File size: 6,178 Bytes
3fde58f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# -------------------------
# 1. Import Libraries
# -------------------------
import os
import glob
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import itertools

from keras.preprocessing.image import ImageDataGenerator
from keras.models import Model, load_model
from keras.layers import Dense, Dropout
from keras.applications import ResNet50
from keras.applications.resnet50 import preprocess_input
from keras.preprocessing import image

import warnings
warnings.filterwarnings('ignore')

# -------------------------
# 2. Load Dataset
# -------------------------
file_path = 'dataset'

# List all classes
name_class = os.listdir(file_path)
print("Classes:", name_class)

# Get all filepaths
filepaths = list(glob.glob(file_path + '/**/*.*'))
print(f"Total images found: {len(filepaths)}")

# Extract labels
labels = list(map(lambda x: os.path.split(os.path.split(x)[0])[1], filepaths))

# Create DataFrame
filepath_series = pd.Series(filepaths, name='Filepath').astype(str)
labels_series = pd.Series(labels, name='Label')
data = pd.concat([filepath_series, labels_series], axis=1)
data = data.sample(frac=1).reset_index(drop=True)  # shuffle
print(data.head())

# -------------------------
# 3. EDA (Exploratory Data Analysis)
# -------------------------
# Class distribution
plt.figure(figsize=(8,5))
sns.countplot(x='Label', data=data, order=data['Label'].value_counts().index)
plt.title('Number of Images per Class')
plt.xticks(rotation=45)
plt.show()

# Check image dimensions
sample_img = plt.imread(data['Filepath'][0])
print(f"Sample image shape: {sample_img.shape}")

# Visualize few images
fig, axes = plt.subplots(2, 4, figsize=(12,6))
for ax, (img_path, label) in zip(axes.flatten(), zip(data['Filepath'][:8], data['Label'][:8])):
    img = plt.imread(img_path)
    ax.imshow(img)
    ax.set_title(label)
    ax.axis('off')
plt.tight_layout()
plt.show()

# -------------------------
# 4. Train-Test Split
# -------------------------
train, test = train_test_split(data, test_size=0.2, random_state=42)
print(f"Training samples: {len(train)}, Testing samples: {len(test)}")

# -------------------------
# 5. Data Preprocessing and Augmentation
# -------------------------
train_datagen = ImageDataGenerator(
    preprocessing_function=preprocess_input,
    rotation_range=20,
    width_shift_range=0.1,
    height_shift_range=0.1,
    zoom_range=0.1,
    horizontal_flip=True
)

test_datagen = ImageDataGenerator(preprocessing_function=preprocess_input)

train_gen = train_datagen.flow_from_dataframe(
    dataframe=train,
    x_col='Filepath',
    y_col='Label',
    target_size=(256, 256),
    class_mode='categorical',
    batch_size=32,
    shuffle=True,
    seed=42
)

valid_gen = test_datagen.flow_from_dataframe(
    dataframe=test,
    x_col='Filepath',
    y_col='Label',
    target_size=(256, 256),
    class_mode='categorical',
    batch_size=32,
    shuffle=False
)

# -------------------------
# 6. Model Building (Transfer Learning with ResNet50)
# -------------------------
pretrained_model = ResNet50(
    input_shape=(256, 256, 3),
    include_top=False,
    weights='imagenet',
    pooling='avg'
)

pretrained_model.trainable = False

x = Dense(128, activation="relu")(pretrained_model.output)
x = Dropout(0.5)(x)
x = Dense(128, activation="relu")(x)
outputs = Dense(8, activation='softmax')(x)

model = Model(inputs=pretrained_model.input, outputs=outputs)

model.compile(optimizer="adam", loss='categorical_crossentropy', metrics=['accuracy'])

# -------------------------
# 7. Model Training
# -------------------------
history = model.fit(
    train_gen,
    validation_data=valid_gen,
    epochs=20,
)

# -------------------------
# 8. Training Curves
# -------------------------
pd.DataFrame(history.history)[['accuracy', 'val_accuracy']].plot()
plt.title('Training vs Validation Accuracy')
plt.show()

pd.DataFrame(history.history)[['loss', 'val_loss']].plot()
plt.title('Training vs Validation Loss')
plt.show()

# -------------------------
# 9. Evaluation and Confusion Matrix
# -------------------------
# Evaluate
results = model.evaluate(valid_gen, verbose=0)
print(f"Test Loss: {results[0]:.5f}")
print(f"Test Accuracy: {results[1]*100:.2f}%")

# Predictions
predictions = model.predict(valid_gen)
y_pred = np.argmax(predictions, axis=1)

# True labels
y_true = valid_gen.classes

# Labels Mapping
labels_map = train_gen.class_indices
labels_map = dict((v,k) for k,v in labels_map.items())

# Classification report
print(classification_report(y_true, y_pred, target_names=list(labels_map.values())))

# Confusion Matrix
cm = confusion_matrix(y_true, y_pred)

plt.figure(figsize=(8,6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
            xticklabels=list(labels_map.values()),
            yticklabels=list(labels_map.values()))
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('Confusion Matrix')
plt.show()

# -------------------------
# 10. Save the Model
# -------------------------
model.save("model_blood_group_detection_resnet.h5")
print("Model saved successfully!")

# -------------------------
# 11. Single Image Prediction Example
# -------------------------
# Load model
model = load_model('model_blood_group_detection_resnet.h5')

# Single image prediction
img_path = 'C:\Users\ADMIN\Documents\SEM-6\DL PROJECT\dataset\AB+\augmented_cluster_4_4.BMP'  # Update this path as needed
img = image.load_img(img_path, target_size=(256, 256))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

preds = model.predict(x)
predicted_class = np.argmax(preds)
confidence = preds[0][predicted_class] * 100

# Get label
predicted_label = labels_map[predicted_class]

# Show image
plt.imshow(image.array_to_img(img))
plt.axis('off')
plt.title(f"Prediction: {predicted_label} ({confidence:.2f}%)")
plt.show()