File size: 30,973 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
# Supervised Fine-tuning Trainer

[![](https://img.shields.io/badge/All_models-SFT-blue)](https://huggingface.co/models?other=sft,trl) [![](https://img.shields.io/badge/smol_course-Chapter_1-yellow)](https://github.com/huggingface/smol-course/tree/main/1_instruction_tuning)

Supervised fine-tuning (SFT) is the most common step in post-training foundation models, and also one of the most effective. In TRL, we provide a simple API to train models with SFT in a few lines of code; for a complete training script, check out [`trl/scripts/sft.py`](https://github.com/huggingface/trl/tree/main/trl/scripts/sft.py). Experimental support for Vision Language Models is also included in [`examples/scripts/sft_vlm.py`](https://github.com/huggingface/trl/tree/main/examples/scripts/sft_vlm.py).

## Quickstart

If you have a dataset hosted on the 🤗 Hub, you can easily fine-tune your SFT model using [`SFTTrainer`] from TRL. Let us assume your dataset is `imdb`, the text you want to predict is inside the `text` field of the dataset, and you want to fine-tune the `facebook/opt-350m` model.
The following code-snippet takes care of all the data pre-processing and training for you:

```python
from datasets import load_dataset
from trl import SFTConfig, SFTTrainer

dataset = load_dataset("stanfordnlp/imdb", split="train")

training_args = SFTConfig(
    max_length=512,
    output_dir="/tmp",
)
trainer = SFTTrainer(
    "facebook/opt-350m",
    train_dataset=dataset,
    args=training_args,
)
trainer.train()
```
Make sure to pass the correct value for `max_length` as the default value will be set to `min(tokenizer.model_max_length, 1024)`.

You can also construct a model outside of the trainer and pass it as follows:

```python
from transformers import AutoModelForCausalLM
from datasets import load_dataset
from trl import SFTConfig, SFTTrainer

dataset = load_dataset("stanfordnlp/imdb", split="train")

model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m")

training_args = SFTConfig(output_dir="/tmp")

trainer = SFTTrainer(
    model,
    train_dataset=dataset,
    args=training_args,
)

trainer.train()
```

The above snippets will use the default training arguments from the [`SFTConfig`] class. If you want to modify the defaults, pass in your modification to the `SFTConfig` constructor and pass it to the trainer via the `args` argument.

## Advanced usage

### Train on completions only

To train on completions only, simply use a [prompt-completion](dataset_formats#prompt-completion) dataset. In this mode, loss is computed solely on the completion part.

If you’d like to compute loss on both the prompt **and** the completion while still using a prompt-completion dataset, set `completion_only_loss=False` in the [`SFTConfig`]. This is equivalent to [converting the dataset to a language modeling](dataset_formats#from-prompt-completion-to-language-modeling-dataset) format.

### Add Special Tokens for Chat Format

Adding special tokens to a language model is crucial for training chat models. These tokens are added between the different roles in a conversation, such as the user, assistant, and system, and help the model recognize the structure and flow of a conversation. This setup is essential for enabling the model to generate coherent and contextually appropriate responses in a chat environment. 
The [`setup_chat_format`] function in `trl` easily sets up a model and tokenizer for conversational AI tasks. This function:
- Adds special tokens to the tokenizer, e.g., `<|im_start|>` and `<|im_end|>`, to indicate the start and end of a conversation.
- Resizes the model’s embedding layer to accommodate the new tokens.
- Sets the `chat_template` of the tokenizer, which is used to format the input data into a chat-like format. The default is `chatml` from OpenAI.
- _optionally_ you can pass `resize_to_multiple_of` to resize the embedding layer to a multiple of the `resize_to_multiple_of` argument, e.g., `64`. If you want to see more formats being supported in the future, please open a GitHub issue on [trl](https://github.com/huggingface/trl)

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import setup_chat_format

# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m")
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")

# Set up the chat format with the default 'chatml' format
model, tokenizer = setup_chat_format(model, tokenizer)
```

> [!WARNING]
> Some base models, like those from Qwen, have a predefined chat template in the model's tokenizer. In these cases, it is not necessary to apply `setup_chat_format()`, as the tokenizer already handles the formatting. However, it is necessary to align the EOS token with the chat template to ensure the model's responses terminate correctly. In these cases, specify `eos_token` in `SFTConfig`; for example, for `Qwen/Qwen2.5-1.5B`, one should set `eos_token="<|im_end|>"`.

With our model and tokenizer set up, we can now fine-tune our model on a conversational dataset. Below is an example of how a dataset can be formatted for fine-tuning. 

### Dataset format support

The [`SFTTrainer`] supports popular dataset formats. This allows you to pass the dataset to the trainer without any pre-processing directly. The following formats are supported:
* conversational format
```json
{"messages": [{"role": "system", "content": "You are helpful"}, {"role": "user", "content": "What's the capital of France?"}, {"role": "assistant", "content": "..."}]}
{"messages": [{"role": "system", "content": "You are helpful"}, {"role": "user", "content": "Who wrote 'Romeo and Juliet'?"}, {"role": "assistant", "content": "..."}]}
{"messages": [{"role": "system", "content": "You are helpful"}, {"role": "user", "content": "How far is the Moon from Earth?"}, {"role": "assistant", "content": "..."}]}
```
* instruction format
```json
{"prompt": "<prompt text>", "completion": "<ideal generated text>"}
{"prompt": "<prompt text>", "completion": "<ideal generated text>"}
{"prompt": "<prompt text>", "completion": "<ideal generated text>"}
```

If your dataset uses one of the above formats, you can directly pass it to the trainer without pre-processing. The [`SFTTrainer`] will then format the dataset for you using the defined format from the model's tokenizer with the [apply_chat_template](https://huggingface.co/docs/transformers/main/en/chat_templating#templates-for-chat-models) method. 


```python
from datasets import load_dataset
from trl import SFTConfig, SFTTrainer

...

# load jsonl dataset
dataset = load_dataset("json", data_files="path/to/dataset.jsonl", split="train")
# load dataset from the HuggingFace Hub
dataset = load_dataset("philschmid/dolly-15k-oai-style", split="train")

...

training_args = SFTConfig(packing=True)
trainer = SFTTrainer(
    "facebook/opt-350m",
    args=training_args,
    train_dataset=dataset,
)
```

If the dataset is not in one of those formats, you can either preprocess the dataset to match the formatting or pass a formatting function to the SFTTrainer to do it for you. Let's have a look.


### Format your input prompts

For instruction fine-tuning, it is quite common to have two columns inside the dataset: one for the prompt & the other for the response.
This allows people to format examples like [Stanford-Alpaca](https://github.com/tatsu-lab/stanford_alpaca) did as follows:
```bash
Below is an instruction ...

### Instruction
{prompt}

### Response:
{completion}
```
Let us assume your dataset has two fields, `question` and `answer`. Therefore you can just run:
```python
...
def formatting_prompts_func(example):
    return f"### Question: {example['question']}\n ### Answer: {example['answer']}"


trainer = SFTTrainer(
    model,
    args=training_args,
    train_dataset=dataset,
    formatting_func=formatting_prompt_func,
)

trainer.train()
```
To properly format your input, make sure to process all the examples by looping over them and returning a list of processed text. Check out a full example of how to use SFTTrainer on the alpaca dataset [here](https://github.com/huggingface/trl/pull/444#issue-1760952763)

### Packing dataset

[`SFTTrainer`] supports _example packing_, where multiple short examples are packed in the same input sequence to increase training efficiency. To enable the usage of this dataset class, simply pass `packing=True` to the [`SFTConfig`] constructor.

```python
...
training_args = SFTConfig(packing=True)

trainer = SFTTrainer(
    "facebook/opt-350m",
    train_dataset=dataset,
    args=training_args
)

trainer.train()
```

Note that if you use a packed dataset and if you pass `max_steps` in the training arguments, you will probably train your models for more than a few epochs, depending on the way you have configured the packed dataset and the training protocol. Double-check that you know and understand what you are doing.
If you don't want to pack your `eval_dataset`, you can pass `eval_packing=False` to the `SFTConfig` init method.

#### Customize your prompts using packed dataset

If your dataset has several fields that you want to combine, for example, if the dataset has `question` and `answer` fields and you want to combine them, you can pass a formatting function to the trainer that will take care of that. For example:

```python
def formatting_func(example):
    text = f"### Question: {example['question']}\n ### Answer: {example['answer']}"
    return text

training_args = SFTConfig(packing=True)
trainer = SFTTrainer(
    "facebook/opt-350m",
    train_dataset=dataset,
    args=training_args,
    formatting_func=formatting_func
)

trainer.train()
```

### Control over the pretrained model

You can directly pass the kwargs of the `from_pretrained()` method to the [`SFTConfig`]. For example, if you want to load a model in a different precision, analogous to

```python
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype=torch.bfloat16)

...

training_args = SFTConfig(
    model_init_kwargs={
        "torch_dtype": "bfloat16",
    },
    output_dir="/tmp",
)
trainer = SFTTrainer(
    "facebook/opt-350m",
    train_dataset=dataset,
    args=training_args,
)

trainer.train()
```
Note that all keyword arguments of `from_pretrained()` are supported.

### Training adapters

We also support tight integration with 🤗 PEFT library so that any user can conveniently train adapters and share them on the Hub instead of training the entire model.

```python
from datasets import load_dataset
from trl import SFTConfig, SFTTrainer
from peft import LoraConfig

dataset = load_dataset("trl-lib/Capybara", split="train")

peft_config = LoraConfig(
    r=16,
    lora_alpha=32,
    lora_dropout=0.05,
    target_modules="all-linear",
    modules_to_save=["lm_head", "embed_token"],
    task_type="CAUSAL_LM",
)

trainer = SFTTrainer(
    "Qwen/Qwen2.5-0.5B",
    train_dataset=dataset,
    args=SFTConfig(output_dir="Qwen2.5-0.5B-SFT"),
    peft_config=peft_config
)

trainer.train()
```

> [!WARNING]
> If the chat template contains special tokens like `<|im_start|>` (ChatML) or `<|eot_id|>` (Llama), the embedding layer and LM head must be included in the trainable parameters via the `modules_to_save` argument. Without this, the fine-tuned model will produce unbounded or nonsensical generations. If the chat template doesn't contain special tokens (e.g., Alpaca), then the `modules_to_save` argument can be ignored or set to `None`.


You can also continue training your `PeftModel`. For that, first load a `PeftModel` outside `SFTTrainer` and pass it directly to the trainer without the `peft_config` argument being passed.

### Training adapters with base 8 bit models

For that, you need to first load your 8 bit model outside the Trainer and pass a `PeftConfig` to the trainer. For example:

```python
...

peft_config = LoraConfig(
    r=16,
    lora_alpha=32,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
)

model = AutoModelForCausalLM.from_pretrained(
    "EleutherAI/gpt-neo-125m",
    load_in_8bit=True,
    device_map="auto",
)

trainer = SFTTrainer(
    model,
    train_dataset=dataset,
    args=SFTConfig(),
    peft_config=peft_config,
)

trainer.train()
```

## Using Flash Attention and Flash Attention 2

You can benefit from Flash Attention 1 & 2 using SFTTrainer out of the box with minimal changes of code.
First, to make sure you have all the latest features from transformers, install transformers from source

```bash
pip install -U git+https://github.com/huggingface/transformers.git
```

Note that Flash Attention only works on GPU now and under half-precision regime (when using adapters, base model loaded in half-precision)
Note also both features are perfectly compatible with other tools such as quantization.

### Using Flash-Attention 1

For Flash Attention 1 you can use the `BetterTransformer` API and force-dispatch the API to use Flash Attention kernel. First, install the latest optimum package:

```bash
pip install -U optimum
```

Once you have loaded your model, wrap the `trainer.train()` call under the `with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):` context manager:

```diff
...

+ with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
    trainer.train()
```

Note that you cannot train your model using Flash Attention 1 on an arbitrary dataset as `torch.scaled_dot_product_attention` does not support training with padding tokens if you use Flash Attention kernels. Therefore, you can only use that feature with `packing=True`. If your dataset contains padding tokens, consider switching to Flash Attention 2 integration.

Below are some numbers you can get in terms of speedup and memory efficiency, using Flash Attention 1, on a single NVIDIA-T4 16GB.

| use_flash_attn_1 | model_name        | max_seq_len | batch_size | time per training step |
| ---------------- | ----------------- | ----------- | ---------- | ---------------------- |
| ✓                | facebook/opt-350m | 2048        | 8          | ~59.1s                 |
|                  | facebook/opt-350m | 2048        | 8          | **OOM**                |
| ✓                | facebook/opt-350m | 2048        | 4          | ~30.3s                 |
|                  | facebook/opt-350m | 2048        | 4          | ~148.9s                |

### Using Flash Attention-2

To use Flash Attention 2, first install the latest `flash-attn` package:

```bash
pip install -U flash-attn
```

And add `attn_implementation="flash_attention_2"` when calling `from_pretrained`:

```python
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    load_in_4bit=True,
    attn_implementation="flash_attention_2"
)
```

If you don't use quantization, make sure your model is loaded in half-precision and dispatch your model on a supported GPU device.
After loading your model, you can either train it as it is or attach adapters and train adapters on it in case your model is quantized.

In contrast to Flash Attention 1, the integration makes it possible to train your model on an arbitrary dataset that also includes padding tokens.


### Using the model creation utility

We included a utility function to create your model.

[[autodoc]] ModelConfig

```python
from trl import ModelConfig, SFTTrainer, get_kbit_device_map, get_peft_config, get_quantization_config
model_args = ModelConfig(
    model_name_or_path="facebook/opt-350m"
    attn_implementation=None, # or "flash_attention_2"
)
torch_dtype = (
    model_args.torch_dtype
    if model_args.torch_dtype in ["auto", None]
    else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
    revision=model_args.model_revision,
    trust_remote_code=model_args.trust_remote_code,
    attn_implementation=model_args.attn_implementation,
    torch_dtype=torch_dtype,
    use_cache=False if training_args.gradient_checkpointing else True,
    device_map=get_kbit_device_map() if quantization_config is not None else None,
    quantization_config=quantization_config,
)
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, **model_kwargs)
trainer = SFTTrainer(
    ...,
    model=model_args.model_name_or_path,
    peft_config=get_peft_config(model_args),
)
```

### Enhance the model's performance using NEFTune

NEFTune is a technique to boost the performance of chat models and was introduced by the paper ["NEFTune: Noisy Embeddings Improve Instruction Finetuning"](https://huggingface.co/papers/2310.05914) from Jain et al. It consists of adding noise to the embedding vectors during training. According to the abstract of the paper:

>  Standard finetuning of LLaMA-2-7B using Alpaca achieves 29.79% on AlpacaEval, which rises to 64.69% using noisy embeddings. NEFTune also improves over strong baselines on modern instruction datasets. Models trained with Evol-Instruct see a 10% improvement, with ShareGPT an 8% improvement, and with OpenPlatypus an 8% improvement. Even powerful models further refined with RLHF, such as LLaMA-2-Chat, benefit from additional training with NEFTune.

<div style="text-align: center">
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/neft-screenshot.png">
</div>

To use it in `SFTTrainer`, simply pass `neftune_noise_alpha` when creating your `SFTConfig` instance. Note that to avoid any surprising behaviour, NEFTune is disabled after training to revert to the original behaviour of the embedding layer.

```python
from datasets import load_dataset
from trl import SFTConfig, SFTTrainer

dataset = load_dataset("stanfordnlp/imdb", split="train")

training_args = SFTConfig(
    neftune_noise_alpha=5,
)
trainer = SFTTrainer(
    "facebook/opt-350m",
    train_dataset=dataset,
    args=training_args,
)
trainer.train()
```

We have tested NEFTune by training `mistralai/Mistral-7B-v0.1` on the [OpenAssistant dataset](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) and validated that using NEFTune led to a performance boost of ~25% on MT Bench.

<div style="text-align: center">
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl-neftune-mistral-7b.png">
</div>

Note however, that the amount of performance gain is _dataset dependent_ and in particular, applying NEFTune on synthetic datasets like [UltraChat](https://huggingface.co/datasets/stingning/ultrachat) typically produces smaller gains.

### Accelerate fine-tuning 2x using `unsloth`

You can further accelerate QLoRA / LoRA (2x faster, 60% less memory) using the [`unsloth`](https://github.com/unslothai/unsloth) library that is fully compatible with `SFTTrainer`. Currently, `unsloth` supports only Llama (Yi, TinyLlama, Qwen, Deepseek, etc) and Mistral architectures. Some benchmarks on 1x A100 listed below:

| 1 A100 40GB     | Dataset   | 🤗   | 🤗 + Flash Attention 2 | 🦥 Unsloth | 🦥 VRAM saved |
| --------------- | --------- | --- | --------------------- | --------- | ------------ |
| Code Llama 34b  | Slim Orca | 1x  | 1.01x                 | **1.94x** | -22.7%       |
| Llama-2 7b      | Slim Orca | 1x  | 0.96x                 | **1.87x** | -39.3%       |
| Mistral 7b      | Slim Orca | 1x  | 1.17x                 | **1.88x** | -65.9%       |
| Tiny Llama 1.1b | Alpaca    | 1x  | 1.55x                 | **2.74x** | -57.8%       |

First, install `unsloth` according to the [official documentation](https://github.com/unslothai/unsloth). Once installed, you can incorporate unsloth into your workflow in a very simple manner; instead of loading `AutoModelForCausalLM`, you just need to load a `FastLanguageModel` as follows:

```python
import torch
from trl import SFTConfig, SFTTrainer
from unsloth import FastLanguageModel

max_length = 2048 # Supports automatic RoPE Scaling, so choose any number

# Load model
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name="unsloth/mistral-7b",
    max_seq_length=max_length,
    dtype=None,  # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
    load_in_4bit=True,  # Use 4bit quantization to reduce memory usage. Can be False
    # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)

# Do model patching and add fast LoRA weights
model = FastLanguageModel.get_peft_model(
    model,
    r=16,
    target_modules=[
        "q_proj",
        "k_proj",
        "v_proj",
        "o_proj",
        "gate_proj",
        "up_proj",
        "down_proj",
    ],
    lora_alpha=16,
    lora_dropout=0,  # Dropout = 0 is currently optimized
    bias="none",  # Bias = "none" is currently optimized
    use_gradient_checkpointing=True,
    random_state=3407,
)

training_args = SFTConfig(output_dir="./output", max_length=max_length)

trainer = SFTTrainer(
    model=model,
    args=training_args,
    train_dataset=dataset,
)
trainer.train()
```

The saved model is fully compatible with Hugging Face's transformers library. Learn more about unsloth in their [official repository](https://github.com/unslothai/unsloth).

## Liger-Kernel: Increase 20% throughput and reduce 60% memory for multi-GPU training

[Liger Kernel](https://github.com/linkedin/Liger-Kernel) is a collection of Triton kernels designed specifically for LLM training. It can effectively increase multi-GPU training throughput by 20% and reduce memory usage by 60%. That way, we can **4x** our context length, as described in the benchmark below. They have implemented Hugging Face Compatible `RMSNorm`, `RoPE`, `SwiGLU`, `CrossEntropy`, `FusedLinearCrossEntropy`, and more to come. The kernel works out of the box with [Flash Attention](https://github.com/Dao-AILab/flash-attention), [PyTorch FSDP](https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html), and [Microsoft DeepSpeed](https://github.com/microsoft/DeepSpeed).

With this memory reduction, you can potentially turn off `cpu_offloading` or gradient checkpointing to further boost the performance. 

| Speed Up                 | Memory Reduction        |
|--------------------------|-------------------------|
| ![Speed up](https://raw.githubusercontent.com/linkedin/Liger-Kernel/main/docs/images/e2e-tps.png) | ![Memory](https://raw.githubusercontent.com/linkedin/Liger-Kernel/main/docs/images/e2e-memory.png) |


1. To use Liger-Kernel in [`SFTTrainer`], first install it by:

```bash
pip install liger-kernel
```

2. Once installed, set `use_liger_kernel` in [`SFTConfig`]. No other changes are needed!

```python
training_args = SFTConfig(
    use_liger_kernel=True,
    ...
)
```

To learn more about Liger-Kernel, visit their [official repository](https://github.com/linkedin/Liger-Kernel/).

## Best practices

Pay attention to the following best practices when training a model with that trainer:

- [`SFTTrainer`] always truncates by default the sequences to the `max_length` argument of the [`SFTConfig`]. If none is passed, the trainer will retrieve that value from the tokenizer. Some tokenizers do not provide a default value, so there is a check to retrieve the minimum between 1024 and that value. Make sure to check it before training.
- For training adapters in 8bit, you might need to tweak the arguments of the `prepare_model_for_kbit_training` method from PEFT, hence we advise users to use `prepare_in_int8_kwargs` field, or create the `PeftModel` outside the [`SFTTrainer`] and pass it.
- For a more memory-efficient training using adapters, you can load the base model in 8bit, for that simply add `load_in_8bit` argument when creating the [`SFTTrainer`], or create a base model in 8bit outside the trainer and pass it.
- If you create a model outside the trainer, make sure not to pass to the trainer any additional keyword arguments that are relative to `from_pretrained()` method.

## Multi-GPU Training

Trainer (and thus SFTTrainer) supports multi-GPU training. If you run your script with `python script.py` it will default to using DP as the strategy, which may be [slower than expected](https://github.com/huggingface/trl/issues/1303). To use DDP (which is generally recommended, see [here](https://huggingface.co/docs/transformers/en/perf_train_gpu_many?select-gpu=Accelerate#data-parallelism) for more info) you must launch the script with `python -m torch.distributed.launch script.py` or `accelerate launch script.py`. For DDP to work, you must also check the following:
- If you're using gradient_checkpointing, add the following to the TrainingArguments: `gradient_checkpointing_kwargs={'use_reentrant':False}` (more info [here](https://github.com/huggingface/transformers/issues/26969)
- Ensure that the model is placed on the correct device:
```python
from accelerate import PartialState
device_string = PartialState().process_index
model = AutoModelForCausalLM.from_pretrained(
     ...
    device_map={'':device_string}
)
```

## GPTQ Conversion

You may experience some issues with GPTQ Quantization after completing training. Lowering `gradient_accumulation_steps` to `4` will resolve most issues during the quantization process to GPTQ format.

## Extending `SFTTrainer` for Vision Language Models

`SFTTrainer` does not inherently support vision-language data. However, we provide a guide on how to tweak the trainer to support vision-language data. Specifically, you need to use a custom data collator that is compatible with vision-language data. This guide outlines the steps to make these adjustments. For a concrete example, refer to the script [`examples/scripts/sft_vlm.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/sft_vlm.py), which demonstrates how to fine-tune the LLaVA 1.5 model on the [HuggingFaceH4/llava-instruct-mix-vsft](https://huggingface.co/datasets/HuggingFaceH4/llava-instruct-mix-vsft) dataset.

### Preparing the Data

The data format is flexible, provided it is compatible with the custom collator that we will define later. A common approach is to use conversational data. Given that the data includes both text and images, the format needs to be adjusted accordingly. Below is an example of a conversational data format involving both text and images:

```python
images = ["obama.png"]
messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Who is this?"},
            {"type": "image"}
        ]
    },
    {
        "role": "assistant",
        "content": [
            {"type": "text", "text": "Barack Obama"}
        ]
    },
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "What is he famous for?"}
        ]
    },
    {
        "role": "assistant",
        "content": [
            {"type": "text", "text": "He is the 44th President of the United States."}
        ]
    }
]
```

To illustrate how this data format will be processed using the LLaVA model, you can use the following code:

```python
from transformers import AutoProcessor

processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
print(processor.apply_chat_template(messages, tokenize=False))
```

The output will be formatted as follows:

```txt
Who is this? ASSISTANT: Barack Obama USER: What is he famous for? ASSISTANT: He is the 44th President of the United States. 
```

<iframe src="https://huggingface.co/datasets/HuggingFaceH4/llava-instruct-mix-vsft/embed/viewer/default/train" frameborder="0" width="100%" height="560px"></iframe>


### A custom collator for processing multi-modal data

Unlike the default behavior of `SFTTrainer`, processing multi-modal data is done on the fly during the data collation process. To do this, you need to define a custom collator that processes both the text and images. This collator must take a list of examples as input (see the previous section for an example of the data format) and return a batch of processed data. Below is an example of such a collator:

```python
def collate_fn(examples):
    # Get the texts and images, and apply the chat template
    texts = [processor.apply_chat_template(example["messages"], tokenize=False) for example in examples]
    images = [example["images"][0] for example in examples]

    # Tokenize the texts and process the images
    batch = processor(texts, images, return_tensors="pt", padding=True)

    # The labels are the input_ids, and we mask the padding tokens in the loss computation
    labels = batch["input_ids"].clone()
    labels[labels == processor.tokenizer.pad_token_id] = -100
    batch["labels"] = labels

    return batch
```

We can verify that the collator works as expected by running the following code:

```python
from datasets import load_dataset

dataset = load_dataset("HuggingFaceH4/llava-instruct-mix-vsft", split="train")
examples = [dataset[0], dataset[1]]  # Just two examples for the sake of the example
collated_data = collate_fn(examples)
print(collated_data.keys())  # dict_keys(['input_ids', 'attention_mask', 'pixel_values', 'labels'])
```

### Training the vision-language model

Now that we have prepared the data and defined the collator, we can proceed with training the model. To ensure that the data is not processed as text-only, we need to set a couple of arguments in the `SFTConfig`, specifically `remove_unused_columns` and `skip_prepare_dataset` to `True` to avoid the default processing of the dataset. Below is an example of how to set up the `SFTTrainer`.

```python
training_args.remove_unused_columns = False
training_args.dataset_kwargs = {"skip_prepare_dataset": True}

trainer = SFTTrainer(
    model=model,
    args=training_args,
    data_collator=collate_fn,
    train_dataset=train_dataset,
    processing_class=processor.tokenizer,
)
```

A full example of training LLaVa 1.5 on the [HuggingFaceH4/llava-instruct-mix-vsft](https://huggingface.co/datasets/HuggingFaceH4/llava-instruct-mix-vsft) dataset can be found in the script [`examples/scripts/sft_vlm.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/sft_vlm.py).

- [Experiment tracking](https://wandb.ai/huggingface/trl/runs/2b2c5l7s)
- [Trained model](https://huggingface.co/HuggingFaceH4/sft-llava-1.5-7b-hf)

## SFTTrainer

[[autodoc]] SFTTrainer

## SFTConfig

[[autodoc]] SFTConfig

## Datasets

In the SFTTrainer, we smartly support `datasets.IterableDataset` in addition to other style datasets. This is useful if you are using large corpora that you do not want to save all to disk. The data will be tokenized and processed on the fly, even when packing is enabled.

Additionally, in the SFTTrainer, we support pre-tokenized datasets if they are `datasets.Dataset` or `datasets.IterableDataset`. In other words, if such a dataset has a column of `input_ids`, no further processing (tokenization or packing) will be done, and the dataset will be used as-is. This can be useful if you have pretokenized your dataset outside of this script and want to reuse it directly.