File size: 6,289 Bytes
3fde58f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import glob
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from keras_preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Conv2D, MaxPooling2D, Flatten
from keras.applications import ResNet50
from keras.applications.resnet50 import preprocess_input
from sklearn.metrics import classification_report

import zipfile
import os

# Define the file name
zip_file = 'dataset.zip'

# Unzip it to a folder (you can choose your own target directory)
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
    zip_ref.extractall('blood_group_dataset')  # Extract to this folder



# Walk through the directory
for root, dirs, files in os.walk('blood_group_dataset'):
    print(root)
    for file in dirs:
        print('  ', file)

import os
import glob
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Walk through the directory and collect file paths and labels
filepaths = []
labels = []

for root, dirs, files in os.walk('blood_group_dataset'):
    for dir in dirs:  # Iterate through subdirectories (blood group types)
        for file in glob.glob(os.path.join(root, dir, '*')):  # Get all files in the subdirectory
            filepaths.append(file)
            labels.append(dir)  # Use the subdirectory name as the label

# Create a DataFrame with file paths and labels
filepath = pd.Series(filepaths, name='Filepath').astype(str)
Labels = pd.Series(labels, name='Label')
data = pd.concat([filepath, Labels], axis=1)
data = data.sample(frac=1).reset_index(drop=True)


# Filter out the 'dataset' label
filtered_data = data[data['Label'] != 'dataset']  # Remove rows with 'dataset' label

# Visualize class distribution using sns.barplot
counts = filtered_data.Label.value_counts()
sns.barplot(x=counts.index, y=counts)
plt.xlabel('Blood Group Type')  # Changed x-axis label
plt.ylabel('Number of Images')  # Added y-axis label
plt.xticks(rotation=90)
plt.title('Class Distribution in Blood Group Dataset')  # Added title
plt.show()

# Split data into training and testing sets
train, test = train_test_split(data, test_size=0.20, random_state=42)

# Visualize some images from the dataset
fig, axes = plt.subplots(nrows=5, ncols=3, figsize=(10, 8), subplot_kw={'xticks': [], 'yticks': []})
for i, ax in enumerate(axes.flat):
    ax.imshow(plt.imread(data.Filepath[i]))
    ax.set_title(data.Label[i])
plt.tight_layout()
plt.show()

# Set up ImageDataGenerator for training and validation data
train_datagen = ImageDataGenerator(preprocessing_function=preprocess_input)
test_datagen = ImageDataGenerator(preprocessing_function=preprocess_input)

train_gen = train_datagen.flow_from_dataframe(
    dataframe=train,
    x_col='Filepath',
    y_col='Label',
    target_size=(224, 224),  # Adjusted to match ResNet50 input size
    class_mode='categorical',
    batch_size=32,
    shuffle=True,
    seed=42
)

valid_gen = test_datagen.flow_from_dataframe(
    dataframe=test,
    x_col='Filepath',
    y_col='Label',
    target_size=(224, 224),  # Adjusted to match ResNet50 input size
    class_mode='categorical',
    batch_size=32,
    shuffle=False,
    seed=42
)

# Define the LeNet model
model = Sequential([
    Conv2D(6, kernel_size=(5, 5), activation='relu', input_shape=(224, 224, 3)),
    MaxPooling2D(pool_size=(2, 2)),
    Conv2D(16, kernel_size=(5, 5), activation='relu'),
    MaxPooling2D(pool_size=(2, 2)),
    Flatten(),
    Dense(120, activation='relu'),
    Dense(84, activation='relu'),
    Dense(8, activation='softmax')
])

model.compile(
    optimizer="adam",
    loss='categorical_crossentropy',
    metrics=['accuracy']
)

# Train the model
history = model.fit(
    train_gen,
    validation_data=valid_gen,
    epochs=20
)

# Plot training history: accuracy
pd.DataFrame(history.history)[['accuracy', 'val_accuracy']].plot()
plt.title("Accuracy")
plt.show()

# Plot training history: loss
pd.DataFrame(history.history)[['loss', 'val_loss']].plot()
plt.title("Loss")
plt.show()

# Evaluate the model on test data
results = model.evaluate(valid_gen, verbose=0)
print(f"Test Loss: {results[0]:.5f}")
print(f"Test Accuracy: {results[1]*100:.2f}%")

# Predict labels for test data
pred = model.predict(valid_gen)
pred = np.argmax(pred, axis=1)

# Map predicted labels
labels = train_gen.class_indices
labels = dict((v, k) for k, v in labels.items())
pred = [labels[k] for k in pred]

# Compare predicted labels with true labels and print classification report
# Get the true labels from the test DataFrame, ensuring they match the predictions in length
y_test = list(test.Label)
# Adjust y_test to match pred length
y_test = y_test[:len(pred)]  # Truncate y_test to match pred length

print(classification_report(y_test, pred))

model.save("model_blood_group_detection_lenet.keras")

import numpy as np
import matplotlib.pyplot as plt
from keras.models import load_model
from keras.preprocessing import image
from keras.applications.imagenet_utils import preprocess_input

# Load the pre-t rained model
model = load_model('model_blood_group_detection_lenet.keras')

# Define the class labels
labels = {'A+': 0, 'A-': 1, 'AB+': 2, 'AB-': 3, 'B+': 4, 'B-': 5, 'O+': 6, 'O-': 7}
labels = dict((v, k) for k, v in labels.items())

# Example of loading a single image and making a prediction
img_path = 'augmented_cluster_4_3505.BMP'

# Preprocess the image accordingly (check the model's expected input dimensions)
img = image.load_img(img_path, target_size=(224, 224))  # Example target size for AlexNet (224x224)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)  # Ensure this matches the model's preprocessing function

# Make prediction
result = model.predict(x)
predicted_class = np.argmax(result)  # Get the predicted class index

# Map the predicted class to the label
predicted_label = labels[predicted_class]
confidence = result[0][predicted_class] * 100  # Confidence level

# Display the image
plt.imshow(image.array_to_img(image.img_to_array(img) / 255.0))
plt.axis('off')  # Hide axes

# Display the prediction and confidence below the image
plt.title(f"Prediction: {predicted_label} with confidence {confidence:.2f}%")
plt.show()