File size: 6,972 Bytes
3fde58f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# ------------------------------------------------------
# 1. Import Libraries
# ------------------------------------------------------

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
import cv2
from sklearn.model_selection import train_test_split
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import to_categorical
from keras.applications import MobileNetV2
from keras.layers import Dense, GlobalAveragePooling2D, Dropout
from keras.models import Model, load_model
from keras.preprocessing import image
from keras.applications.mobilenet_v2 import preprocess_input

# ------------------------------------------------------
# 2. Load Dataset
# ------------------------------------------------------

data_dir = 'dataset'  # <-- Replace with your dataset folder
categories = os.listdir(data_dir)

data = []
for category in categories:
    category_path = os.path.join(data_dir, category)
    for img_name in os.listdir(category_path):
        img_path = os.path.join(category_path, img_name)
        data.append((img_path, category))

data = pd.DataFrame(data, columns=['Filepath', 'Label'])

print(f"Total samples: {len(data)}")
print(data.head())

# ------------------------------------------------------
# 3. Exploratory Data Analysis (EDA)
# ------------------------------------------------------

# Class distribution
plt.figure(figsize=(8,6))
sns.countplot(x='Label', data=data)
plt.title('Blood Group Class Distribution')
plt.xticks(rotation=45)
plt.show()

# Display few images
plt.figure(figsize=(12,8))
for i in range(9):
    sample = data.sample(n=1).iloc[0]
    img = cv2.imread(sample['Filepath'])
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    plt.subplot(3,3,i+1)
    plt.imshow(img)
    plt.title(sample['Label'])
    plt.axis('off')
plt.tight_layout()
plt.show()

# ------------------------------------------------------
# 4. Train-Validation-Test Split
# ------------------------------------------------------

train, temp = train_test_split(data, test_size=0.3, random_state=42, stratify=data['Label'])
valid, test = train_test_split(temp, test_size=0.5, random_state=42, stratify=temp['Label'])

print(f"Training samples: {len(train)}")
print(f"Validation samples: {len(valid)}")
print(f"Testing samples: {len(test)}")

# ------------------------------------------------------
# 5. Preprocessing (Image Augmentation + Scaling)
# ------------------------------------------------------

train_datagen = ImageDataGenerator(
    preprocessing_function=preprocess_input,
    rotation_range=20,
    zoom_range=0.2,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    horizontal_flip=True
)

valid_datagen = ImageDataGenerator(preprocessing_function=preprocess_input)

target_size = (224, 224)

train_gen = train_datagen.flow_from_dataframe(
    dataframe=train,
    x_col='Filepath',
    y_col='Label',
    target_size=target_size,
    class_mode='categorical',
    batch_size=32,
    shuffle=True,
    seed=42
)

valid_gen = valid_datagen.flow_from_dataframe(
    dataframe=valid,
    x_col='Filepath',
    y_col='Label',
    target_size=target_size,
    class_mode='categorical',
    batch_size=32,
    shuffle=False
)

# ------------------------------------------------------
# 6. Load MobileNetV2 Base Model
# ------------------------------------------------------

base_model = MobileNetV2(weights='imagenet', include_top=False, input_shape=(224,224,3))

# ------------------------------------------------------
# 7. Freeze Layers
# ------------------------------------------------------

for layer in base_model.layers:
    layer.trainable = False

# ------------------------------------------------------
# 8. Add Custom Layers
# ------------------------------------------------------

x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dropout(0.3)(x)
x = Dense(128, activation='relu')(x)
x = Dropout(0.2)(x)
predictions = Dense(len(categories), activation='softmax')(x)

model = Model(inputs=base_model.input, outputs=predictions)

# ------------------------------------------------------
# 9. Compile and Train the Model
# ------------------------------------------------------

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

history = model.fit(
    train_gen,
    validation_data=valid_gen,
    epochs=20
)

# ------------------------------------------------------
# 10. Save the Model
# ------------------------------------------------------

model.save('bloodgroup_mobilenet_model.h5')
print("Model saved as bloodgroup_mobilenet_model.h5")

# ------------------------------------------------------
# 11. Evaluate the Model
# ------------------------------------------------------

# Accuracy and Loss plots
plt.figure(figsize=(14,5))

plt.subplot(1,2,1)
plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.title('Model Accuracy')
plt.legend()

plt.subplot(1,2,2)
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Model Loss')
plt.legend()

plt.show()

# ------------------------------------------------------
# 12. Prediction on Single Image (User Input)
# ------------------------------------------------------

import numpy as np
import matplotlib.pyplot as plt
from keras.models import load_model
from keras.preprocessing import image
from keras.applications.imagenet_utils import preprocess_input

# Load the pre-t rained model
model = load_model('bloodgroup_mobilenet_model.h5')

# Define the class labels
labels = {'A+': 0, 'A-': 1, 'AB+': 2, 'AB-': 3, 'B+': 4, 'B-': 5, 'O+': 6, 'O-': 7}
labels = dict((v, k) for k, v in labels.items())

# Example of loading a single image and making a prediction
img_path = 'dataset/AB+/augmented_cluster_4_4.BMP'

# Preprocess the image accordingly (check the model's expected input dimensions)
img = image.load_img(img_path, target_size=(224, 224))  # Example target size for AlexNet (224x224)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)  # Ensure this matches the model's preprocessing function

# Make prediction
result = model.predict(x)
predicted_class = np.argmax(result)  # Get the predicted class index

# Map the predicted class to the label
predicted_label = labels[predicted_class]
confidence = result[0][predicted_class] * 100  # Confidence level

# Display the image
plt.imshow(image.array_to_img(image.img_to_array(img) / 255.0))
plt.axis('off')  # Hide axes

# Display the prediction and confidence below the image
plt.title(f"Prediction: {predicted_label} with confidence {confidence:.2f}%")
plt.show()