ee700b54e39c4b6e46876fd28f7d8c471b00558374
|
3 |
+
size 1474148
|
models/1/variables/variables.index
ADDED
Binary file (2.2 kB). View file
|
|
models/4.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fafa6d490669d331044ed2cca67a6c437773725be035f13e64e7f4c6145554b
|
3 |
+
size 2284916
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Flask>=2.3.0
|
2 |
+
tensorflow>=2.13.0
|
3 |
+
Pillow>=10.0.0
|
4 |
+
numpy>=1.24.0
|
5 |
+
Werkzeug>=2.3.0
|
6 |
+
reportlab>=4.0.0
|
7 |
+
|
runtime.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python-3.10.12
|
static/content/android-icon-144x144.png
ADDED
![]() |
static/content/android-icon-192x192.png
ADDED
![]() |
static/content/android-icon-36x36.png
ADDED
![]() |
static/content/android-icon-48x48.png
ADDED
![]() |
static/content/android-icon-72x72.png
ADDED
![]() |
static/content/android-icon-96x96.png
ADDED
![]() |
static/content/apple-icon-114x114.png
ADDED
![]() |
static/content/apple-icon-120x120.png
ADDED
![]() |
static/content/apple-icon-144x144.png
ADDED
![]() |
static/content/apple-icon-152x152.png
ADDED
![]() |
static/content/apple-icon-180x180.png
ADDED
![]() |
static/content/apple-icon-57x57.png
ADDED
![]() |
static/content/apple-icon-60x60.png
ADDED
![]() |
static/content/apple-icon-72x72.png
ADDED
![]() |
static/content/apple-icon-76x76.png
ADDED
![]() |
static/content/apple-icon-precomposed.png
ADDED
![]() |
static/content/apple-icon.png
ADDED
![]() |
static/content/browserconfig.xml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="utf-8"?>
|
2 |
+
<browserconfig><msapplication><tile><square70x70logo src="/ms-icon-70x70.png"/><square150x150logo src="/ms-icon-150x150.png"/><square310x310logo src="/ms-icon-310x310.png"/><TileColor>#ffffff</TileColor></tile></msapplication></browserconfig>
|
static/content/favicon-16x16.png
ADDED
![]() |
static/content/favicon-32x32.png
ADDED
![]() |
static/content/favicon-96x96.png
ADDED
![]() |
static/content/favicon.ico
ADDED
|
static/content/manifest.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "App",
|
3 |
+
"icons": [
|
4 |
+
{
|
5 |
+
"src": "\/android-icon-36x36.png",
|
6 |
+
"sizes": "36x36",
|
7 |
+
"type": "image\/png",
|
8 |
+
"density": "0.75"
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"src": "\/android-icon-48x48.png",
|
12 |
+
"sizes": "48x48",
|
13 |
+
"type": "image\/png",
|
14 |
+
"density": "1.0"
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"src": "\/android-icon-72x72.png",
|
18 |
+
"sizes": "72x72",
|
19 |
+
"type": "image\/png",
|
20 |
+
"density": "1.5"
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"src": "\/android-icon-96x96.png",
|
24 |
+
"sizes": "96x96",
|
25 |
+
"type": "image\/png",
|
26 |
+
"density": "2.0"
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"src": "\/android-icon-144x144.png",
|
30 |
+
"sizes": "144x144",
|
31 |
+
"type": "image\/png",
|
32 |
+
"density": "3.0"
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"src": "\/android-icon-192x192.png",
|
36 |
+
"sizes": "192x192",
|
37 |
+
"type": "image\/png",
|
38 |
+
"density": "4.0"
|
39 |
+
}
|
40 |
+
]
|
41 |
+
}
|
static/content/ms-icon-144x144.png
ADDED
![]() |
static/content/ms-icon-150x150.png
ADDED
![]() |
static/content/ms-icon-310x310.png
ADDED
![]() |
static/content/ms-icon-70x70.png
ADDED
![]() |
static/css/style.css
ADDED
@@ -0,0 +1,1334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* CSS Variables for mobile viewport fix */
|
2 |
+
:root {
|
3 |
+
--vh: 1vh;
|
4 |
+
}
|
5 |
+
|
6 |
+
/* Mobile-specific body classes */
|
7 |
+
.mobile-device {
|
8 |
+
-webkit-text-size-adjust: 100%;
|
9 |
+
-webkit-font-smoothing: antialiased;
|
10 |
+
-moz-osx-font-smoothing: grayscale;
|
11 |
+
}
|
12 |
+
|
13 |
+
.ios-device {
|
14 |
+
-webkit-overflow-scrolling: touch;
|
15 |
+
}
|
16 |
+
|
17 |
+
/* Tooltip styles for unsupported features */
|
18 |
+
.tooltip {
|
19 |
+
position: absolute;
|
20 |
+
bottom: -30px;
|
21 |
+
left: 50%;
|
22 |
+
transform: translateX(-50%);
|
23 |
+
background: rgba(0, 0, 0, 0.8);
|
24 |
+
color: white;
|
25 |
+
padding: 5px 10px;
|
26 |
+
border-radius: 4px;
|
27 |
+
font-size: 0.8rem;
|
28 |
+
white-space: nowrap;
|
29 |
+
z-index: 1000;
|
30 |
+
opacity: 0;
|
31 |
+
pointer-events: none;
|
32 |
+
transition: opacity 0.3s ease;
|
33 |
+
}
|
34 |
+
|
35 |
+
.method-card:hover .tooltip {
|
36 |
+
opacity: 1;
|
37 |
+
}
|
38 |
+
|
39 |
+
/* Reset and Base Styles */
|
40 |
+
* {
|
41 |
+
margin: 0;
|
42 |
+
padding: 0;
|
43 |
+
box-sizing: border-box;
|
44 |
+
}
|
45 |
+
|
46 |
+
body {
|
47 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
48 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
49 |
+
min-height: 100vh;
|
50 |
+
line-height: 1.6;
|
51 |
+
color: #333;
|
52 |
+
}
|
53 |
+
|
54 |
+
.container {
|
55 |
+
max-width: 1200px;
|
56 |
+
margin: 0 auto;
|
57 |
+
padding: 20px;
|
58 |
+
}
|
59 |
+
|
60 |
+
/* Header */
|
61 |
+
.header {
|
62 |
+
text-align: center;
|
63 |
+
margin-bottom: 30px;
|
64 |
+
color: white;
|
65 |
+
}
|
66 |
+
|
67 |
+
.header-content {
|
68 |
+
background: rgba(255, 255, 255, 0.1);
|
69 |
+
backdrop-filter: blur(10px);
|
70 |
+
border-radius: 20px;
|
71 |
+
padding: 30px;
|
72 |
+
border: 1px solid rgba(255, 255, 255, 0.2);
|
73 |
+
}
|
74 |
+
|
75 |
+
.logo-icon {
|
76 |
+
font-size: 4rem;
|
77 |
+
margin-bottom: 15px;
|
78 |
+
color: #4ade80;
|
79 |
+
}
|
80 |
+
|
81 |
+
.header h1 {
|
82 |
+
font-size: 2.5rem;
|
83 |
+
margin-bottom: 10px;
|
84 |
+
font-weight: 700;
|
85 |
+
}
|
86 |
+
|
87 |
+
.header p {
|
88 |
+
font-size: 1.1rem;
|
89 |
+
opacity: 0.9;
|
90 |
+
margin-bottom: 15px;
|
91 |
+
}
|
92 |
+
|
93 |
+
.alert {
|
94 |
+
padding: 15px;
|
95 |
+
border-radius: 10px;
|
96 |
+
margin-top: 15px;
|
97 |
+
display: flex;
|
98 |
+
align-items: center;
|
99 |
+
gap: 10px;
|
100 |
+
}
|
101 |
+
|
102 |
+
.alert-error {
|
103 |
+
background: rgba(239, 68, 68, 0.2);
|
104 |
+
border: 1px solid rgba(239, 68, 68, 0.3);
|
105 |
+
color: #fee2e2;
|
106 |
+
}
|
107 |
+
|
108 |
+
/* Main Content */
|
109 |
+
.main-content {
|
110 |
+
background: white;
|
111 |
+
border-radius: 20px;
|
112 |
+
padding: 40px;
|
113 |
+
box-shadow: 0 20px 40px rgba(0, 0, 0, 0.1);
|
114 |
+
margin-bottom: 30px;
|
115 |
+
position: relative;
|
116 |
+
}
|
117 |
+
|
118 |
+
/* Upload Methods */
|
119 |
+
.upload-methods {
|
120 |
+
display: flex;
|
121 |
+
gap: 20px;
|
122 |
+
margin-bottom: 30px;
|
123 |
+
justify-content: center;
|
124 |
+
}
|
125 |
+
|
126 |
+
.method-card {
|
127 |
+
flex: 1;
|
128 |
+
max-width: 200px;
|
129 |
+
padding: 25px;
|
130 |
+
border: 2px solid #e2e8f0;
|
131 |
+
border-radius: 15px;
|
132 |
+
text-align: center;
|
133 |
+
cursor: pointer;
|
134 |
+
transition: all 0.3s ease;
|
135 |
+
background: #f8fafc;
|
136 |
+
}
|
137 |
+
|
138 |
+
.method-card:hover {
|
139 |
+
border-color: #667eea;
|
140 |
+
transform: translateY(-2px);
|
141 |
+
box-shadow: 0 10px 20px rgba(102, 126, 234, 0.2);
|
142 |
+
}
|
143 |
+
|
144 |
+
.method-card.active {
|
145 |
+
border-color: #667eea;
|
146 |
+
background: linear-gradient(135deg, #667eea, #764ba2);
|
147 |
+
color: white;
|
148 |
+
}
|
149 |
+
|
150 |
+
.method-card i {
|
151 |
+
font-size: 2.5rem;
|
152 |
+
margin-bottom: 10px;
|
153 |
+
color: #667eea;
|
154 |
+
}
|
155 |
+
|
156 |
+
.method-card.active i {
|
157 |
+
color: white;
|
158 |
+
}
|
159 |
+
|
160 |
+
.method-card h3 {
|
161 |
+
margin-bottom: 5px;
|
162 |
+
font-size: 1.2rem;
|
163 |
+
}
|
164 |
+
|
165 |
+
.method-card p {
|
166 |
+
font-size: 0.9rem;
|
167 |
+
opacity: 0.8;
|
168 |
+
}
|
169 |
+
|
170 |
+
/* Upload Section */
|
171 |
+
.upload-area {
|
172 |
+
border: 3px dashed #cbd5e1;
|
173 |
+
border-radius: 15px;
|
174 |
+
padding: 60px 20px;
|
175 |
+
text-align: center;
|
176 |
+
cursor: pointer;
|
177 |
+
transition: all 0.3s ease;
|
178 |
+
background: #f8fafc;
|
179 |
+
}
|
180 |
+
|
181 |
+
.upload-area:hover, .upload-area.dragover {
|
182 |
+
border-color: #667eea;
|
183 |
+
background: #f0f9ff;
|
184 |
+
transform: translateY(-2px);
|
185 |
+
}
|
186 |
+
|
187 |
+
.upload-icon {
|
188 |
+
font-size: 4rem;
|
189 |
+
margin-bottom: 20px;
|
190 |
+
color: #667eea;
|
191 |
+
}
|
192 |
+
|
193 |
+
.upload-content h3 {
|
194 |
+
font-size: 1.5rem;
|
195 |
+
margin-bottom: 10px;
|
196 |
+
color: #1e293b;
|
197 |
+
}
|
198 |
+
|
199 |
+
.browse-text {
|
200 |
+
color: #667eea;
|
201 |
+
text-decoration: underline;
|
202 |
+
cursor: pointer;
|
203 |
+
}
|
204 |
+
|
205 |
+
.supported-formats {
|
206 |
+
margin-top: 15px;
|
207 |
+
color: #94a3b8;
|
208 |
+
}
|
209 |
+
|
210 |
+
/* Camera Section */
|
211 |
+
.camera-container {
|
212 |
+
text-align: center;
|
213 |
+
padding: 20px;
|
214 |
+
border: 2px dashed #cbd5e1;
|
215 |
+
border-radius: 15px;
|
216 |
+
background: #f8fafc;
|
217 |
+
}
|
218 |
+
|
219 |
+
#video {
|
220 |
+
max-width: 100%;
|
221 |
+
max-height: 400px;
|
222 |
+
border-radius: 10px;
|
223 |
+
margin-bottom: 20px;
|
224 |
+
}
|
225 |
+
|
226 |
+
.camera-controls {
|
227 |
+
display: flex;
|
228 |
+
gap: 15px;
|
229 |
+
justify-content: center;
|
230 |
+
flex-wrap: wrap;
|
231 |
+
}
|
232 |
+
|
233 |
+
/* Image Preview */
|
234 |
+
.image-preview {
|
235 |
+
text-align: center;
|
236 |
+
margin-top: 30px;
|
237 |
+
}
|
238 |
+
|
239 |
+
.image-preview img {
|
240 |
+
max-width: 100%;
|
241 |
+
max-height: 400px;
|
242 |
+
border-radius: 10px;
|
243 |
+
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.2);
|
244 |
+
margin-bottom: 20px;
|
245 |
+
}
|
246 |
+
|
247 |
+
.image-actions {
|
248 |
+
display: flex;
|
249 |
+
justify-content: center;
|
250 |
+
gap: 15px;
|
251 |
+
margin-top: 20px;
|
252 |
+
flex-wrap: wrap;
|
253 |
+
}
|
254 |
+
|
255 |
+
/* Buttons */
|
256 |
+
.btn {
|
257 |
+
padding: 12px 25px;
|
258 |
+
border: none;
|
259 |
+
border-radius: 8px;
|
260 |
+
cursor: pointer;
|
261 |
+
font-size: 1rem;
|
262 |
+
font-weight: 600;
|
263 |
+
transition: all 0.3s ease;
|
264 |
+
display: inline-flex;
|
265 |
+
align-items: center;
|
266 |
+
gap: 8px;
|
267 |
+
text-decoration: none;
|
268 |
+
white-space: nowrap;
|
269 |
+
}
|
270 |
+
|
271 |
+
.btn-predict {
|
272 |
+
background: linear-gradient(135deg, #4ade80, #22c55e);
|
273 |
+
color: white;
|
274 |
+
}
|
275 |
+
|
276 |
+
.btn-predict:hover {
|
277 |
+
transform: translateY(-2px);
|
278 |
+
box-shadow: 0 10px 20px rgba(34, 197, 94, 0.3);
|
279 |
+
}
|
280 |
+
|
281 |
+
.btn-primary {
|
282 |
+
background: linear-gradient(135deg, #667eea, #764ba2);
|
283 |
+
color: white;
|
284 |
+
}
|
285 |
+
|
286 |
+
.btn-primary:hover {
|
287 |
+
transform: translateY(-2px);
|
288 |
+
box-shadow: 0 10px 20px rgba(102, 126, 234, 0.3);
|
289 |
+
}
|
290 |
+
|
291 |
+
.btn-camera {
|
292 |
+
background: linear-gradient(135deg, #f59e0b, #d97706);
|
293 |
+
color: white;
|
294 |
+
}
|
295 |
+
|
296 |
+
.btn-camera:hover {
|
297 |
+
transform: translateY(-2px);
|
298 |
+
box-shadow: 0 10px 20px rgba(245, 158, 11, 0.3);
|
299 |
+
}
|
300 |
+
|
301 |
+
.btn-capture {
|
302 |
+
background: linear-gradient(135deg, #ef4444, #dc2626);
|
303 |
+
color: white;
|
304 |
+
}
|
305 |
+
|
306 |
+
.btn-capture:hover {
|
307 |
+
transform: translateY(-2px);
|
308 |
+
box-shadow: 0 10px 20px rgba(239, 68, 68, 0.3);
|
309 |
+
}
|
310 |
+
|
311 |
+
.btn-secondary {
|
312 |
+
background: #e2e8f0;
|
313 |
+
color: #475569;
|
314 |
+
}
|
315 |
+
|
316 |
+
.btn-secondary:hover {
|
317 |
+
background: #cbd5e1;
|
318 |
+
transform: translateY(-2px);
|
319 |
+
}
|
320 |
+
|
321 |
+
/* Loading */
|
322 |
+
.loading-overlay {
|
323 |
+
position: absolute;
|
324 |
+
top: 0;
|
325 |
+
left: 0;
|
326 |
+
right: 0;
|
327 |
+
bottom: 0;
|
328 |
+
background: rgba(255, 255, 255, 0.95);
|
329 |
+
display: flex;
|
330 |
+
justify-content: center;
|
331 |
+
align-items: center;
|
332 |
+
border-radius: 20px;
|
333 |
+
z-index: 1000;
|
334 |
+
}
|
335 |
+
|
336 |
+
.loading-content {
|
337 |
+
text-align: center;
|
338 |
+
color: #667eea;
|
339 |
+
}
|
340 |
+
|
341 |
+
.spinner {
|
342 |
+
width: 50px;
|
343 |
+
height: 50px;
|
344 |
+
border: 4px solid #e2e8f0;
|
345 |
+
border-top: 4px solid #667eea;
|
346 |
+
border-radius: 50%;
|
347 |
+
animation: spin 1s linear infinite;
|
348 |
+
margin: 0 auto 20px;
|
349 |
+
}
|
350 |
+
|
351 |
+
@keyframes spin {
|
352 |
+
0% { transform: rotate(0deg); }
|
353 |
+
100% { transform: rotate(360deg); }
|
354 |
+
}
|
355 |
+
|
356 |
+
/* Results Section */
|
357 |
+
.results-section {
|
358 |
+
margin-top: 40px;
|
359 |
+
}
|
360 |
+
|
361 |
+
.results-section h2 {
|
362 |
+
color: #1e293b;
|
363 |
+
margin-bottom: 30px;
|
364 |
+
font-size: 2rem;
|
365 |
+
display: flex;
|
366 |
+
align-items: center;
|
367 |
+
gap: 15px;
|
368 |
+
}
|
369 |
+
|
370 |
+
/* Analyzed Image Display */
|
371 |
+
.analyzed-image {
|
372 |
+
background: #f8fafc;
|
373 |
+
border-radius: 15px;
|
374 |
+
padding: 25px;
|
375 |
+
margin-bottom: 30px;
|
376 |
+
text-align: center;
|
377 |
+
}
|
378 |
+
|
379 |
+
.analyzed-image h3 {
|
380 |
+
color: #1e293b;
|
381 |
+
margin-bottom: 20px;
|
382 |
+
font-size: 1.4rem;
|
383 |
+
}
|
384 |
+
|
385 |
+
.analyzed-image-container {
|
386 |
+
display: flex;
|
387 |
+
justify-content: center;
|
388 |
+
align-items: center;
|
389 |
+
}
|
390 |
+
|
391 |
+
.analyzed-img {
|
392 |
+
max-width: 100%;
|
393 |
+
max-height: 300px;
|
394 |
+
border-radius: 10px;
|
395 |
+
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.15);
|
396 |
+
border: 3px solid #e2e8f0;
|
397 |
+
}
|
398 |
+
|
399 |
+
.prediction-card {
|
400 |
+
background: linear-gradient(135deg, #f8fafc, #e2e8f0);
|
401 |
+
border-radius: 15px;
|
402 |
+
padding: 30px;
|
403 |
+
margin-bottom: 30px;
|
404 |
+
border: 1px solid #e2e8f0;
|
405 |
+
}
|
406 |
+
|
407 |
+
.prediction-header {
|
408 |
+
display: flex;
|
409 |
+
justify-content: space-between;
|
410 |
+
align-items: center;
|
411 |
+
margin-bottom: 20px;
|
412 |
+
flex-wrap: wrap;
|
413 |
+
gap: 15px;
|
414 |
+
}
|
415 |
+
|
416 |
+
.confidence-badge {
|
417 |
+
background: linear-gradient(135deg, #667eea, #764ba2);
|
418 |
+
color: white;
|
419 |
+
padding: 8px 20px;
|
420 |
+
border-radius: 20px;
|
421 |
+
font-weight: 700;
|
422 |
+
font-size: 1.1rem;
|
423 |
+
}
|
424 |
+
|
425 |
+
.prediction-result {
|
426 |
+
display: flex;
|
427 |
+
align-items: center;
|
428 |
+
gap: 20px;
|
429 |
+
flex-wrap: wrap;
|
430 |
+
}
|
431 |
+
|
432 |
+
.disease-icon {
|
433 |
+
font-size: 3rem;
|
434 |
+
color: #667eea;
|
435 |
+
background: rgba(102, 126, 234, 0.1);
|
436 |
+
padding: 20px;
|
437 |
+
border-radius: 50%;
|
438 |
+
flex-shrink: 0;
|
439 |
+
}
|
440 |
+
|
441 |
+
.disease-info h4 {
|
442 |
+
font-size: 1.8rem;
|
443 |
+
color: #1e293b;
|
444 |
+
margin-bottom: 10px;
|
445 |
+
}
|
446 |
+
|
447 |
+
.disease-info p {
|
448 |
+
color: #64748b;
|
449 |
+
font-size: 1.1rem;
|
450 |
+
margin-bottom: 8px;
|
451 |
+
}
|
452 |
+
|
453 |
+
.timestamp {
|
454 |
+
color: #94a3b8;
|
455 |
+
font-size: 0.9rem;
|
456 |
+
}
|
457 |
+
|
458 |
+
/* Detailed Analysis */
|
459 |
+
.detailed-analysis {
|
460 |
+
background: #f8fafc;
|
461 |
+
border-radius: 15px;
|
462 |
+
padding: 30px;
|
463 |
+
margin-bottom: 30px;
|
464 |
+
}
|
465 |
+
|
466 |
+
.detailed-analysis h3 {
|
467 |
+
color: #1e293b;
|
468 |
+
margin-bottom: 20px;
|
469 |
+
font-size: 1.3rem;
|
470 |
+
}
|
471 |
+
|
472 |
+
.probability-item {
|
473 |
+
display: flex;
|
474 |
+
justify-content: space-between;
|
475 |
+
align-items: center;
|
476 |
+
margin-bottom: 15px;
|
477 |
+
padding: 15px;
|
478 |
+
background: white;
|
479 |
+
border-radius: 10px;
|
480 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
|
481 |
+
}
|
482 |
+
|
483 |
+
.probability-label {
|
484 |
+
font-weight: 600;
|
485 |
+
color: #1e293b;
|
486 |
+
flex: 1;
|
487 |
+
min-width: 120px;
|
488 |
+
}
|
489 |
+
|
490 |
+
.probability-bar {
|
491 |
+
flex: 2;
|
492 |
+
height: 8px;
|
493 |
+
background: #e2e8f0;
|
494 |
+
border-radius: 4px;
|
495 |
+
margin: 0 15px;
|
496 |
+
overflow: hidden;
|
497 |
+
min-width: 100px;
|
498 |
+
}
|
499 |
+
|
500 |
+
.probability-fill {
|
501 |
+
height: 100%;
|
502 |
+
border-radius: 4px;
|
503 |
+
transition: width 0.5s ease;
|
504 |
+
}
|
505 |
+
|
506 |
+
.probability-value {
|
507 |
+
font-weight: 700;
|
508 |
+
color: #1e293b;
|
509 |
+
min-width: 50px;
|
510 |
+
text-align: right;
|
511 |
+
}
|
512 |
+
|
513 |
+
/* Recommendations */
|
514 |
+
.recommendations {
|
515 |
+
background: linear-gradient(135deg, #fef3c7, #fed7aa);
|
516 |
+
border-radius: 15px;
|
517 |
+
padding: 30px;
|
518 |
+
border-left: 5px solid #f59e0b;
|
519 |
+
margin-bottom: 30px;
|
520 |
+
}
|
521 |
+
|
522 |
+
.recommendations h3 {
|
523 |
+
color: #92400e;
|
524 |
+
margin-bottom: 20px;
|
525 |
+
font-size: 1.3rem;
|
526 |
+
display: flex;
|
527 |
+
align-items: center;
|
528 |
+
gap: 10px;
|
529 |
+
}
|
530 |
+
|
531 |
+
.recommendation-item {
|
532 |
+
background: rgba(255, 255, 255, 0.7);
|
533 |
+
padding: 15px;
|
534 |
+
border-radius: 10px;
|
535 |
+
margin-bottom: 10px;
|
536 |
+
border-left: 3px solid #f59e0b;
|
537 |
+
display: flex;
|
538 |
+
align-items: flex-start;
|
539 |
+
gap: 10px;
|
540 |
+
}
|
541 |
+
|
542 |
+
.recommendation-item i {
|
543 |
+
color: #f59e0b;
|
544 |
+
margin-top: 2px;
|
545 |
+
flex-shrink: 0;
|
546 |
+
}
|
547 |
+
|
548 |
+
.recommendation-item span {
|
549 |
+
color: #78350f;
|
550 |
+
line-height: 1.5;
|
551 |
+
}
|
552 |
+
|
553 |
+
/* Result Actions */
|
554 |
+
.result-actions {
|
555 |
+
display: flex;
|
556 |
+
gap: 15px;
|
557 |
+
justify-content: center;
|
558 |
+
flex-wrap: wrap;
|
559 |
+
align-items: flex-start;
|
560 |
+
}
|
561 |
+
|
562 |
+
.download-group {
|
563 |
+
margin-top: 20px;
|
564 |
+
padding: 20px;
|
565 |
+
background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%);
|
566 |
+
border-radius: 12px;
|
567 |
+
border: 1px solid #e2e8f0;
|
568 |
+
position: relative;
|
569 |
+
overflow: hidden;
|
570 |
+
display: flex;
|
571 |
+
flex-direction: column;
|
572 |
+
align-items: center;
|
573 |
+
gap: 15px;
|
574 |
+
}
|
575 |
+
|
576 |
+
.download-group::before {
|
577 |
+
content: '';
|
578 |
+
position: absolute;
|
579 |
+
top: 0;
|
580 |
+
left: 0;
|
581 |
+
right: 0;
|
582 |
+
height: 3px;
|
583 |
+
background: linear-gradient(90deg, #3b82f6, #8b5cf6, #06b6d4);
|
584 |
+
animation: shimmer 2s infinite;
|
585 |
+
}
|
586 |
+
|
587 |
+
@keyframes shimmer {
|
588 |
+
0% { transform: translateX(-100%); }
|
589 |
+
100% { transform: translateX(100%); }
|
590 |
+
}
|
591 |
+
|
592 |
+
.download-help {
|
593 |
+
font-size: 14px;
|
594 |
+
margin-bottom: 5px;
|
595 |
+
padding: 12px 16px;
|
596 |
+
border-radius: 8px;
|
597 |
+
display: flex;
|
598 |
+
align-items: center;
|
599 |
+
gap: 10px;
|
600 |
+
font-weight: 500;
|
601 |
+
border: 1px solid;
|
602 |
+
transition: all 0.3s ease;
|
603 |
+
text-align: center;
|
604 |
+
max-width: 300px;
|
605 |
+
line-height: 1.4;
|
606 |
+
}
|
607 |
+
|
608 |
+
.download-help.supported {
|
609 |
+
background: linear-gradient(135deg, #d1fae5 0%, #a7f3d0 100%);
|
610 |
+
color: #065f46;
|
611 |
+
border-color: #10b981;
|
612 |
+
}
|
613 |
+
|
614 |
+
.download-help.supported .help-icon {
|
615 |
+
color: #10b981;
|
616 |
+
}
|
617 |
+
|
618 |
+
.download-help.not-supported {
|
619 |
+
background: linear-gradient(135deg, #f3f4f6 0%, #e5e7eb 100%);
|
620 |
+
color: #6b7280;
|
621 |
+
border-color: #d1d5db;
|
622 |
+
}
|
623 |
+
|
624 |
+
.download-help.not-supported .help-icon {
|
625 |
+
color: #9ca3af;
|
626 |
+
}
|
627 |
+
|
628 |
+
.help-icon {
|
629 |
+
font-size: 16px;
|
630 |
+
display: flex;
|
631 |
+
align-items: center;
|
632 |
+
}
|
633 |
+
|
634 |
+
.download-help i {
|
635 |
+
color: inherit;
|
636 |
+
font-size: 1rem;
|
637 |
+
}
|
638 |
+
|
639 |
+
#downloadResultBtn {
|
640 |
+
width: 100%;
|
641 |
+
max-width: 300px;
|
642 |
+
padding: 15px 20px;
|
643 |
+
background: linear-gradient(135deg, #3b82f6 0%, #1d4ed8 100%);
|
644 |
+
color: white;
|
645 |
+
border: none;
|
646 |
+
border-radius: 10px;
|
647 |
+
font-size: 16px;
|
648 |
+
font-weight: 600;
|
649 |
+
cursor: pointer;
|
650 |
+
transition: all 0.3s ease;
|
651 |
+
display: flex;
|
652 |
+
align-items: center;
|
653 |
+
justify-content: center;
|
654 |
+
gap: 10px;
|
655 |
+
box-shadow: 0 4px 12px rgba(59, 130, 246, 0.3);
|
656 |
+
position: relative;
|
657 |
+
overflow: hidden;
|
658 |
+
}
|
659 |
+
|
660 |
+
#downloadResultBtn:hover:not(:disabled) {
|
661 |
+
background: linear-gradient(135deg, #2563eb 0%, #1e40af 100%);
|
662 |
+
box-shadow: 0 6px 20px rgba(59, 130, 246, 0.4);
|
663 |
+
transform: translateY(-2px);
|
664 |
+
}
|
665 |
+
|
666 |
+
#downloadResultBtn:active {
|
667 |
+
transform: translateY(0);
|
668 |
+
box-shadow: 0 2px 8px rgba(59, 130, 246, 0.3);
|
669 |
+
}
|
670 |
+
|
671 |
+
#downloadResultBtn:disabled {
|
672 |
+
opacity: 0.7;
|
673 |
+
cursor: not-allowed;
|
674 |
+
transform: none;
|
675 |
+
}
|
676 |
+
|
677 |
+
#downloadResultBtn.folder-supported {
|
678 |
+
background: linear-gradient(135deg, #10b981 0%, #059669 100%);
|
679 |
+
box-shadow: 0 4px 12px rgba(16, 185, 129, 0.3);
|
680 |
+
}
|
681 |
+
|
682 |
+
#downloadResultBtn.folder-supported:hover:not(:disabled) {
|
683 |
+
background: linear-gradient(135deg, #059669 0%, #047857 100%);
|
684 |
+
box-shadow: 0 6px 20px rgba(16, 185, 129, 0.4);
|
685 |
+
}
|
686 |
+
|
687 |
+
#downloadResultBtn .fas.fa-folder-open {
|
688 |
+
margin-right: 0;
|
689 |
+
}
|
690 |
+
|
691 |
+
/* Footer */
|
692 |
+
.footer {
|
693 |
+
text-align: center;
|
694 |
+
color: white;
|
695 |
+
opacity: 0.9;
|
696 |
+
padding: 20px;
|
697 |
+
display: flex;
|
698 |
+
justify-content: space-between;
|
699 |
+
align-items: center;
|
700 |
+
flex-wrap: wrap;
|
701 |
+
gap: 15px;
|
702 |
+
}
|
703 |
+
|
704 |
+
.status-indicator {
|
705 |
+
display: flex;
|
706 |
+
align-items: center;
|
707 |
+
gap: 8px;
|
708 |
+
font-size: 0.9rem;
|
709 |
+
}
|
710 |
+
|
711 |
+
.status-good {
|
712 |
+
color: #4ade80;
|
713 |
+
}
|
714 |
+
|
715 |
+
.status-error {
|
716 |
+
color: #ef4444;
|
717 |
+
}
|
718 |
+
|
719 |
+
/* Touch and Mobile Specific Styles */
|
720 |
+
.upload-area,
|
721 |
+
.method-card,
|
722 |
+
.btn,
|
723 |
+
.browse-text {
|
724 |
+
-webkit-tap-highlight-color: rgba(102, 126, 234, 0.3);
|
725 |
+
touch-action: manipulation;
|
726 |
+
}
|
727 |
+
|
728 |
+
/* Improve touch targets for mobile */
|
729 |
+
@media (max-width: 768px) {
|
730 |
+
.btn {
|
731 |
+
min-height: 44px; /* Apple's recommended minimum touch target */
|
732 |
+
display: flex;
|
733 |
+
align-items: center;
|
734 |
+
justify-content: center;
|
735 |
+
}
|
736 |
+
|
737 |
+
.method-card {
|
738 |
+
min-height: 120px;
|
739 |
+
display: flex;
|
740 |
+
flex-direction: column;
|
741 |
+
align-items: center;
|
742 |
+
justify-content: center;
|
743 |
+
}
|
744 |
+
|
745 |
+
.upload-area {
|
746 |
+
min-height: 150px;
|
747 |
+
display: flex;
|
748 |
+
flex-direction: column;
|
749 |
+
align-items: center;
|
750 |
+
justify-content: center;
|
751 |
+
}
|
752 |
+
|
753 |
+
.browse-text {
|
754 |
+
padding: 8px 12px;
|
755 |
+
border-radius: 4px;
|
756 |
+
background: rgba(102, 126, 234, 0.1);
|
757 |
+
margin: 0 4px;
|
758 |
+
}
|
759 |
+
|
760 |
+
/* Larger touch targets for camera controls */
|
761 |
+
.camera-controls .btn {
|
762 |
+
min-height: 50px;
|
763 |
+
font-size: 1rem;
|
764 |
+
}
|
765 |
+
|
766 |
+
/* Better spacing for recommendation items */
|
767 |
+
.recommendation-item {
|
768 |
+
min-height: 50px;
|
769 |
+
display: flex;
|
770 |
+
align-items: center;
|
771 |
+
}
|
772 |
+
|
773 |
+
/* Improve probability item touch area */
|
774 |
+
.probability-item {
|
775 |
+
min-height: 60px;
|
776 |
+
display: flex;
|
777 |
+
align-items: center;
|
778 |
+
justify-content: space-between;
|
779 |
+
}
|
780 |
+
}
|
781 |
+
|
782 |
+
/* Prevent zoom on input focus for iOS */
|
783 |
+
@media screen and (-webkit-min-device-pixel-ratio: 0) {
|
784 |
+
input[type="file"] {
|
785 |
+
font-size: 16px;
|
786 |
+
}
|
787 |
+
}
|
788 |
+
|
789 |
+
/* High DPI display optimizations */
|
790 |
+
@media (-webkit-min-device-pixel-ratio: 2), (min-resolution: 192dpi) {
|
791 |
+
.analyzed-img,
|
792 |
+
.image-preview img,
|
793 |
+
#video {
|
794 |
+
image-rendering: -webkit-optimize-contrast;
|
795 |
+
image-rendering: crisp-edges;
|
796 |
+
}
|
797 |
+
}
|
798 |
+
|
799 |
+
/* Landscape orientation for mobile */
|
800 |
+
@media (max-width: 768px) and (orientation: landscape) {
|
801 |
+
.header-content {
|
802 |
+
padding: 15px;
|
803 |
+
}
|
804 |
+
|
805 |
+
.logo-icon {
|
806 |
+
font-size: 2rem;
|
807 |
+
margin-bottom: 5px;
|
808 |
+
}
|
809 |
+
|
810 |
+
.header h1 {
|
811 |
+
font-size: 1.8rem;
|
812 |
+
margin-bottom: 5px;
|
813 |
+
}
|
814 |
+
|
815 |
+
.header p {
|
816 |
+
font-size: 0.9rem;
|
817 |
+
margin-bottom: 10px;
|
818 |
+
}
|
819 |
+
|
820 |
+
.main-content {
|
821 |
+
padding: 15px;
|
822 |
+
}
|
823 |
+
|
824 |
+
.upload-methods {
|
825 |
+
flex-direction: row;
|
826 |
+
justify-content: center;
|
827 |
+
gap: 20px;
|
828 |
+
}
|
829 |
+
|
830 |
+
.method-card {
|
831 |
+
max-width: 200px;
|
832 |
+
padding: 12px;
|
833 |
+
}
|
834 |
+
|
835 |
+
.upload-area {
|
836 |
+
padding: 25px 15px;
|
837 |
+
}
|
838 |
+
|
839 |
+
#video {
|
840 |
+
max-height: 200px;
|
841 |
+
}
|
842 |
+
|
843 |
+
.image-preview img,
|
844 |
+
.analyzed-img {
|
845 |
+
max-height: 200px;
|
846 |
+
}
|
847 |
+
}
|
848 |
+
|
849 |
+
/* Print styles for results */
|
850 |
+
@media print {
|
851 |
+
.header,
|
852 |
+
.upload-methods,
|
853 |
+
.upload-section,
|
854 |
+
.camera-section,
|
855 |
+
.image-preview,
|
856 |
+
.loading-overlay,
|
857 |
+
.result-actions,
|
858 |
+
.footer {
|
859 |
+
display: none !important;
|
860 |
+
}
|
861 |
+
|
862 |
+
.main-content {
|
863 |
+
box-shadow: none;
|
864 |
+
border: 1px solid #000;
|
865 |
+
}
|
866 |
+
|
867 |
+
.results-section {
|
868 |
+
display: block !important;
|
869 |
+
}
|
870 |
+
|
871 |
+
body {
|
872 |
+
background: white;
|
873 |
+
color: black;
|
874 |
+
}
|
875 |
+
}
|
876 |
+
|
877 |
+
/* Responsive Design */
|
878 |
+
|
879 |
+
/* Large tablets and small desktops */
|
880 |
+
@media (max-width: 1024px) {
|
881 |
+
.container {
|
882 |
+
padding: 15px;
|
883 |
+
}
|
884 |
+
|
885 |
+
.header-content {
|
886 |
+
padding: 25px;
|
887 |
+
}
|
888 |
+
|
889 |
+
.main-content {
|
890 |
+
padding: 30px;
|
891 |
+
}
|
892 |
+
|
893 |
+
.upload-methods {
|
894 |
+
gap: 15px;
|
895 |
+
}
|
896 |
+
|
897 |
+
.method-card {
|
898 |
+
padding: 20px;
|
899 |
+
}
|
900 |
+
}
|
901 |
+
|
902 |
+
/* Tablets */
|
903 |
+
@media (max-width: 768px) {
|
904 |
+
.container {
|
905 |
+
padding: 10px;
|
906 |
+
}
|
907 |
+
|
908 |
+
.header h1 {
|
909 |
+
font-size: 2rem;
|
910 |
+
}
|
911 |
+
|
912 |
+
.header p {
|
913 |
+
font-size: 1rem;
|
914 |
+
}
|
915 |
+
|
916 |
+
.logo-icon {
|
917 |
+
font-size: 3rem;
|
918 |
+
}
|
919 |
+
|
920 |
+
.header-content {
|
921 |
+
padding: 20px;
|
922 |
+
}
|
923 |
+
|
924 |
+
.main-content {
|
925 |
+
padding: 20px;
|
926 |
+
margin-bottom: 20px;
|
927 |
+
}
|
928 |
+
|
929 |
+
.upload-methods {
|
930 |
+
flex-direction: column;
|
931 |
+
align-items: center;
|
932 |
+
gap: 15px;
|
933 |
+
}
|
934 |
+
|
935 |
+
.method-card {
|
936 |
+
max-width: 280px;
|
937 |
+
width: 100%;
|
938 |
+
}
|
939 |
+
|
940 |
+
.method-card i {
|
941 |
+
font-size: 2rem;
|
942 |
+
}
|
943 |
+
|
944 |
+
.upload-area {
|
945 |
+
padding: 40px 15px;
|
946 |
+
}
|
947 |
+
|
948 |
+
.upload-icon {
|
949 |
+
font-size: 3rem;
|
950 |
+
}
|
951 |
+
|
952 |
+
.upload-content h3 {
|
953 |
+
font-size: 1.3rem;
|
954 |
+
}
|
955 |
+
|
956 |
+
.camera-container {
|
957 |
+
padding: 15px;
|
958 |
+
}
|
959 |
+
|
960 |
+
#video {
|
961 |
+
max-height: 300px;
|
962 |
+
}
|
963 |
+
|
964 |
+
.image-preview img {
|
965 |
+
max-height: 300px;
|
966 |
+
}
|
967 |
+
|
968 |
+
.prediction-header {
|
969 |
+
flex-direction: column;
|
970 |
+
text-align: center;
|
971 |
+
gap: 10px;
|
972 |
+
}
|
973 |
+
|
974 |
+
.prediction-result {
|
975 |
+
flex-direction: column;
|
976 |
+
text-align: center;
|
977 |
+
gap: 15px;
|
978 |
+
}
|
979 |
+
|
980 |
+
.disease-icon {
|
981 |
+
font-size: 2.5rem;
|
982 |
+
padding: 15px;
|
983 |
+
align-self: center;
|
984 |
+
}
|
985 |
+
|
986 |
+
.disease-info h4 {
|
987 |
+
font-size: 1.5rem;
|
988 |
+
}
|
989 |
+
|
990 |
+
.probability-item {
|
991 |
+
flex-direction: column;
|
992 |
+
gap: 10px;
|
993 |
+
text-align: center;
|
994 |
+
padding: 12px;
|
995 |
+
}
|
996 |
+
|
997 |
+
.probability-bar {
|
998 |
+
width: 100%;
|
999 |
+
margin: 0;
|
1000 |
+
height: 6px;
|
1001 |
+
}
|
1002 |
+
|
1003 |
+
.analyzed-img {
|
1004 |
+
max-height: 250px;
|
1005 |
+
}
|
1006 |
+
|
1007 |
+
.detailed-analysis,
|
1008 |
+
.recommendations {
|
1009 |
+
padding: 20px;
|
1010 |
+
}
|
1011 |
+
|
1012 |
+
.recommendation-item {
|
1013 |
+
padding: 12px;
|
1014 |
+
flex-direction: column;
|
1015 |
+
text-align: center;
|
1016 |
+
gap: 8px;
|
1017 |
+
}
|
1018 |
+
|
1019 |
+
.camera-controls {
|
1020 |
+
flex-direction: column;
|
1021 |
+
align-items: center;
|
1022 |
+
gap: 10px;
|
1023 |
+
}
|
1024 |
+
|
1025 |
+
.image-actions,
|
1026 |
+
.result-actions {
|
1027 |
+
flex-direction: column;
|
1028 |
+
align-items: center;
|
1029 |
+
gap: 10px;
|
1030 |
+
}
|
1031 |
+
|
1032 |
+
.btn {
|
1033 |
+
width: 100%;
|
1034 |
+
max-width: 250px;
|
1035 |
+
padding: 12px 20px;
|
1036 |
+
font-size: 0.95rem;
|
1037 |
+
}
|
1038 |
+
|
1039 |
+
.footer {
|
1040 |
+
flex-direction: column;
|
1041 |
+
text-align: center;
|
1042 |
+
gap: 10px;
|
1043 |
+
padding: 15px;
|
1044 |
+
}
|
1045 |
+
}
|
1046 |
+
|
1047 |
+
/* Mobile phones */
|
1048 |
+
@media (max-width: 480px) {
|
1049 |
+
.container {
|
1050 |
+
padding: 8px;
|
1051 |
+
}
|
1052 |
+
|
1053 |
+
.header h1 {
|
1054 |
+
font-size: 1.8rem;
|
1055 |
+
margin-bottom: 8px;
|
1056 |
+
}
|
1057 |
+
|
1058 |
+
.header p {
|
1059 |
+
font-size: 0.95rem;
|
1060 |
+
margin-bottom: 10px;
|
1061 |
+
}
|
1062 |
+
|
1063 |
+
.logo-icon {
|
1064 |
+
font-size: 2.5rem;
|
1065 |
+
margin-bottom: 10px;
|
1066 |
+
}
|
1067 |
+
|
1068 |
+
.header-content {
|
1069 |
+
padding: 15px;
|
1070 |
+
margin-bottom: 20px;
|
1071 |
+
}
|
1072 |
+
|
1073 |
+
.main-content {
|
1074 |
+
padding: 15px;
|
1075 |
+
border-radius: 15px;
|
1076 |
+
}
|
1077 |
+
|
1078 |
+
.upload-methods {
|
1079 |
+
gap: 12px;
|
1080 |
+
}
|
1081 |
+
|
1082 |
+
.method-card {
|
1083 |
+
max-width: 100%;
|
1084 |
+
padding: 15px;
|
1085 |
+
}
|
1086 |
+
|
1087 |
+
.method-card h3 {
|
1088 |
+
font-size: 1.1rem;
|
1089 |
+
}
|
1090 |
+
|
1091 |
+
.method-card p {
|
1092 |
+
font-size: 0.85rem;
|
1093 |
+
}
|
1094 |
+
|
1095 |
+
.method-card i {
|
1096 |
+
font-size: 1.8rem;
|
1097 |
+
margin-bottom: 8px;
|
1098 |
+
}
|
1099 |
+
|
1100 |
+
.upload-area {
|
1101 |
+
padding: 30px 10px;
|
1102 |
+
border-radius: 12px;
|
1103 |
+
}
|
1104 |
+
|
1105 |
+
.upload-icon {
|
1106 |
+
font-size: 2.5rem;
|
1107 |
+
margin-bottom: 15px;
|
1108 |
+
}
|
1109 |
+
|
1110 |
+
.upload-content h3 {
|
1111 |
+
font-size: 1.2rem;
|
1112 |
+
margin-bottom: 8px;
|
1113 |
+
}
|
1114 |
+
|
1115 |
+
.upload-content p {
|
1116 |
+
font-size: 0.9rem;
|
1117 |
+
}
|
1118 |
+
|
1119 |
+
.supported-formats {
|
1120 |
+
font-size: 0.8rem;
|
1121 |
+
}
|
1122 |
+
|
1123 |
+
.camera-container {
|
1124 |
+
padding: 12px;
|
1125 |
+
}
|
1126 |
+
|
1127 |
+
#video {
|
1128 |
+
max-height: 250px;
|
1129 |
+
border-radius: 8px;
|
1130 |
+
}
|
1131 |
+
|
1132 |
+
.image-preview img {
|
1133 |
+
max-height: 250px;
|
1134 |
+
}
|
1135 |
+
|
1136 |
+
.results-section h2 {
|
1137 |
+
font-size: 1.6rem;
|
1138 |
+
margin-bottom: 20px;
|
1139 |
+
}
|
1140 |
+
|
1141 |
+
.prediction-card,
|
1142 |
+
.detailed-analysis,
|
1143 |
+
.recommendations {
|
1144 |
+
padding: 15px;
|
1145 |
+
margin-bottom: 20px;
|
1146 |
+
border-radius: 12px;
|
1147 |
+
}
|
1148 |
+
|
1149 |
+
.prediction-header h3 {
|
1150 |
+
font-size: 1.1rem;
|
1151 |
+
}
|
1152 |
+
|
1153 |
+
.confidence-badge {
|
1154 |
+
padding: 6px 15px;
|
1155 |
+
font-size: 1rem;
|
1156 |
+
border-radius: 15px;
|
1157 |
+
}
|
1158 |
+
|
1159 |
+
.disease-icon {
|
1160 |
+
font-size: 2rem;
|
1161 |
+
padding: 12px;
|
1162 |
+
}
|
1163 |
+
|
1164 |
+
.disease-info h4 {
|
1165 |
+
font-size: 1.3rem;
|
1166 |
+
margin-bottom: 8px;
|
1167 |
+
}
|
1168 |
+
|
1169 |
+
.disease-info p {
|
1170 |
+
font-size: 1rem;
|
1171 |
+
}
|
1172 |
+
|
1173 |
+
.detailed-analysis h3,
|
1174 |
+
.recommendations h3 {
|
1175 |
+
font-size: 1.2rem;
|
1176 |
+
margin-bottom: 15px;
|
1177 |
+
}
|
1178 |
+
|
1179 |
+
.probability-item {
|
1180 |
+
padding: 10px;
|
1181 |
+
border-radius: 8px;
|
1182 |
+
margin-bottom: 10px;
|
1183 |
+
}
|
1184 |
+
|
1185 |
+
.probability-label {
|
1186 |
+
font-size: 0.9rem;
|
1187 |
+
min-width: auto;
|
1188 |
+
}
|
1189 |
+
|
1190 |
+
.probability-bar {
|
1191 |
+
height: 5px;
|
1192 |
+
min-width: 80px;
|
1193 |
+
}
|
1194 |
+
|
1195 |
+
.probability-value {
|
1196 |
+
font-size: 0.9rem;
|
1197 |
+
min-width: 40px;
|
1198 |
+
}
|
1199 |
+
|
1200 |
+
.analyzed-image {
|
1201 |
+
padding: 15px;
|
1202 |
+
margin-bottom: 20px;
|
1203 |
+
}
|
1204 |
+
|
1205 |
+
.analyzed-image h3 {
|
1206 |
+
font-size: 1.2rem;
|
1207 |
+
margin-bottom: 15px;
|
1208 |
+
}
|
1209 |
+
|
1210 |
+
.analyzed-img {
|
1211 |
+
max-height: 200px;
|
1212 |
+
border-width: 2px;
|
1213 |
+
}
|
1214 |
+
|
1215 |
+
.recommendation-item {
|
1216 |
+
padding: 10px;
|
1217 |
+
border-radius: 8px;
|
1218 |
+
margin-bottom: 8px;
|
1219 |
+
font-size: 0.9rem;
|
1220 |
+
}
|
1221 |
+
|
1222 |
+
.recommendation-item i {
|
1223 |
+
font-size: 0.9rem;
|
1224 |
+
}
|
1225 |
+
|
1226 |
+
.btn {
|
1227 |
+
padding: 10px 15px;
|
1228 |
+
font-size: 0.9rem;
|
1229 |
+
border-radius: 6px;
|
1230 |
+
}
|
1231 |
+
|
1232 |
+
.camera-controls {
|
1233 |
+
gap: 8px;
|
1234 |
+
}
|
1235 |
+
|
1236 |
+
.image-actions,
|
1237 |
+
.result-actions {
|
1238 |
+
gap: 8px;
|
1239 |
+
}
|
1240 |
+
|
1241 |
+
.loading-overlay {
|
1242 |
+
border-radius: 15px;
|
1243 |
+
}
|
1244 |
+
|
1245 |
+
.spinner {
|
1246 |
+
width: 40px;
|
1247 |
+
height: 40px;
|
1248 |
+
margin-bottom: 15px;
|
1249 |
+
}
|
1250 |
+
|
1251 |
+
.loading-content p {
|
1252 |
+
font-size: 1rem;
|
1253 |
+
margin-bottom: 5px;
|
1254 |
+
}
|
1255 |
+
|
1256 |
+
.loading-content small {
|
1257 |
+
font-size: 0.85rem;
|
1258 |
+
}
|
1259 |
+
|
1260 |
+
.footer {
|
1261 |
+
padding: 12px;
|
1262 |
+
font-size: 0.85rem;
|
1263 |
+
}
|
1264 |
+
|
1265 |
+
.status-indicator {
|
1266 |
+
font-size: 0.8rem;
|
1267 |
+
}
|
1268 |
+
}
|
1269 |
+
|
1270 |
+
/* Very small screens */
|
1271 |
+
@media (max-width: 320px) {
|
1272 |
+
.container {
|
1273 |
+
padding: 5px;
|
1274 |
+
}
|
1275 |
+
|
1276 |
+
.header h1 {
|
1277 |
+
font-size: 1.6rem;
|
1278 |
+
}
|
1279 |
+
|
1280 |
+
.logo-icon {
|
1281 |
+
font-size: 2rem;
|
1282 |
+
}
|
1283 |
+
|
1284 |
+
.main-content {
|
1285 |
+
padding: 12px;
|
1286 |
+
}
|
1287 |
+
|
1288 |
+
.upload-area {
|
1289 |
+
padding: 20px 8px;
|
1290 |
+
}
|
1291 |
+
|
1292 |
+
.upload-content h3 {
|
1293 |
+
font-size: 1.1rem;
|
1294 |
+
}
|
1295 |
+
|
1296 |
+
.btn {
|
1297 |
+
padding: 8px 12px;
|
1298 |
+
font-size: 0.85rem;
|
1299 |
+
max-width: 200px;
|
1300 |
+
}
|
1301 |
+
|
1302 |
+
.prediction-card,
|
1303 |
+
.detailed-analysis,
|
1304 |
+
.recommendations,
|
1305 |
+
.analyzed-image {
|
1306 |
+
padding: 12px;
|
1307 |
+
}
|
1308 |
+
|
1309 |
+
.disease-info h4 {
|
1310 |
+
font-size: 1.2rem;
|
1311 |
+
}
|
1312 |
+
|
1313 |
+
.analyzed-img {
|
1314 |
+
max-height: 180px;
|
1315 |
+
}
|
1316 |
+
}
|
1317 |
+
|
1318 |
+
/* Utility Classes */
|
1319 |
+
.fade-in {
|
1320 |
+
animation: fadeIn 0.5s ease-in;
|
1321 |
+
}
|
1322 |
+
|
1323 |
+
@keyframes fadeIn {
|
1324 |
+
from { opacity: 0; transform: translateY(20px); }
|
1325 |
+
to { opacity: 1; transform: translateY(0); }
|
1326 |
+
}
|
1327 |
+
|
1328 |
+
.text-center {
|
1329 |
+
text-align: center;
|
1330 |
+
}
|
1331 |
+
|
1332 |
+
.hidden {
|
1333 |
+
display: none !important;
|
1334 |
+
}
|
static/js/script.js
ADDED
@@ -0,0 +1,988 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class PotatoDiseaseDetector {
|
2 |
+
constructor() {
|
3 |
+
this.currentMethod = 'upload';
|
4 |
+
this.stream = null;
|
5 |
+
this.selectedFile = null;
|
6 |
+
this.initializeElements();
|
7 |
+
this.checkBrowserCompatibility();
|
8 |
+
this.bindEvents();
|
9 |
+
}
|
10 |
+
|
11 |
+
checkBrowserCompatibility() {
|
12 |
+
// Check for File System Access API support
|
13 |
+
this.folderSelectionSupported = 'showSaveFilePicker' in window;
|
14 |
+
|
15 |
+
// Update download help text based on browser compatibility
|
16 |
+
const downloadHelp = document.getElementById('downloadHelp');
|
17 |
+
if (downloadHelp) {
|
18 |
+
if (this.folderSelectionSupported) {
|
19 |
+
downloadHelp.innerHTML = '✅ Folder selection supported - Choose where to save your PDF!';
|
20 |
+
downloadHelp.style.color = '#28a745';
|
21 |
+
} else {
|
22 |
+
downloadHelp.innerHTML = '📁 Will download to your default Downloads folder';
|
23 |
+
downloadHelp.style.color = '#6c757d';
|
24 |
+
}
|
25 |
+
}
|
26 |
+
|
27 |
+
// Update button text based on compatibility
|
28 |
+
const downloadBtn = document.getElementById('downloadResultBtn');
|
29 |
+
if (downloadBtn && this.folderSelectionSupported) {
|
30 |
+
downloadBtn.innerHTML = '<i class="fas fa-folder-open"></i> Choose Folder & Download PDF';
|
31 |
+
} else if (downloadBtn) {
|
32 |
+
downloadBtn.innerHTML = '<i class="fas fa-download"></i> Download PDF Report';
|
33 |
+
}
|
34 |
+
|
35 |
+
console.log('Browser compatibility:', {
|
36 |
+
folderSelection: this.folderSelectionSupported,
|
37 |
+
userAgent: navigator.userAgent
|
38 |
+
});
|
39 |
+
}
|
40 |
+
|
41 |
+
initializeElements() {
|
42 |
+
// Method cards
|
43 |
+
this.uploadCard = document.getElementById('uploadCard');
|
44 |
+
this.cameraCard = document.getElementById('cameraCard');
|
45 |
+
|
46 |
+
// Sections
|
47 |
+
this.uploadSection = document.getElementById('uploadSection');
|
48 |
+
this.cameraSection = document.getElementById('cameraSection');
|
49 |
+
|
50 |
+
// Upload elements
|
51 |
+
this.uploadArea = document.getElementById('uploadArea');
|
52 |
+
this.fileInput = document.getElementById('fileInput');
|
53 |
+
|
54 |
+
// Camera elements
|
55 |
+
this.video = document.getElementById('video');
|
56 |
+
this.canvas = document.getElementById('canvas');
|
57 |
+
this.startCameraBtn = document.getElementById('startCamera');
|
58 |
+
this.captureBtn = document.getElementById('captureBtn');
|
59 |
+
this.stopCameraBtn = document.getElementById('stopCamera');
|
60 |
+
|
61 |
+
// Preview and actions
|
62 |
+
this.imagePreview = document.getElementById('imagePreview');
|
63 |
+
this.previewImg = document.getElementById('previewImg');
|
64 |
+
this.predictBtn = document.getElementById('predictBtn');
|
65 |
+
this.clearBtn = document.getElementById('clearBtn');
|
66 |
+
|
67 |
+
// Results
|
68 |
+
this.resultsSection = document.getElementById('resultsSection');
|
69 |
+
this.loadingOverlay = document.getElementById('loadingOverlay');
|
70 |
+
this.newAnalysisBtn = document.getElementById('newAnalysisBtn');
|
71 |
+
this.downloadResultBtn = document.getElementById('downloadResultBtn');
|
72 |
+
|
73 |
+
// Analyzed image display
|
74 |
+
this.analyzedImageSection = document.getElementById('analyzedImageSection');
|
75 |
+
this.analyzedImage = document.getElementById('analyzedImage');
|
76 |
+
|
77 |
+
// Result elements
|
78 |
+
this.diseaseName = document.getElementById('diseaseName');
|
79 |
+
this.diseaseDescription = document.getElementById('diseaseDescription');
|
80 |
+
this.confidenceValue = document.getElementById('confidenceValue');
|
81 |
+
this.confidenceBadge = document.getElementById('confidenceBadge');
|
82 |
+
this.diseaseIcon = document.getElementById('diseaseIcon');
|
83 |
+
this.timestamp = document.getElementById('timestamp');
|
84 |
+
this.probabilities = document.getElementById('probabilities');
|
85 |
+
this.recommendationList = document.getElementById('recommendationList');
|
86 |
+
}
|
87 |
+
|
88 |
+
bindEvents() {
|
89 |
+
// Method switching
|
90 |
+
this.uploadCard.addEventListener('click', () => this.switchMethod('upload'));
|
91 |
+
this.cameraCard.addEventListener('click', () => this.switchMethod('camera'));
|
92 |
+
|
93 |
+
// Upload events with touch support
|
94 |
+
this.uploadArea.addEventListener('click', (e) => {
|
95 |
+
console.log('Upload area clicked');
|
96 |
+
this.fileInput.click();
|
97 |
+
});
|
98 |
+
|
99 |
+
// Touch events for mobile
|
100 |
+
this.uploadArea.addEventListener('touchend', (e) => {
|
101 |
+
e.preventDefault();
|
102 |
+
console.log('Upload area touched');
|
103 |
+
this.fileInput.click();
|
104 |
+
});
|
105 |
+
|
106 |
+
// Specific handler for browse text
|
107 |
+
const browseText = document.querySelector('.browse-text');
|
108 |
+
if (browseText) {
|
109 |
+
browseText.addEventListener('click', (e) => {
|
110 |
+
e.stopPropagation();
|
111 |
+
console.log('Browse text clicked');
|
112 |
+
this.fileInput.click();
|
113 |
+
});
|
114 |
+
|
115 |
+
browseText.addEventListener('touchend', (e) => {
|
116 |
+
e.preventDefault();
|
117 |
+
e.stopPropagation();
|
118 |
+
console.log('Browse text touched');
|
119 |
+
this.fileInput.click();
|
120 |
+
});
|
121 |
+
}
|
122 |
+
|
123 |
+
this.uploadArea.addEventListener('dragover', this.handleDragOver.bind(this));
|
124 |
+
this.uploadArea.addEventListener('dragleave', this.handleDragLeave.bind(this));
|
125 |
+
this.uploadArea.addEventListener('drop', this.handleDrop.bind(this));
|
126 |
+
this.fileInput.addEventListener('change', (e) => {
|
127 |
+
console.log('File input changed:', e.target.files);
|
128 |
+
this.handleFileSelect(e);
|
129 |
+
});
|
130 |
+
|
131 |
+
// Camera events
|
132 |
+
this.startCameraBtn.addEventListener('click', this.startCamera.bind(this));
|
133 |
+
this.captureBtn.addEventListener('click', this.capturePhoto.bind(this));
|
134 |
+
this.stopCameraBtn.addEventListener('click', this.stopCamera.bind(this));
|
135 |
+
|
136 |
+
// Action buttons
|
137 |
+
this.predictBtn.addEventListener('click', this.makePrediction.bind(this));
|
138 |
+
this.clearBtn.addEventListener('click', this.clearSelection.bind(this));
|
139 |
+
this.newAnalysisBtn.addEventListener('click', this.newAnalysis.bind(this));
|
140 |
+
this.downloadResultBtn.addEventListener('click', this.downloadReport.bind(this));
|
141 |
+
}
|
142 |
+
|
143 |
+
switchMethod(method) {
|
144 |
+
this.currentMethod = method;
|
145 |
+
|
146 |
+
// Update card states
|
147 |
+
this.uploadCard.classList.toggle('active', method === 'upload');
|
148 |
+
this.cameraCard.classList.toggle('active', method === 'camera');
|
149 |
+
|
150 |
+
// Show/hide sections
|
151 |
+
this.uploadSection.style.display = method === 'upload' ? 'block' : 'none';
|
152 |
+
this.cameraSection.style.display = method === 'camera' ? 'block' : 'none';
|
153 |
+
|
154 |
+
// Stop camera if switching away
|
155 |
+
if (method !== 'camera') {
|
156 |
+
this.stopCamera();
|
157 |
+
}
|
158 |
+
|
159 |
+
// Clear any existing selections
|
160 |
+
this.clearSelection();
|
161 |
+
}
|
162 |
+
|
163 |
+
// Upload handling
|
164 |
+
handleDragOver(e) {
|
165 |
+
e.preventDefault();
|
166 |
+
this.uploadArea.classList.add('dragover');
|
167 |
+
}
|
168 |
+
|
169 |
+
handleDragLeave(e) {
|
170 |
+
e.preventDefault();
|
171 |
+
this.uploadArea.classList.remove('dragover');
|
172 |
+
}
|
173 |
+
|
174 |
+
handleDrop(e) {
|
175 |
+
e.preventDefault();
|
176 |
+
this.uploadArea.classList.remove('dragover');
|
177 |
+
|
178 |
+
const files = e.dataTransfer.files;
|
179 |
+
if (files.length > 0) {
|
180 |
+
this.processFile(files[0]);
|
181 |
+
}
|
182 |
+
}
|
183 |
+
|
184 |
+
handleFileSelect(e) {
|
185 |
+
const file = e.target.files[0];
|
186 |
+
if (file) {
|
187 |
+
this.processFile(file);
|
188 |
+
}
|
189 |
+
}
|
190 |
+
|
191 |
+
processFile(file) {
|
192 |
+
console.log('Processing file:', file.name, file.type, file.size);
|
193 |
+
|
194 |
+
if (!this.isValidImageFile(file)) {
|
195 |
+
this.showError('Please select a valid image file (PNG, JPG, JPEG)');
|
196 |
+
return;
|
197 |
+
}
|
198 |
+
|
199 |
+
if (file.size > 16 * 1024 * 1024) {
|
200 |
+
this.showError('File size must be less than 16MB');
|
201 |
+
return;
|
202 |
+
}
|
203 |
+
|
204 |
+
this.selectedFile = file;
|
205 |
+
console.log('File selected successfully:', file.name);
|
206 |
+
this.displayImagePreview(file);
|
207 |
+
}
|
208 |
+
|
209 |
+
isValidImageFile(file) {
|
210 |
+
const validTypes = ['image/jpeg', 'image/jpg', 'image/png', 'image/gif'];
|
211 |
+
return validTypes.includes(file.type);
|
212 |
+
}
|
213 |
+
|
214 |
+
displayImagePreview(file) {
|
215 |
+
const reader = new FileReader();
|
216 |
+
reader.onload = (e) => {
|
217 |
+
this.previewImg.src = e.target.result;
|
218 |
+
this.imagePreview.style.display = 'block';
|
219 |
+
this.imagePreview.classList.add('fade-in');
|
220 |
+
this.hideResults();
|
221 |
+
};
|
222 |
+
reader.readAsDataURL(file);
|
223 |
+
}
|
224 |
+
|
225 |
+
// Camera handling
|
226 |
+
async startCamera() {
|
227 |
+
try {
|
228 |
+
// Enhanced camera constraints for mobile devices
|
229 |
+
const constraints = {
|
230 |
+
video: {
|
231 |
+
facingMode: 'environment', // Use back camera on mobile
|
232 |
+
width: { ideal: 1280, max: 1920 },
|
233 |
+
height: { ideal: 720, max: 1080 },
|
234 |
+
aspectRatio: { ideal: 16/9 }
|
235 |
+
}
|
236 |
+
};
|
237 |
+
|
238 |
+
// Fallback for devices that don't support environment camera
|
239 |
+
try {
|
240 |
+
this.stream = await navigator.mediaDevices.getUserMedia(constraints);
|
241 |
+
} catch (envError) {
|
242 |
+
console.log('Environment camera not available, trying default camera');
|
243 |
+
const fallbackConstraints = {
|
244 |
+
video: {
|
245 |
+
width: { ideal: 1280, max: 1920 },
|
246 |
+
height: { ideal: 720, max: 1080 }
|
247 |
+
}
|
248 |
+
};
|
249 |
+
this.stream = await navigator.mediaDevices.getUserMedia(fallbackConstraints);
|
250 |
+
}
|
251 |
+
|
252 |
+
this.video.srcObject = this.stream;
|
253 |
+
this.video.style.display = 'block';
|
254 |
+
|
255 |
+
this.startCameraBtn.style.display = 'none';
|
256 |
+
this.captureBtn.style.display = 'inline-flex';
|
257 |
+
this.stopCameraBtn.style.display = 'inline-flex';
|
258 |
+
|
259 |
+
} catch (error) {
|
260 |
+
console.error('Error accessing camera:', error);
|
261 |
+
this.showError('Could not access camera. Please check permissions.');
|
262 |
+
}
|
263 |
+
}
|
264 |
+
|
265 |
+
capturePhoto() {
|
266 |
+
const context = this.canvas.getContext('2d');
|
267 |
+
this.canvas.width = this.video.videoWidth;
|
268 |
+
this.canvas.height = this.video.videoHeight;
|
269 |
+
|
270 |
+
context.drawImage(this.video, 0, 0);
|
271 |
+
|
272 |
+
this.canvas.toBlob((blob) => {
|
273 |
+
this.selectedFile = blob;
|
274 |
+
this.previewImg.src = this.canvas.toDataURL();
|
275 |
+
this.imagePreview.style.display = 'block';
|
276 |
+
this.imagePreview.classList.add('fade-in');
|
277 |
+
this.hideResults();
|
278 |
+
}, 'image/png');
|
279 |
+
}
|
280 |
+
|
281 |
+
stopCamera() {
|
282 |
+
if (this.stream) {
|
283 |
+
this.stream.getTracks().forEach(track => track.stop());
|
284 |
+
this.stream = null;
|
285 |
+
}
|
286 |
+
|
287 |
+
this.video.style.display = 'none';
|
288 |
+
this.startCameraBtn.style.display = 'inline-flex';
|
289 |
+
this.captureBtn.style.display = 'none';
|
290 |
+
this.stopCameraBtn.style.display = 'none';
|
291 |
+
}
|
292 |
+
|
293 |
+
// Prediction
|
294 |
+
async makePrediction() {
|
295 |
+
console.log('Making prediction...');
|
296 |
+
console.log('Current method:', this.currentMethod);
|
297 |
+
console.log('Selected file:', this.selectedFile);
|
298 |
+
|
299 |
+
if (!this.selectedFile) {
|
300 |
+
this.showError('Please select an image first');
|
301 |
+
return;
|
302 |
+
}
|
303 |
+
|
304 |
+
this.showLoading(true);
|
305 |
+
|
306 |
+
try {
|
307 |
+
let response;
|
308 |
+
|
309 |
+
if (this.currentMethod === 'camera') {
|
310 |
+
console.log('Using camera prediction endpoint');
|
311 |
+
// Send base64 image for camera
|
312 |
+
const imageData = this.canvas.toDataURL();
|
313 |
+
response = await fetch('/predict_camera', {
|
314 |
+
method: 'POST',
|
315 |
+
headers: {
|
316 |
+
'Content-Type': 'application/json',
|
317 |
+
},
|
318 |
+
body: JSON.stringify({ image: imageData })
|
319 |
+
});
|
320 |
+
} else {
|
321 |
+
console.log('Using upload prediction endpoint');
|
322 |
+
// Send file for upload
|
323 |
+
const formData = new FormData();
|
324 |
+
formData.append('file', this.selectedFile);
|
325 |
+
|
326 |
+
console.log('FormData created with file:', this.selectedFile.name);
|
327 |
+
|
328 |
+
response = await fetch('/predict', {
|
329 |
+
method: 'POST',
|
330 |
+
body: formData
|
331 |
+
});
|
332 |
+
}
|
333 |
+
|
334 |
+
console.log('Response status:', response.status);
|
335 |
+
|
336 |
+
if (!response.ok) {
|
337 |
+
const errorText = await response.text();
|
338 |
+
console.error('Response error:', errorText);
|
339 |
+
throw new Error(`HTTP error! status: ${response.status}`);
|
340 |
+
}
|
341 |
+
|
342 |
+
const result = await response.json();
|
343 |
+
console.log('Prediction result:', result);
|
344 |
+
|
345 |
+
if (result.error) {
|
346 |
+
throw new Error(result.error);
|
347 |
+
}
|
348 |
+
|
349 |
+
this.displayResults(result);
|
350 |
+
|
351 |
+
} catch (error) {
|
352 |
+
console.error('Prediction error:', error);
|
353 |
+
this.showError(`Prediction failed: ${error.message}`);
|
354 |
+
} finally {
|
355 |
+
this.showLoading(false);
|
356 |
+
}
|
357 |
+
}
|
358 |
+
|
359 |
+
displayResults(result) {
|
360 |
+
// Store current prediction data for PDF generation
|
361 |
+
this.currentPredictionData = result;
|
362 |
+
|
363 |
+
// Display the analyzed image if available
|
364 |
+
if (result.image_url) {
|
365 |
+
this.analyzedImage.src = result.image_url;
|
366 |
+
this.analyzedImageSection.style.display = 'block';
|
367 |
+
}
|
368 |
+
|
369 |
+
// Update main prediction
|
370 |
+
this.diseaseName.textContent = result.predicted_class;
|
371 |
+
this.diseaseDescription.textContent = result.description;
|
372 |
+
this.confidenceValue.textContent = `${result.confidence}%`;
|
373 |
+
this.timestamp.textContent = `Analysis completed: ${result.timestamp}`;
|
374 |
+
|
375 |
+
// Update confidence badge color
|
376 |
+
this.updateConfidenceBadge(result.confidence);
|
377 |
+
|
378 |
+
// Update disease icon
|
379 |
+
this.updateDiseaseIcon(result.predicted_class);
|
380 |
+
|
381 |
+
// Display probabilities
|
382 |
+
this.displayProbabilities(result.all_predictions);
|
383 |
+
|
384 |
+
// Display recommendations
|
385 |
+
this.displayRecommendations(result.recommendations);
|
386 |
+
|
387 |
+
// Show results
|
388 |
+
this.resultsSection.style.display = 'block';
|
389 |
+
this.resultsSection.classList.add('fade-in');
|
390 |
+
this.resultsSection.scrollIntoView({ behavior: 'smooth' });
|
391 |
+
}
|
392 |
+
|
393 |
+
updateConfidenceBadge(confidence) {
|
394 |
+
if (confidence >= 90) {
|
395 |
+
this.confidenceBadge.style.background = 'linear-gradient(135deg, #22c55e, #16a34a)';
|
396 |
+
} else if (confidence >= 70) {
|
397 |
+
this.confidenceBadge.style.background = 'linear-gradient(135deg, #f59e0b, #d97706)';
|
398 |
+
} else {
|
399 |
+
this.confidenceBadge.style.background = 'linear-gradient(135deg, #ef4444, #dc2626)';
|
400 |
+
}
|
401 |
+
}
|
402 |
+
|
403 |
+
updateDiseaseIcon(diseaseName) {
|
404 |
+
const iconMap = {
|
405 |
+
'Early Blight': { icon: 'fas fa-exclamation-triangle', color: '#f59e0b' },
|
406 |
+
'Late Blight': { icon: 'fas fa-skull-crossbones', color: '#ef4444' },
|
407 |
+
'Healthy': { icon: 'fas fa-check-circle', color: '#22c55e' }
|
408 |
+
};
|
409 |
+
|
410 |
+
const iconInfo = iconMap[diseaseName] || { icon: 'fas fa-leaf', color: '#667eea' };
|
411 |
+
this.diseaseIcon.innerHTML = `<i class="${iconInfo.icon}"></i>`;
|
412 |
+
this.diseaseIcon.style.color = iconInfo.color;
|
413 |
+
}
|
414 |
+
|
415 |
+
displayProbabilities(allPredictions) {
|
416 |
+
this.probabilities.innerHTML = '';
|
417 |
+
|
418 |
+
Object.entries(allPredictions).forEach(([disease, data]) => {
|
419 |
+
const probability = data.probability;
|
420 |
+
const item = document.createElement('div');
|
421 |
+
item.className = 'probability-item';
|
422 |
+
|
423 |
+
const color = this.getProbabilityColor(probability);
|
424 |
+
|
425 |
+
item.innerHTML = `
|
426 |
+
<div class="probability-label">${disease}</div>
|
427 |
+
<div class="probability-bar">
|
428 |
+
<div class="probability-fill" style="width: ${probability}%; background: ${color};"></div>
|
429 |
+
</div>
|
430 |
+
<div class="probability-value">${probability}%</div>
|
431 |
+
`;
|
432 |
+
|
433 |
+
this.probabilities.appendChild(item);
|
434 |
+
});
|
435 |
+
}
|
436 |
+
|
437 |
+
getProbabilityColor(probability) {
|
438 |
+
if (probability >= 70) return 'linear-gradient(90deg, #22c55e, #16a34a)';
|
439 |
+
if (probability >= 40) return 'linear-gradient(90deg, #f59e0b, #d97706)';
|
440 |
+
return 'linear-gradient(90deg, #ef4444, #dc2626)';
|
441 |
+
}
|
442 |
+
|
443 |
+
displayRecommendations(recommendations) {
|
444 |
+
this.recommendationList.innerHTML = '';
|
445 |
+
|
446 |
+
recommendations.forEach((rec, index) => {
|
447 |
+
const item = document.createElement('div');
|
448 |
+
item.className = 'recommendation-item';
|
449 |
+
item.innerHTML = `
|
450 |
+
<i class="fas fa-check-circle"></i>
|
451 |
+
<span>${rec}</span>
|
452 |
+
`;
|
453 |
+
this.recommendationList.appendChild(item);
|
454 |
+
});
|
455 |
+
}
|
456 |
+
|
457 |
+
// Utility methods
|
458 |
+
clearSelection() {
|
459 |
+
this.selectedFile = null;
|
460 |
+
this.fileInput.value = '';
|
461 |
+
this.imagePreview.style.display = 'none';
|
462 |
+
this.hideResults();
|
463 |
+
}
|
464 |
+
|
465 |
+
newAnalysis() {
|
466 |
+
this.clearSelection();
|
467 |
+
this.stopCamera();
|
468 |
+
this.switchMethod('upload');
|
469 |
+
}
|
470 |
+
|
471 |
+
hideResults() {
|
472 |
+
this.resultsSection.style.display = 'none';
|
473 |
+
this.analyzedImageSection.style.display = 'none';
|
474 |
+
}
|
475 |
+
|
476 |
+
showLoading(show) {
|
477 |
+
this.loadingOverlay.style.display = show ? 'flex' : 'none';
|
478 |
+
}
|
479 |
+
|
480 |
+
showError(message) {
|
481 |
+
alert(`Error: ${message}`);
|
482 |
+
}
|
483 |
+
|
484 |
+
async downloadReport() {
|
485 |
+
try {
|
486 |
+
// Show loading state
|
487 |
+
this.downloadResultBtn.disabled = true;
|
488 |
+
|
489 |
+
if (this.folderSelectionSupported) {
|
490 |
+
this.downloadResultBtn.innerHTML = '<i class="fas fa-spinner fa-spin"></i> Preparing folder selection...';
|
491 |
+
} else {
|
492 |
+
this.downloadResultBtn.innerHTML = '<i class="fas fa-spinner fa-spin"></i> Generating PDF...';
|
493 |
+
}
|
494 |
+
|
495 |
+
// Gather all report data
|
496 |
+
const reportData = {
|
497 |
+
predicted_class: this.diseaseName.textContent,
|
498 |
+
confidence: parseFloat(this.confidenceValue.textContent.replace('%', '')),
|
499 |
+
description: this.diseaseDescription.textContent,
|
500 |
+
timestamp: this.timestamp.textContent,
|
501 |
+
image_url: this.analyzedImage.src || null,
|
502 |
+
all_predictions: this.currentPredictionData || {},
|
503 |
+
recommendations: this.getCurrentRecommendations()
|
504 |
+
};
|
505 |
+
|
506 |
+
// Try to generate PDF via backend
|
507 |
+
const response = await fetch('/generate-pdf-report', {
|
508 |
+
method: 'POST',
|
509 |
+
headers: {
|
510 |
+
'Content-Type': 'application/json',
|
511 |
+
},
|
512 |
+
body: JSON.stringify(reportData)
|
513 |
+
});
|
514 |
+
|
515 |
+
if (response.ok) {
|
516 |
+
// Backend PDF generation successful
|
517 |
+
const blob = await response.blob();
|
518 |
+
const url = window.URL.createObjectURL(blob);
|
519 |
+
|
520 |
+
// Create download link with File System Access API for folder selection
|
521 |
+
if (this.folderSelectionSupported) {
|
522 |
+
this.downloadResultBtn.innerHTML = '<i class="fas fa-folder-open"></i> Choose save location...';
|
523 |
+
|
524 |
+
try {
|
525 |
+
// Modern browsers with File System Access API
|
526 |
+
const timestamp = new Date().toISOString().slice(0, 19).replace(/[-:]/g, '');
|
527 |
+
const diseaseName = reportData.predicted_class.replace(/\s+/g, '_');
|
528 |
+
const filename = `potato_disease_report_${diseaseName}_${timestamp}.pdf`;
|
529 |
+
|
530 |
+
// Show folder picker dialog
|
531 |
+
const fileHandle = await window.showSaveFilePicker({
|
532 |
+
suggestedName: filename,
|
533 |
+
types: [
|
534 |
+
{
|
535 |
+
description: 'PDF Reports',
|
536 |
+
accept: {
|
537 |
+
'application/pdf': ['.pdf'],
|
538 |
+
},
|
539 |
+
},
|
540 |
+
],
|
541 |
+
excludeAcceptAllOption: true,
|
542 |
+
startIn: 'documents' // Suggest Documents folder
|
543 |
+
});
|
544 |
+
|
545 |
+
this.downloadResultBtn.innerHTML = '<i class="fas fa-spinner fa-spin"></i> Saving to selected folder...';
|
546 |
+
|
547 |
+
const writable = await fileHandle.createWritable();
|
548 |
+
await writable.write(blob);
|
549 |
+
await writable.close();
|
550 |
+
|
551 |
+
this.showSuccessMessage('📁 PDF report saved to your chosen folder successfully!');
|
552 |
+
} catch (err) {
|
553 |
+
if (err.name === 'AbortError') {
|
554 |
+
// User cancelled folder selection
|
555 |
+
this.showInfoMessage('📁 Folder selection cancelled. Try again to choose a save location.');
|
556 |
+
} else {
|
557 |
+
console.error('Folder save error:', err);
|
558 |
+
// Fallback to regular download
|
559 |
+
this.fallbackDownload(url, blob, reportData);
|
560 |
+
this.showWarningMessage('📁 Folder selection failed. Downloaded to default location instead.');
|
561 |
+
}
|
562 |
+
}
|
563 |
+
} else {
|
564 |
+
// Fallback for browsers without File System Access API
|
565 |
+
this.fallbackDownload(url, blob, reportData);
|
566 |
+
}
|
567 |
+
|
568 |
+
window.URL.revokeObjectURL(url);
|
569 |
+
} else {
|
570 |
+
// Backend failed, check if it's a server-side issue or ReportLab missing
|
571 |
+
let errorData;
|
572 |
+
try {
|
573 |
+
errorData = await response.json();
|
574 |
+
} catch (e) {
|
575 |
+
errorData = { error: 'Unknown server error' };
|
576 |
+
}
|
577 |
+
|
578 |
+
console.warn('Backend PDF generation failed:', errorData);
|
579 |
+
|
580 |
+
if (errorData.fallback === 'client' || response.status === 503) {
|
581 |
+
// Server suggests client-side fallback
|
582 |
+
console.log('Using client-side PDF generation fallback');
|
583 |
+
await this.generateClientSidePDF(reportData);
|
584 |
+
} else {
|
585 |
+
// Other server errors
|
586 |
+
throw new Error(errorData.message || errorData.error || 'Server PDF generation failed');
|
587 |
+
}
|
588 |
+
}
|
589 |
+
|
590 |
+
} catch (error) {
|
591 |
+
console.error('Error downloading report:', error);
|
592 |
+
// Final fallback to text report
|
593 |
+
this.generateTextReport();
|
594 |
+
this.showErrorMessage('PDF generation failed, downloaded as text file instead.');
|
595 |
+
} finally {
|
596 |
+
// Reset button state
|
597 |
+
this.downloadResultBtn.disabled = false;
|
598 |
+
|
599 |
+
if (this.folderSelectionSupported) {
|
600 |
+
this.downloadResultBtn.innerHTML = '<i class="fas fa-folder-open"></i> Choose Folder & Download PDF';
|
601 |
+
} else {
|
602 |
+
this.downloadResultBtn.innerHTML = '<i class="fas fa-download"></i> Download PDF Report';
|
603 |
+
}
|
604 |
+
}
|
605 |
+
}
|
606 |
+
|
607 |
+
fallbackDownload(url, blob, reportData) {
|
608 |
+
const timestamp = new Date().toISOString().slice(0, 19).replace(/[-:]/g, '');
|
609 |
+
const diseaseName = reportData.predicted_class.replace(/\s+/g, '_');
|
610 |
+
const filename = `potato_disease_report_${diseaseName}_${timestamp}.pdf`;
|
611 |
+
|
612 |
+
const a = document.createElement('a');
|
613 |
+
a.href = url;
|
614 |
+
a.download = filename;
|
615 |
+
document.body.appendChild(a);
|
616 |
+
a.click();
|
617 |
+
document.body.removeChild(a);
|
618 |
+
|
619 |
+
this.showSuccessMessage('PDF report downloaded to default folder!');
|
620 |
+
}
|
621 |
+
|
622 |
+
async generateClientSidePDF(reportData) {
|
623 |
+
// Client-side PDF generation using jsPDF
|
624 |
+
try {
|
625 |
+
if (typeof jsPDF === 'undefined') {
|
626 |
+
throw new Error('jsPDF library not loaded');
|
627 |
+
}
|
628 |
+
|
629 |
+
console.log('📄 Generating client-side PDF...');
|
630 |
+
const { jsPDF } = window.jspdf;
|
631 |
+
const doc = new jsPDF();
|
632 |
+
|
633 |
+
// Add content to PDF
|
634 |
+
doc.setFontSize(20);
|
635 |
+
doc.text('🥔 POTATO DISEASE DETECTION REPORT', 20, 30);
|
636 |
+
|
637 |
+
doc.setFontSize(12);
|
638 |
+
doc.text(`Report Generated: ${reportData.timestamp}`, 20, 50);
|
639 |
+
doc.text(`Analysis Method: Deep Learning AI Classification`, 20, 60);
|
640 |
+
doc.text(`Model Version: TensorFlow/Keras CNN v1.0`, 20, 70);
|
641 |
+
|
642 |
+
// Main diagnosis
|
643 |
+
doc.setFontSize(16);
|
644 |
+
doc.text('🎯 DIAGNOSIS RESULTS', 20, 90);
|
645 |
+
|
646 |
+
doc.setFontSize(12);
|
647 |
+
doc.text(`Predicted Disease: ${reportData.predicted_class}`, 20, 105);
|
648 |
+
doc.text(`Confidence: ${reportData.confidence}%`, 20, 115);
|
649 |
+
|
650 |
+
// Risk assessment
|
651 |
+
let riskLevel = 'Unknown';
|
652 |
+
if (reportData.confidence >= 80) riskLevel = 'High Confidence';
|
653 |
+
else if (reportData.confidence >= 60) riskLevel = 'Medium Confidence';
|
654 |
+
else riskLevel = 'Low Confidence - Manual Verification Recommended';
|
655 |
+
|
656 |
+
doc.text(`Risk Assessment: ${riskLevel}`, 20, 125);
|
657 |
+
|
658 |
+
// Description
|
659 |
+
doc.setFontSize(16);
|
660 |
+
doc.text('📋 DESCRIPTION', 20, 145);
|
661 |
+
|
662 |
+
doc.setFontSize(10);
|
663 |
+
const splitDescription = doc.splitTextToSize(reportData.description, 170);
|
664 |
+
doc.text(splitDescription, 20, 160);
|
665 |
+
|
666 |
+
let yPos = 160 + (splitDescription.length * 5) + 15;
|
667 |
+
|
668 |
+
// Probability breakdown
|
669 |
+
doc.setFontSize(16);
|
670 |
+
doc.text('📊 PROBABILITY BREAKDOWN', 20, yPos);
|
671 |
+
yPos += 15;
|
672 |
+
|
673 |
+
doc.setFontSize(10);
|
674 |
+
if (reportData.all_predictions) {
|
675 |
+
for (const [disease, info] of Object.entries(reportData.all_predictions)) {
|
676 |
+
doc.text(`• ${disease}: ${info.probability}%`, 20, yPos);
|
677 |
+
yPos += 10;
|
678 |
+
}
|
679 |
+
}
|
680 |
+
|
681 |
+
yPos += 10;
|
682 |
+
|
683 |
+
// Recommendations
|
684 |
+
doc.setFontSize(16);
|
685 |
+
doc.text('💡 TREATMENT RECOMMENDATIONS', 20, yPos);
|
686 |
+
yPos += 15;
|
687 |
+
|
688 |
+
doc.setFontSize(10);
|
689 |
+
reportData.recommendations.forEach((rec, index) => {
|
690 |
+
const recText = `${index + 1}. ${rec}`;
|
691 |
+
const splitRec = doc.splitTextToSize(recText, 170);
|
692 |
+
doc.text(splitRec, 20, yPos);
|
693 |
+
yPos += splitRec.length * 5 + 3;
|
694 |
+
|
695 |
+
// Add new page if needed
|
696 |
+
if (yPos > 270) {
|
697 |
+
doc.addPage();
|
698 |
+
yPos = 20;
|
699 |
+
}
|
700 |
+
});
|
701 |
+
|
702 |
+
// Footer
|
703 |
+
yPos = Math.max(yPos + 20, 250);
|
704 |
+
doc.setFontSize(8);
|
705 |
+
doc.text('Generated by Potato Disease Detection System', 20, yPos);
|
706 |
+
doc.text('Powered by Flask & TensorFlow | Lucky Sharma', 20, yPos + 8);
|
707 |
+
doc.text('© 2025 All Rights Reserved', 20, yPos + 16);
|
708 |
+
|
709 |
+
// Save PDF
|
710 |
+
const timestamp = new Date().toISOString().slice(0, 19).replace(/[-:]/g, '');
|
711 |
+
const diseaseName = reportData.predicted_class.replace(/\s+/g, '_');
|
712 |
+
const filename = `potato_disease_report_${diseaseName}_${timestamp}.pdf`;
|
713 |
+
|
714 |
+
// Try to use File System Access API for folder selection
|
715 |
+
if ('showSaveFilePicker' in window) {
|
716 |
+
try {
|
717 |
+
const fileHandle = await window.showSaveFilePicker({
|
718 |
+
suggestedName: filename,
|
719 |
+
types: [
|
720 |
+
{
|
721 |
+
description: 'PDF files',
|
722 |
+
accept: {
|
723 |
+
'application/pdf': ['.pdf'],
|
724 |
+
},
|
725 |
+
},
|
726 |
+
],
|
727 |
+
});
|
728 |
+
|
729 |
+
const writable = await fileHandle.createWritable();
|
730 |
+
const pdfBlob = doc.output('blob');
|
731 |
+
await writable.write(pdfBlob);
|
732 |
+
await writable.close();
|
733 |
+
|
734 |
+
this.showSuccessMessage('PDF report saved successfully using client-side generation!');
|
735 |
+
} catch (err) {
|
736 |
+
if (err.name !== 'AbortError') {
|
737 |
+
// Fallback to regular download
|
738 |
+
doc.save(filename);
|
739 |
+
this.showSuccessMessage('PDF report generated successfully!');
|
740 |
+
}
|
741 |
+
}
|
742 |
+
} else {
|
743 |
+
// Regular download for older browsers
|
744 |
+
doc.save(filename);
|
745 |
+
this.showSuccessMessage('PDF report generated successfully!');
|
746 |
+
}
|
747 |
+
|
748 |
+
} catch (error) {
|
749 |
+
console.error('Client-side PDF generation failed:', error);
|
750 |
+
this.showErrorMessage('PDF generation failed. Falling back to text report.');
|
751 |
+
this.generateTextReport();
|
752 |
+
}
|
753 |
+
}
|
754 |
+
|
755 |
+
getCurrentRecommendations() {
|
756 |
+
const recommendations = [];
|
757 |
+
const recItems = this.recommendationList.querySelectorAll('.recommendation-item span');
|
758 |
+
recItems.forEach(item => {
|
759 |
+
recommendations.push(item.textContent);
|
760 |
+
});
|
761 |
+
return recommendations;
|
762 |
+
}
|
763 |
+
|
764 |
+
generateTextReport() {
|
765 |
+
// Fallback text report generation (original functionality)
|
766 |
+
const diseaseName = this.diseaseName.textContent;
|
767 |
+
const confidence = this.confidenceValue.textContent;
|
768 |
+
const description = this.diseaseDescription.textContent;
|
769 |
+
const timestamp = this.timestamp.textContent;
|
770 |
+
|
771 |
+
let report = `POTATO DISEASE DETECTION REPORT\n`;
|
772 |
+
report += `=====================================\n\n`;
|
773 |
+
report += `${timestamp}\n\n`;
|
774 |
+
report += `DIAGNOSIS: ${diseaseName}\n`;
|
775 |
+
report += `CONFIDENCE: ${confidence}\n\n`;
|
776 |
+
report += `DESCRIPTION:\n${description}\n\n`;
|
777 |
+
report += `RECOMMENDATIONS:\n`;
|
778 |
+
|
779 |
+
const recommendations = this.recommendationList.querySelectorAll('.recommendation-item span');
|
780 |
+
recommendations.forEach((rec, index) => {
|
781 |
+
report += `${index + 1}. ${rec.textContent}\n`;
|
782 |
+
});
|
783 |
+
|
784 |
+
report += `\n=====================================\n`;
|
785 |
+
report += `Generated by Potato Disease Detection System\n`;
|
786 |
+
report += `Powered by Flask & TensorFlow\n`;
|
787 |
+
|
788 |
+
// Download as text file
|
789 |
+
const blob = new Blob([report], { type: 'text/plain' });
|
790 |
+
const url = window.URL.createObjectURL(blob);
|
791 |
+
const a = document.createElement('a');
|
792 |
+
a.href = url;
|
793 |
+
a.download = `potato_disease_report_${Date.now()}.txt`;
|
794 |
+
document.body.appendChild(a);
|
795 |
+
a.click();
|
796 |
+
window.URL.revokeObjectURL(url);
|
797 |
+
document.body.removeChild(a);
|
798 |
+
}
|
799 |
+
|
800 |
+
showSuccessMessage(message) {
|
801 |
+
this.showMessage(message, 'success');
|
802 |
+
}
|
803 |
+
|
804 |
+
showInfoMessage(message) {
|
805 |
+
this.showMessage(message, 'info');
|
806 |
+
}
|
807 |
+
|
808 |
+
showWarningMessage(message) {
|
809 |
+
this.showMessage(message, 'warning');
|
810 |
+
}
|
811 |
+
|
812 |
+
showErrorMessage(message) {
|
813 |
+
this.showMessage(message, 'error');
|
814 |
+
}
|
815 |
+
|
816 |
+
showMessage(message, type = 'info') {
|
817 |
+
// Create or update message container
|
818 |
+
let messageContainer = document.getElementById('message-container');
|
819 |
+
if (!messageContainer) {
|
820 |
+
messageContainer = document.createElement('div');
|
821 |
+
messageContainer.id = 'message-container';
|
822 |
+
messageContainer.style.position = 'fixed';
|
823 |
+
messageContainer.style.top = '20px';
|
824 |
+
messageContainer.style.right = '20px';
|
825 |
+
messageContainer.style.zIndex = '10000';
|
826 |
+
messageContainer.style.maxWidth = '400px';
|
827 |
+
document.body.appendChild(messageContainer);
|
828 |
+
}
|
829 |
+
|
830 |
+
// Create message element
|
831 |
+
const messageEl = document.createElement('div');
|
832 |
+
messageEl.className = `message message-${type}`;
|
833 |
+
messageEl.innerHTML = `
|
834 |
+
<div style="
|
835 |
+
background: ${this.getMessageColor(type)};
|
836 |
+
color: white;
|
837 |
+
padding: 12px 16px;
|
838 |
+
border-radius: 8px;
|
839 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.15);
|
840 |
+
margin-bottom: 10px;
|
841 |
+
display: flex;
|
842 |
+
align-items: center;
|
843 |
+
justify-content: space-between;
|
844 |
+
font-size: 14px;
|
845 |
+
animation: slideInRight 0.3s ease-out;
|
846 |
+
">
|
847 |
+
<span>${message}</span>
|
848 |
+
<button onclick="this.parentElement.parentElement.remove()"
|
849 |
+
style="background: none; border: none; color: white; font-size: 18px; cursor: pointer; padding: 0; margin-left: 10px;">×</button>
|
850 |
+
</div>
|
851 |
+
`;
|
852 |
+
|
853 |
+
// Add CSS animation if not already added
|
854 |
+
if (!document.getElementById('message-styles')) {
|
855 |
+
const style = document.createElement('style');
|
856 |
+
style.id = 'message-styles';
|
857 |
+
style.textContent = `
|
858 |
+
@keyframes slideInRight {
|
859 |
+
from { transform: translateX(100%); opacity: 0; }
|
860 |
+
to { transform: translateX(0); opacity: 1; }
|
861 |
+
}
|
862 |
+
`;
|
863 |
+
document.head.appendChild(style);
|
864 |
+
}
|
865 |
+
|
866 |
+
messageContainer.appendChild(messageEl);
|
867 |
+
|
868 |
+
// Auto-remove after 5 seconds
|
869 |
+
setTimeout(() => {
|
870 |
+
if (messageEl.parentElement) {
|
871 |
+
messageEl.remove();
|
872 |
+
}
|
873 |
+
}, 5000);
|
874 |
+
}
|
875 |
+
|
876 |
+
getMessageColor(type) {
|
877 |
+
const colors = {
|
878 |
+
success: '#10b981', // green
|
879 |
+
info: '#3b82f6', // blue
|
880 |
+
warning: '#f59e0b', // amber
|
881 |
+
error: '#ef4444' // red
|
882 |
+
};
|
883 |
+
return colors[type] || colors.info;
|
884 |
+
}
|
885 |
+
}
|
886 |
+
|
887 |
+
// Initialize the application when DOM is loaded
|
888 |
+
document.addEventListener('DOMContentLoaded', () => {
|
889 |
+
new PotatoDiseaseDetector();
|
890 |
+
});
|
891 |
+
|
892 |
+
// Add some utility functions
|
893 |
+
function formatFileSize(bytes) {
|
894 |
+
if (bytes === 0) return '0 Bytes';
|
895 |
+
const k = 1024;
|
896 |
+
const sizes = ['Bytes', 'KB', 'MB', 'GB'];
|
897 |
+
const i = Math.floor(Math.log(bytes) / Math.log(k));
|
898 |
+
return parseFloat((bytes / Math.pow(k, i)).toFixed(2)) + ' ' + sizes[i];
|
899 |
+
}
|
900 |
+
|
901 |
+
// Mobile device detection and utilities
|
902 |
+
function isMobileDevice() {
|
903 |
+
return /Android|webOS|iPhone|iPad|iPod|BlackBerry|IEMobile|Opera Mini/i.test(navigator.userAgent);
|
904 |
+
}
|
905 |
+
|
906 |
+
function isIOSDevice() {
|
907 |
+
return /iPad|iPhone|iPod/.test(navigator.userAgent);
|
908 |
+
}
|
909 |
+
|
910 |
+
function getOptimalImageSize() {
|
911 |
+
const isMobile = isMobileDevice();
|
912 |
+
if (isMobile) {
|
913 |
+
return {
|
914 |
+
maxWidth: window.innerWidth - 40,
|
915 |
+
maxHeight: Math.min(window.innerHeight * 0.4, 300)
|
916 |
+
};
|
917 |
+
}
|
918 |
+
return {
|
919 |
+
maxWidth: 400,
|
920 |
+
maxHeight: 400
|
921 |
+
};
|
922 |
+
}
|
923 |
+
|
924 |
+
// Prevent double-tap zoom on mobile
|
925 |
+
function preventDoubleTab() {
|
926 |
+
let lastTouchEnd = 0;
|
927 |
+
document.addEventListener('touchend', function (event) {
|
928 |
+
const now = (new Date()).getTime();
|
929 |
+
if (now - lastTouchEnd <= 300) {
|
930 |
+
event.preventDefault();
|
931 |
+
}
|
932 |
+
lastTouchEnd = now;
|
933 |
+
}, false);
|
934 |
+
}
|
935 |
+
|
936 |
+
// Initialize mobile optimizations
|
937 |
+
if (isMobileDevice()) {
|
938 |
+
preventDoubleTab();
|
939 |
+
|
940 |
+
// Add mobile class to body for CSS targeting
|
941 |
+
document.body.classList.add('mobile-device');
|
942 |
+
|
943 |
+
if (isIOSDevice()) {
|
944 |
+
document.body.classList.add('ios-device');
|
945 |
+
}
|
946 |
+
|
947 |
+
// Adjust viewport height for mobile browsers
|
948 |
+
function setVH() {
|
949 |
+
let vh = window.innerHeight * 0.01;
|
950 |
+
document.documentElement.style.setProperty('--vh', `${vh}px`);
|
951 |
+
}
|
952 |
+
|
953 |
+
setVH();
|
954 |
+
window.addEventListener('resize', setVH);
|
955 |
+
window.addEventListener('orientationchange', () => {
|
956 |
+
setTimeout(setVH, 100);
|
957 |
+
});
|
958 |
+
}
|
959 |
+
|
960 |
+
// Check browser compatibility
|
961 |
+
function checkBrowserSupport() {
|
962 |
+
if (!navigator.mediaDevices || !navigator.mediaDevices.getUserMedia) {
|
963 |
+
console.warn('Camera functionality not supported in this browser');
|
964 |
+
const cameraCard = document.getElementById('cameraCard');
|
965 |
+
if (cameraCard) {
|
966 |
+
cameraCard.style.opacity = '0.5';
|
967 |
+
cameraCard.style.cursor = 'not-allowed';
|
968 |
+
|
969 |
+
// Add tooltip for unsupported browsers
|
970 |
+
const tooltip = document.createElement('div');
|
971 |
+
tooltip.className = 'tooltip';
|
972 |
+
tooltip.textContent = 'Camera not supported in this browser';
|
973 |
+
cameraCard.appendChild(tooltip);
|
974 |
+
}
|
975 |
+
}
|
976 |
+
|
977 |
+
// Check for file upload support
|
978 |
+
if (!window.File || !window.FileReader || !window.FileList || !window.Blob) {
|
979 |
+
console.warn('File upload not supported in this browser');
|
980 |
+
const uploadCard = document.getElementById('uploadCard');
|
981 |
+
if (uploadCard) {
|
982 |
+
uploadCard.style.opacity = '0.7';
|
983 |
+
}
|
984 |
+
}
|
985 |
+
}
|
986 |
+
|
987 |
+
// Run compatibility check
|
988 |
+
checkBrowserSupport();
|
static/uploads/20250711_012123_1cd053f6-0016-4680-a924-af15aecd7fb2___RS_LB_4414.JPG
ADDED
|
static/uploads/20250711_012557_0eb24a67-a174-43db-86c7-cca8795942a2___RS_LB_4722.JPG
ADDED
|
static/uploads/20250711_014017_2f81d148-c62f-4d3c-baf4-72b77abea41a___RS_Early.B_7493.JPG
ADDED
|
static/uploads/20250711_015310_1e671694-5713-4568-b8ad-06f15688d25e___RS_Early.B_7659.JPG
ADDED
|
static/uploads/20250711_015412_0a79700b-f834-41f5-ae51-6ceda6f67a48___RS_Early.B_8951.JPG
ADDED
|
static/uploads/20250711_022739_414f6249-9f78-4af5-9593-9d5a7e7d979f___RS_HL_1918.JPG
ADDED
|
static/uploads/20250711_234352_2f7b6898-a342-42a5-a0e5-a9f2bad7eaf1___RS_LB_2831.JPG
ADDED
|
static/uploads/20250711_234419_0e7f0484-16eb-4183-b702-0a5b4f94d015___RS_LB_4000.JPG
ADDED
|
static/uploads/20250711_234838_early1.jpeg
ADDED
![]() |
static/uploads/20250711_234852_healthy.jpeg
ADDED
![]() |