File size: 6,972 Bytes
3fde58f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# ------------------------------------------------------
# 1. Import Libraries
# ------------------------------------------------------
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
import cv2
from sklearn.model_selection import train_test_split
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import to_categorical
from keras.applications import MobileNetV2
from keras.layers import Dense, GlobalAveragePooling2D, Dropout
from keras.models import Model, load_model
from keras.preprocessing import image
from keras.applications.mobilenet_v2 import preprocess_input
# ------------------------------------------------------
# 2. Load Dataset
# ------------------------------------------------------
data_dir = 'dataset' # <-- Replace with your dataset folder
categories = os.listdir(data_dir)
data = []
for category in categories:
category_path = os.path.join(data_dir, category)
for img_name in os.listdir(category_path):
img_path = os.path.join(category_path, img_name)
data.append((img_path, category))
data = pd.DataFrame(data, columns=['Filepath', 'Label'])
print(f"Total samples: {len(data)}")
print(data.head())
# ------------------------------------------------------
# 3. Exploratory Data Analysis (EDA)
# ------------------------------------------------------
# Class distribution
plt.figure(figsize=(8,6))
sns.countplot(x='Label', data=data)
plt.title('Blood Group Class Distribution')
plt.xticks(rotation=45)
plt.show()
# Display few images
plt.figure(figsize=(12,8))
for i in range(9):
sample = data.sample(n=1).iloc[0]
img = cv2.imread(sample['Filepath'])
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.subplot(3,3,i+1)
plt.imshow(img)
plt.title(sample['Label'])
plt.axis('off')
plt.tight_layout()
plt.show()
# ------------------------------------------------------
# 4. Train-Validation-Test Split
# ------------------------------------------------------
train, temp = train_test_split(data, test_size=0.3, random_state=42, stratify=data['Label'])
valid, test = train_test_split(temp, test_size=0.5, random_state=42, stratify=temp['Label'])
print(f"Training samples: {len(train)}")
print(f"Validation samples: {len(valid)}")
print(f"Testing samples: {len(test)}")
# ------------------------------------------------------
# 5. Preprocessing (Image Augmentation + Scaling)
# ------------------------------------------------------
train_datagen = ImageDataGenerator(
preprocessing_function=preprocess_input,
rotation_range=20,
zoom_range=0.2,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
horizontal_flip=True
)
valid_datagen = ImageDataGenerator(preprocessing_function=preprocess_input)
target_size = (224, 224)
train_gen = train_datagen.flow_from_dataframe(
dataframe=train,
x_col='Filepath',
y_col='Label',
target_size=target_size,
class_mode='categorical',
batch_size=32,
shuffle=True,
seed=42
)
valid_gen = valid_datagen.flow_from_dataframe(
dataframe=valid,
x_col='Filepath',
y_col='Label',
target_size=target_size,
class_mode='categorical',
batch_size=32,
shuffle=False
)
# ------------------------------------------------------
# 6. Load MobileNetV2 Base Model
# ------------------------------------------------------
base_model = MobileNetV2(weights='imagenet', include_top=False, input_shape=(224,224,3))
# ------------------------------------------------------
# 7. Freeze Layers
# ------------------------------------------------------
for layer in base_model.layers:
layer.trainable = False
# ------------------------------------------------------
# 8. Add Custom Layers
# ------------------------------------------------------
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dropout(0.3)(x)
x = Dense(128, activation='relu')(x)
x = Dropout(0.2)(x)
predictions = Dense(len(categories), activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=predictions)
# ------------------------------------------------------
# 9. Compile and Train the Model
# ------------------------------------------------------
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit(
train_gen,
validation_data=valid_gen,
epochs=20
)
# ------------------------------------------------------
# 10. Save the Model
# ------------------------------------------------------
model.save('bloodgroup_mobilenet_model.h5')
print("Model saved as bloodgroup_mobilenet_model.h5")
# ------------------------------------------------------
# 11. Evaluate the Model
# ------------------------------------------------------
# Accuracy and Loss plots
plt.figure(figsize=(14,5))
plt.subplot(1,2,1)
plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.title('Model Accuracy')
plt.legend()
plt.subplot(1,2,2)
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Model Loss')
plt.legend()
plt.show()
# ------------------------------------------------------
# 12. Prediction on Single Image (User Input)
# ------------------------------------------------------
import numpy as np
import matplotlib.pyplot as plt
from keras.models import load_model
from keras.preprocessing import image
from keras.applications.imagenet_utils import preprocess_input
# Load the pre-t rained model
model = load_model('bloodgroup_mobilenet_model.h5')
# Define the class labels
labels = {'A+': 0, 'A-': 1, 'AB+': 2, 'AB-': 3, 'B+': 4, 'B-': 5, 'O+': 6, 'O-': 7}
labels = dict((v, k) for k, v in labels.items())
# Example of loading a single image and making a prediction
img_path = 'dataset/AB+/augmented_cluster_4_4.BMP'
# Preprocess the image accordingly (check the model's expected input dimensions)
img = image.load_img(img_path, target_size=(224, 224)) # Example target size for AlexNet (224x224)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x) # Ensure this matches the model's preprocessing function
# Make prediction
result = model.predict(x)
predicted_class = np.argmax(result) # Get the predicted class index
# Map the predicted class to the label
predicted_label = labels[predicted_class]
confidence = result[0][predicted_class] * 100 # Confidence level
# Display the image
plt.imshow(image.array_to_img(image.img_to_array(img) / 255.0))
plt.axis('off') # Hide axes
# Display the prediction and confidence below the image
plt.title(f"Prediction: {predicted_label} with confidence {confidence:.2f}%")
plt.show()
|