File size: 8,782 Bytes
3fde58f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# ------------------------------------------------------
# 1. Import Libraries
# ------------------------------------------------------

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
import cv2
import tensorflow as tf
from sklearn.model_selection import train_test_split
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import to_categorical
from keras.applications import MobileNetV2
from keras.layers import Dense, GlobalAveragePooling2D, Dropout
from keras.models import Model, load_model
from keras.preprocessing import image
from keras.applications.mobilenet_v2 import preprocess_input
from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint

# ------------------------------------------------------
# 2. Load Dataset
# ------------------------------------------------------

data_dir = 'dataset'  # <-- Replace with your dataset folder
categories = os.listdir(data_dir)

data = []
for category in categories:
    category_path = os.path.join(data_dir, category)
    for img_name in os.listdir(category_path):
        img_path = os.path.join(category_path, img_name)
        data.append((img_path, category))

data = pd.DataFrame(data, columns=['Filepath', 'Label'])

print(f"Total samples: {len(data)}")
print(data.head())

# ------------------------------------------------------
# 3. Exploratory Data Analysis (EDA)
# ------------------------------------------------------

# Class distribution
plt.figure(figsize=(8,6))
sns.countplot(x='Label', data=data)
plt.title('Blood Group Class Distribution')
plt.xticks(rotation=45)
plt.show()

# Display few images
plt.figure(figsize=(12,8))
for i in range(9):
    sample = data.sample(n=1).iloc[0]
    img = cv2.imread(sample['Filepath'])
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    plt.subplot(3,3,i+1)
    plt.imshow(img)
    plt.title(sample['Label'])
    plt.axis('off')
plt.tight_layout()
plt.show()

# ------------------------------------------------------
# 4. Train-Validation-Test Split
# ------------------------------------------------------

train, temp = train_test_split(data, test_size=0.3, random_state=42, stratify=data['Label'])
valid, test = train_test_split(temp, test_size=0.5, random_state=42, stratify=temp['Label'])

print(f"Training samples: {len(train)}")
print(f"Validation samples: {len(valid)}")
print(f"Testing samples: {len(test)}")

# ------------------------------------------------------
# 5. Preprocessing (Image Augmentation + Scaling)
# ------------------------------------------------------

train_datagen = ImageDataGenerator(
    preprocessing_function=preprocess_input,
    rotation_range=20,
    zoom_range=0.2,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    horizontal_flip=True
)

valid_datagen = ImageDataGenerator(preprocessing_function=preprocess_input)

target_size = (224, 224)

train_gen = train_datagen.flow_from_dataframe(
    dataframe=train,
    x_col='Filepath',
    y_col='Label',
    target_size=target_size,
    class_mode='categorical',
    batch_size=32,
    shuffle=True,
    seed=42
)

valid_gen = valid_datagen.flow_from_dataframe(
    dataframe=valid,
    x_col='Filepath',
    y_col='Label',
    target_size=target_size,
    class_mode='categorical',
    batch_size=32,
    shuffle=False
)

# ------------------------------------------------------
# 6. Load MobileNetV2 Base Model
# ------------------------------------------------------

base_model = MobileNetV2(weights='imagenet', include_top=False, input_shape=(224,224,3))

# ------------------------------------------------------
# 7. Freeze Base Layers
# ------------------------------------------------------

for layer in base_model.layers:
    layer.trainable = False

# ------------------------------------------------------
# 8. Define Function to Build Model (for tuning)
# ------------------------------------------------------

def build_model(dropout_rate=0.3, learning_rate=0.001):
    x = base_model.output
    x = GlobalAveragePooling2D()(x)
    x = Dropout(dropout_rate)(x)
    x = Dense(128, activation='relu')(x)
    x = Dropout(dropout_rate)(x)
    predictions = Dense(len(categories), activation='softmax')(x)

    model = Model(inputs=base_model.input, outputs=predictions)

    optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
    model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
    
    return model

# ------------------------------------------------------
# 9. Hyperparameter Tuning (Manual)
# ------------------------------------------------------

dropout_rates = [0.3, 0.4]
learning_rates = [0.001, 0.0005]

best_val_accuracy = 0
best_model = None
best_params = {}

for dr in dropout_rates:
    for lr in learning_rates:
        print(f"\nTraining with Dropout: {dr}, Learning Rate: {lr}")

        model = build_model(dropout_rate=dr, learning_rate=lr)

        callbacks = [
            EarlyStopping(monitor='val_accuracy', patience=5, restore_best_weights=True),
            ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, verbose=1),
            ModelCheckpoint('best_model.h5', monitor='val_accuracy', save_best_only=True, verbose=1)
        ]

        history = model.fit(
            train_gen,
            validation_data=valid_gen,
            epochs=20,
            callbacks=callbacks,
            verbose=1
        )

        val_acc = max(history.history['val_accuracy'])
        print(f"Validation Accuracy: {val_acc:.4f}")

        if val_acc > best_val_accuracy:
            best_val_accuracy = val_acc
            best_model = model
            best_params = {'dropout_rate': dr, 'learning_rate': lr}

print("\nBest Parameters:", best_params)
print(f"Best Validation Accuracy: {best_val_accuracy:.4f}")

# ------------------------------------------------------
# 10. Fine-tuning (Unfreeze some base layers)
# ------------------------------------------------------

# Unfreeze last 30 layers for fine-tuning
for layer in base_model.layers[-30:]:
    layer.trainable = True

# Recompile
optimizer = tf.keras.optimizers.Adam(learning_rate=best_params['learning_rate'] / 10)
best_model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])

# Train again
history_finetune = best_model.fit(
    train_gen,
    validation_data=valid_gen,
    epochs=10,
    callbacks=[
        EarlyStopping(monitor='val_accuracy', patience=5, restore_best_weights=True),
        ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, verbose=1)
    ],
    verbose=1
)

# ------------------------------------------------------
# 11. Save the Final Model
# ------------------------------------------------------

best_model.save('bloodgroup_mobilenet_finetuned.h5')
print("Fine-tuned model saved as bloodgroup_mobilenet_finetuned.h5")

# ------------------------------------------------------
# 12. Evaluate the Final Model
# ------------------------------------------------------

# Accuracy and Loss plots
plt.figure(figsize=(14,5))

plt.subplot(1,2,1)
plt.plot(history_finetune.history['accuracy'], label='Fine-tuned Train Accuracy')
plt.plot(history_finetune.history['val_accuracy'], label='Fine-tuned Validation Accuracy')
plt.title('Fine-tuned Model Accuracy')
plt.legend()

plt.subplot(1,2,2)
plt.plot(history_finetune.history['loss'], label='Fine-tuned Train Loss')
plt.plot(history_finetune.history['val_loss'], label='Fine-tuned Validation Loss')
plt.title('Fine-tuned Model Loss')
plt.legend()

plt.show()

# ------------------------------------------------------
# 13. Prediction on Single Image (User Input)
# ------------------------------------------------------

# Load the fine-tuned model
model = load_model('bloodgroup_mobilenet_finetuned.h5')

# Define the class labels
labels = {'A+': 0, 'A-': 1, 'AB+': 2, 'AB-': 3, 'B+': 4, 'B-': 5, 'O+': 6, 'O-': 7}
labels = dict((v, k) for k, v in labels.items())

# Example: Single image prediction
img_path = 'dataset/AB+/augmented_cluster_4_4.BMP'

img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

result = model.predict(x)
predicted_class = np.argmax(result)
predicted_label = labels[predicted_class]
confidence = result[0][predicted_class] * 100

plt.imshow(image.array_to_img(image.img_to_array(img)/255.0))
plt.axis('off')
plt.title(f"Prediction: {predicted_label} with confidence {confidence:.2f}%")
plt.show()