Update app.py
Browse files
app.py
CHANGED
@@ -1,137 +1,137 @@
|
|
1 |
-
# Import required libraries
|
2 |
-
import streamlit as st
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
from keras.models import load_model
|
6 |
-
from keras.preprocessing import image
|
7 |
-
import os
|
8 |
-
import matplotlib.pyplot as plt
|
9 |
-
import random
|
10 |
-
|
11 |
-
# Set page configuration FIRST
|
12 |
-
st.set_page_config(page_title="Blood Group Detection", layout="wide")
|
13 |
-
|
14 |
-
# Title of the app
|
15 |
-
st.title("🩸 Blood Group Detection using LeNet Model")
|
16 |
-
|
17 |
-
# Sidebar navigation
|
18 |
-
st.sidebar.header("Navigation")
|
19 |
-
selected_option = st.sidebar.selectbox(
|
20 |
-
"Select an option:",
|
21 |
-
["Home", "EDA", "Predict Blood Group"]
|
22 |
-
)
|
23 |
-
|
24 |
-
# Load the trained model
|
25 |
-
@st.cache_resource
|
26 |
-
def load_trained_model():
|
27 |
-
model = load_model('
|
28 |
-
return model
|
29 |
-
|
30 |
-
model = load_trained_model()
|
31 |
-
|
32 |
-
# Define class labels
|
33 |
-
class_names = ['A+', 'A-', 'B+', 'B-', 'AB+', 'AB-', 'O+', 'O-']
|
34 |
-
|
35 |
-
# Dataset directory (you must adjust this if needed)
|
36 |
-
DATASET_DIR = "dataset" # Example path
|
37 |
-
|
38 |
-
# Home page
|
39 |
-
if selected_option == "Home":
|
40 |
-
st.subheader("About the Project")
|
41 |
-
st.write("""
|
42 |
-
Welcome to the Blood Group Detection App!
|
43 |
-
|
44 |
-
This application uses a Deep Learning model (LeNet architecture) to detect blood groups from blood sample images.
|
45 |
-
|
46 |
-
### 🛠 Technologies Used:
|
47 |
-
- Streamlit for Web UI
|
48 |
-
- TensorFlow/Keras for Deep Learning
|
49 |
-
- Image Processing with Computer Vision
|
50 |
-
|
51 |
-
**Upload a blood sample image and predict the blood group instantly!**
|
52 |
-
""")
|
53 |
-
try:
|
54 |
-
st.image("blood_home.jpg", caption="Blood Sample Analysis", use_column_width=True)
|
55 |
-
except:
|
56 |
-
st.warning("Home image not found. (Optional)")
|
57 |
-
|
58 |
-
# EDA page
|
59 |
-
elif selected_option == "EDA":
|
60 |
-
st.subheader("Exploratory Data Analysis (EDA)")
|
61 |
-
|
62 |
-
# Check if dataset exists
|
63 |
-
if os.path.exists(DATASET_DIR):
|
64 |
-
st.write("### 📊 Number of Images per Blood Group:")
|
65 |
-
|
66 |
-
counts = {}
|
67 |
-
for class_name in class_names:
|
68 |
-
class_path = os.path.join(DATASET_DIR, class_name)
|
69 |
-
if os.path.exists(class_path):
|
70 |
-
counts[class_name] = len(os.listdir(class_path))
|
71 |
-
else:
|
72 |
-
counts[class_name] = 0
|
73 |
-
|
74 |
-
df_counts = pd.DataFrame(list(counts.items()), columns=['Blood Group', 'Number of Images'])
|
75 |
-
st.dataframe(df_counts)
|
76 |
-
|
77 |
-
# Bar Chart
|
78 |
-
st.bar_chart(df_counts.set_index('Blood Group'))
|
79 |
-
|
80 |
-
st.write("### 🖼️ Sample Images from Each Class:")
|
81 |
-
|
82 |
-
cols = st.columns(4) # create 4 columns
|
83 |
-
|
84 |
-
for idx, class_name in enumerate(class_names):
|
85 |
-
class_path = os.path.join(DATASET_DIR, class_name)
|
86 |
-
if os.path.exists(class_path) and len(os.listdir(class_path)) > 0:
|
87 |
-
img_file = random.choice(os.listdir(class_path))
|
88 |
-
img_path = os.path.join(class_path, img_file)
|
89 |
-
img = image.load_img(img_path, target_size=(64, 64)) # resized
|
90 |
-
with cols[idx % 4]: # arrange in 4 columns
|
91 |
-
st.image(img, caption=class_name, width=150)
|
92 |
-
|
93 |
-
st.write("### 🧩 Image Properties:")
|
94 |
-
sample_class = class_names[0]
|
95 |
-
sample_path = os.path.join(DATASET_DIR, sample_class, os.listdir(os.path.join(DATASET_DIR, sample_class))[0])
|
96 |
-
sample_img = image.load_img(sample_path)
|
97 |
-
st.write(f"- **Image shape:** {np.array(sample_img).shape}")
|
98 |
-
st.write(f"- **Color channels:** {np.array(sample_img).shape[-1]} (RGB)")
|
99 |
-
|
100 |
-
else:
|
101 |
-
st.warning("Dataset not found! Please make sure the 'dataset/train' folder exists.")
|
102 |
-
|
103 |
-
# Prediction page
|
104 |
-
elif selected_option == "Predict Blood Group":
|
105 |
-
st.subheader("Upload an Image to Predict Blood Group")
|
106 |
-
|
107 |
-
uploaded_file = st.file_uploader("Choose a blood sample image...", type=["jpg", "jpeg", "png", "bmp"])
|
108 |
-
|
109 |
-
if uploaded_file is not None:
|
110 |
-
# Display uploaded image
|
111 |
-
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
112 |
-
|
113 |
-
# Ensure temp directory exists
|
114 |
-
if not os.path.exists('temp'):
|
115 |
-
os.makedirs('temp')
|
116 |
-
|
117 |
-
# Save uploaded file temporarily
|
118 |
-
temp_file_path = os.path.join("temp", uploaded_file.name)
|
119 |
-
with open(temp_file_path, "wb") as f:
|
120 |
-
f.write(uploaded_file.getbuffer())
|
121 |
-
|
122 |
-
# Preprocess the image
|
123 |
-
img = image.load_img(temp_file_path, target_size=(224, 224)) # Adjust size if needed
|
124 |
-
img_array = image.img_to_array(img)
|
125 |
-
img_array = np.expand_dims(img_array, axis=0)
|
126 |
-
img_array = img_array / 255.0 # Normalize pixel values
|
127 |
-
|
128 |
-
# Predict the blood group
|
129 |
-
with st.spinner('Predicting...'):
|
130 |
-
prediction = model.predict(img_array)
|
131 |
-
predicted_class = class_names[np.argmax(prediction)]
|
132 |
-
|
133 |
-
# Show result
|
134 |
-
st.success(f"🧬 Predicted Blood Group: **{predicted_class}**")
|
135 |
-
|
136 |
-
# Remove temporary file
|
137 |
-
os.remove(temp_file_path)
|
|
|
1 |
+
# Import required libraries
|
2 |
+
import streamlit as st
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from keras.models import load_model
|
6 |
+
from keras.preprocessing import image
|
7 |
+
import os
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import random
|
10 |
+
|
11 |
+
# Set page configuration FIRST
|
12 |
+
st.set_page_config(page_title="Blood Group Detection", layout="wide")
|
13 |
+
|
14 |
+
# Title of the app
|
15 |
+
st.title("🩸 Blood Group Detection using LeNet Model")
|
16 |
+
|
17 |
+
# Sidebar navigation
|
18 |
+
st.sidebar.header("Navigation")
|
19 |
+
selected_option = st.sidebar.selectbox(
|
20 |
+
"Select an option:",
|
21 |
+
["Home", "EDA", "Predict Blood Group"]
|
22 |
+
)
|
23 |
+
|
24 |
+
# Load the trained model
|
25 |
+
@st.cache_resource
|
26 |
+
def load_trained_model():
|
27 |
+
model = load_model('best_model.h5') # Ensure correct path
|
28 |
+
return model
|
29 |
+
|
30 |
+
model = load_trained_model()
|
31 |
+
|
32 |
+
# Define class labels
|
33 |
+
class_names = ['A+', 'A-', 'B+', 'B-', 'AB+', 'AB-', 'O+', 'O-']
|
34 |
+
|
35 |
+
# Dataset directory (you must adjust this if needed)
|
36 |
+
DATASET_DIR = "dataset" # Example path
|
37 |
+
|
38 |
+
# Home page
|
39 |
+
if selected_option == "Home":
|
40 |
+
st.subheader("About the Project")
|
41 |
+
st.write("""
|
42 |
+
Welcome to the Blood Group Detection App!
|
43 |
+
|
44 |
+
This application uses a Deep Learning model (LeNet architecture) to detect blood groups from blood sample images.
|
45 |
+
|
46 |
+
### 🛠 Technologies Used:
|
47 |
+
- Streamlit for Web UI
|
48 |
+
- TensorFlow/Keras for Deep Learning
|
49 |
+
- Image Processing with Computer Vision
|
50 |
+
|
51 |
+
**Upload a blood sample image and predict the blood group instantly!**
|
52 |
+
""")
|
53 |
+
try:
|
54 |
+
st.image("blood_home.jpg", caption="Blood Sample Analysis", use_column_width=True)
|
55 |
+
except:
|
56 |
+
st.warning("Home image not found. (Optional)")
|
57 |
+
|
58 |
+
# EDA page
|
59 |
+
elif selected_option == "EDA":
|
60 |
+
st.subheader("Exploratory Data Analysis (EDA)")
|
61 |
+
|
62 |
+
# Check if dataset exists
|
63 |
+
if os.path.exists(DATASET_DIR):
|
64 |
+
st.write("### 📊 Number of Images per Blood Group:")
|
65 |
+
|
66 |
+
counts = {}
|
67 |
+
for class_name in class_names:
|
68 |
+
class_path = os.path.join(DATASET_DIR, class_name)
|
69 |
+
if os.path.exists(class_path):
|
70 |
+
counts[class_name] = len(os.listdir(class_path))
|
71 |
+
else:
|
72 |
+
counts[class_name] = 0
|
73 |
+
|
74 |
+
df_counts = pd.DataFrame(list(counts.items()), columns=['Blood Group', 'Number of Images'])
|
75 |
+
st.dataframe(df_counts)
|
76 |
+
|
77 |
+
# Bar Chart
|
78 |
+
st.bar_chart(df_counts.set_index('Blood Group'))
|
79 |
+
|
80 |
+
st.write("### 🖼️ Sample Images from Each Class:")
|
81 |
+
|
82 |
+
cols = st.columns(4) # create 4 columns
|
83 |
+
|
84 |
+
for idx, class_name in enumerate(class_names):
|
85 |
+
class_path = os.path.join(DATASET_DIR, class_name)
|
86 |
+
if os.path.exists(class_path) and len(os.listdir(class_path)) > 0:
|
87 |
+
img_file = random.choice(os.listdir(class_path))
|
88 |
+
img_path = os.path.join(class_path, img_file)
|
89 |
+
img = image.load_img(img_path, target_size=(64, 64)) # resized
|
90 |
+
with cols[idx % 4]: # arrange in 4 columns
|
91 |
+
st.image(img, caption=class_name, width=150)
|
92 |
+
|
93 |
+
st.write("### 🧩 Image Properties:")
|
94 |
+
sample_class = class_names[0]
|
95 |
+
sample_path = os.path.join(DATASET_DIR, sample_class, os.listdir(os.path.join(DATASET_DIR, sample_class))[0])
|
96 |
+
sample_img = image.load_img(sample_path)
|
97 |
+
st.write(f"- **Image shape:** {np.array(sample_img).shape}")
|
98 |
+
st.write(f"- **Color channels:** {np.array(sample_img).shape[-1]} (RGB)")
|
99 |
+
|
100 |
+
else:
|
101 |
+
st.warning("Dataset not found! Please make sure the 'dataset/train' folder exists.")
|
102 |
+
|
103 |
+
# Prediction page
|
104 |
+
elif selected_option == "Predict Blood Group":
|
105 |
+
st.subheader("Upload an Image to Predict Blood Group")
|
106 |
+
|
107 |
+
uploaded_file = st.file_uploader("Choose a blood sample image...", type=["jpg", "jpeg", "png", "bmp"])
|
108 |
+
|
109 |
+
if uploaded_file is not None:
|
110 |
+
# Display uploaded image
|
111 |
+
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
112 |
+
|
113 |
+
# Ensure temp directory exists
|
114 |
+
if not os.path.exists('temp'):
|
115 |
+
os.makedirs('temp')
|
116 |
+
|
117 |
+
# Save uploaded file temporarily
|
118 |
+
temp_file_path = os.path.join("temp", uploaded_file.name)
|
119 |
+
with open(temp_file_path, "wb") as f:
|
120 |
+
f.write(uploaded_file.getbuffer())
|
121 |
+
|
122 |
+
# Preprocess the image
|
123 |
+
img = image.load_img(temp_file_path, target_size=(224, 224)) # Adjust size if needed
|
124 |
+
img_array = image.img_to_array(img)
|
125 |
+
img_array = np.expand_dims(img_array, axis=0)
|
126 |
+
img_array = img_array / 255.0 # Normalize pixel values
|
127 |
+
|
128 |
+
# Predict the blood group
|
129 |
+
with st.spinner('Predicting...'):
|
130 |
+
prediction = model.predict(img_array)
|
131 |
+
predicted_class = class_names[np.argmax(prediction)]
|
132 |
+
|
133 |
+
# Show result
|
134 |
+
st.success(f"🧬 Predicted Blood Group: **{predicted_class}**")
|
135 |
+
|
136 |
+
# Remove temporary file
|
137 |
+
os.remove(temp_file_path)
|