|
|
|
import streamlit as st
|
|
import numpy as np
|
|
import pandas as pd
|
|
from keras.models import load_model
|
|
from keras.preprocessing import image
|
|
import os
|
|
import matplotlib.pyplot as plt
|
|
import random
|
|
|
|
|
|
st.set_page_config(page_title="Blood Group Detection", layout="wide")
|
|
|
|
|
|
st.title("π©Έ Blood Group Detection using LeNet Model")
|
|
|
|
|
|
st.sidebar.header("Navigation")
|
|
selected_option = st.sidebar.selectbox(
|
|
"Select an option:",
|
|
["Home", "EDA", "Predict Blood Group"]
|
|
)
|
|
|
|
|
|
@st.cache_resource
|
|
def load_trained_model():
|
|
model = load_model('bloodgroup_mobilenet_finetuned.h5')
|
|
return model
|
|
|
|
model = load_trained_model()
|
|
|
|
|
|
class_names = ['A+', 'A-', 'B+', 'B-', 'AB+', 'AB-', 'O+', 'O-']
|
|
|
|
|
|
DATASET_DIR = "dataset"
|
|
|
|
|
|
if selected_option == "Home":
|
|
st.subheader("About the Project")
|
|
st.write("""
|
|
Welcome to the Blood Group Detection App!
|
|
|
|
This application uses a Deep Learning model (LeNet architecture) to detect blood groups from blood sample images.
|
|
|
|
### π Technologies Used:
|
|
- Streamlit for Web UI
|
|
- TensorFlow/Keras for Deep Learning
|
|
- Image Processing with Computer Vision
|
|
|
|
**Upload a blood sample image and predict the blood group instantly!**
|
|
""")
|
|
try:
|
|
st.image("blood_home.jpg", caption="Blood Sample Analysis", use_column_width=True)
|
|
except:
|
|
st.warning("Home image not found. (Optional)")
|
|
|
|
|
|
elif selected_option == "EDA":
|
|
st.subheader("Exploratory Data Analysis (EDA)")
|
|
|
|
|
|
if os.path.exists(DATASET_DIR):
|
|
st.write("### π Number of Images per Blood Group:")
|
|
|
|
counts = {}
|
|
for class_name in class_names:
|
|
class_path = os.path.join(DATASET_DIR, class_name)
|
|
if os.path.exists(class_path):
|
|
counts[class_name] = len(os.listdir(class_path))
|
|
else:
|
|
counts[class_name] = 0
|
|
|
|
df_counts = pd.DataFrame(list(counts.items()), columns=['Blood Group', 'Number of Images'])
|
|
st.dataframe(df_counts)
|
|
|
|
|
|
st.bar_chart(df_counts.set_index('Blood Group'))
|
|
|
|
st.write("### πΌοΈ Sample Images from Each Class:")
|
|
|
|
cols = st.columns(4)
|
|
|
|
for idx, class_name in enumerate(class_names):
|
|
class_path = os.path.join(DATASET_DIR, class_name)
|
|
if os.path.exists(class_path) and len(os.listdir(class_path)) > 0:
|
|
img_file = random.choice(os.listdir(class_path))
|
|
img_path = os.path.join(class_path, img_file)
|
|
img = image.load_img(img_path, target_size=(64, 64))
|
|
with cols[idx % 4]:
|
|
st.image(img, caption=class_name, width=150)
|
|
|
|
st.write("### π§© Image Properties:")
|
|
sample_class = class_names[0]
|
|
sample_path = os.path.join(DATASET_DIR, sample_class, os.listdir(os.path.join(DATASET_DIR, sample_class))[0])
|
|
sample_img = image.load_img(sample_path)
|
|
st.write(f"- **Image shape:** {np.array(sample_img).shape}")
|
|
st.write(f"- **Color channels:** {np.array(sample_img).shape[-1]} (RGB)")
|
|
|
|
else:
|
|
st.warning("Dataset not found! Please make sure the 'dataset/train' folder exists.")
|
|
|
|
|
|
elif selected_option == "Predict Blood Group":
|
|
st.subheader("Upload an Image to Predict Blood Group")
|
|
|
|
uploaded_file = st.file_uploader("Choose a blood sample image...", type=["jpg", "jpeg", "png", "bmp"])
|
|
|
|
if uploaded_file is not None:
|
|
|
|
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
|
|
|
|
|
if not os.path.exists('temp'):
|
|
os.makedirs('temp')
|
|
|
|
|
|
temp_file_path = os.path.join("temp", uploaded_file.name)
|
|
with open(temp_file_path, "wb") as f:
|
|
f.write(uploaded_file.getbuffer())
|
|
|
|
|
|
img = image.load_img(temp_file_path, target_size=(224, 224))
|
|
img_array = image.img_to_array(img)
|
|
img_array = np.expand_dims(img_array, axis=0)
|
|
img_array = img_array / 255.0
|
|
|
|
|
|
with st.spinner('Predicting...'):
|
|
prediction = model.predict(img_array)
|
|
predicted_class = class_names[np.argmax(prediction)]
|
|
|
|
|
|
st.success(f"𧬠Predicted Blood Group: **{predicted_class}**")
|
|
|
|
|
|
os.remove(temp_file_path)
|
|
|