Spaces:
Paused
Paused
File size: 24,582 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "WQpNapZNWuXP"
},
"source": [
"\n",
"**Best-of-n sampling as an alternative to RLHF**\n",
"\n",
"This notebook compares reward-model scores of prompt based responses from \n",
"1. a base model (`gpt2-imdb`)\n",
"2. `RLHF` tuned model based on this base-model \n",
"3. the base-model again from which we sample n responses to each prompt, score them and take the best scored one AKA the `best-of-n sampled` model\n",
"\n",
"Import dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "vDA6qayz692w"
},
"outputs": [],
"source": [
"%pip install transformers trl"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "M1s_iNm773hM"
},
"outputs": [],
"source": [
"import torch\n",
"import pandas as pd\n",
"\n",
"from transformers import pipeline, AutoTokenizer\n",
"from datasets import load_dataset\n",
"\n",
"from trl import AutoModelForCausalLMWithValueHead\n",
"from trl.core import LengthSampler\n",
"\n",
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Y7hyrIrO8tcY"
},
"source": [
"Various constants"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "MqS3OM6Q8x6g"
},
"outputs": [],
"source": [
"ref_model_name = \"lvwerra/gpt2-imdb\"\n",
"model_name = \"lvwerra/gpt2-imdb-pos-v2\"\n",
"reward_model = \"lvwerra/distilbert-imdb\"\n",
"\n",
"N_BEST_OF = 4"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "c1YcXeElg6or"
},
"source": [
"Models and tokenizers"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "b855NrL181Hh"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/kashif/Github/transformers/src/transformers/tokenization_utils_base.py:1617: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be deprecated in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n",
" warnings.warn(\n"
]
},
{
"data": {
"text/plain": [
"AutoModelForCausalLMWithValueHead(\n",
" (pretrained_model): GPT2LMHeadModel(\n",
" (transformer): GPT2Model(\n",
" (wte): Embedding(50257, 768)\n",
" (wpe): Embedding(1024, 768)\n",
" (drop): Dropout(p=0.1, inplace=False)\n",
" (h): ModuleList(\n",
" (0-11): 12 x GPT2Block(\n",
" (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n",
" (attn): GPT2SdpaAttention(\n",
" (c_attn): Conv1D(nf=2304, nx=768)\n",
" (c_proj): Conv1D(nf=768, nx=768)\n",
" (attn_dropout): Dropout(p=0.1, inplace=False)\n",
" (resid_dropout): Dropout(p=0.1, inplace=False)\n",
" )\n",
" (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n",
" (mlp): GPT2MLP(\n",
" (c_fc): Conv1D(nf=3072, nx=768)\n",
" (c_proj): Conv1D(nf=768, nx=3072)\n",
" (act): NewGELUActivation()\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" )\n",
" )\n",
" )\n",
" (ln_f): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n",
" )\n",
" (lm_head): Linear(in_features=768, out_features=50257, bias=False)\n",
" )\n",
" (v_head): ValueHead(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (summary): Linear(in_features=768, out_features=1, bias=True)\n",
" (flatten): Flatten(start_dim=1, end_dim=-1)\n",
" )\n",
")"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = AutoModelForCausalLMWithValueHead.from_pretrained(model_name)\n",
"\n",
"ref_model = AutoModelForCausalLMWithValueHead.from_pretrained(ref_model_name)\n",
"\n",
"reward_pipe = pipeline(\"sentiment-analysis\", model=reward_model, device=device)\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(ref_model_name)\n",
"\n",
"tokenizer.pad_token = tokenizer.eos_token\n",
"\n",
"# cuda-ize models\n",
"model.to(device)\n",
"ref_model.to(device)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Z1Cz0gCFhZYJ"
},
"source": [
"Dataset building"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "LqLVEp5p_8XM"
},
"outputs": [],
"source": [
"def build_dataset(\n",
" tokenizer,\n",
" dataset_name=\"stanfordnlp/imdb\",\n",
" input_min_text_length=2,\n",
" input_max_text_length=8,\n",
"):\n",
" # load imdb with datasets\n",
" ds = load_dataset(dataset_name, split=\"train\")\n",
" ds = ds.rename_columns({\"text\": \"review\"})\n",
" ds = ds.filter(lambda x: len(x[\"review\"]) > 200, batched=False)\n",
"\n",
" input_size = LengthSampler(input_min_text_length, input_max_text_length)\n",
"\n",
" def tokenize(sample):\n",
" sample[\"input_ids\"] = tokenizer.encode(sample[\"review\"])[: input_size()]\n",
" sample[\"query\"] = tokenizer.decode(sample[\"input_ids\"])\n",
" return sample\n",
"\n",
" ds = ds.map(tokenize, batched=False)\n",
" ds.set_format(type=\"torch\")\n",
" return ds\n",
"\n",
"\n",
"dataset = build_dataset(tokenizer)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "AqA2McjMAxNw"
},
"outputs": [],
"source": [
"gen_kwargs = {\n",
" \"min_length\": -1,\n",
" \"top_k\": 0.0,\n",
" \"top_p\": 1.0,\n",
" \"do_sample\": True,\n",
" \"pad_token_id\": tokenizer.eos_token_id,\n",
"}\n",
"sent_kwargs = {\"top_k\": None, \"function_to_apply\": \"none\", \"batch_size\": 16}"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "L_q4qs35AxcR"
},
"outputs": [],
"source": [
"output_min_length = 4\n",
"output_max_length = 16\n",
"output_length_sampler = LengthSampler(output_min_length, output_max_length)\n",
"\n",
"#### get a batch from the dataset\n",
"bs = 16\n",
"output_data = dict()\n",
"dataset.set_format(\"pandas\")\n",
"df_batch = dataset[:].sample(bs)\n",
"output_data[\"query\"] = df_batch[\"query\"].tolist()\n",
"query_tensors = df_batch[\"input_ids\"].tolist()\n",
"\n",
"# :: [Resp]\n",
"response_tensors_ref, response_tensors = [], []\n",
"# :: [[Resp]]\n",
"response_tensors_best_of = []"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QVfpyHnZBLKY"
},
"source": [
"\n",
"Generation using various models"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "-imZ7uEFBNbw"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n"
]
}
],
"source": [
"for i in range(bs):\n",
" gen_len = output_length_sampler()\n",
"\n",
" query = torch.tensor(query_tensors[i])\n",
"\n",
" output = ref_model.generate(\n",
" query.unsqueeze(dim=0).to(device), max_new_tokens=gen_len, **gen_kwargs\n",
" ).squeeze()\n",
" response_tensors_ref.append(tokenizer.decode(output))\n",
"\n",
" output = model.generate(\n",
" query.unsqueeze(dim=0).to(device), max_new_tokens=gen_len, **gen_kwargs\n",
" ).squeeze()\n",
" response_tensors.append(tokenizer.decode(output))\n",
"\n",
" # generating copies of the same query for the Best-of-n sampling\n",
" queries = query.repeat((N_BEST_OF, 1))\n",
" output = ref_model.generate(\n",
" queries.to(device), max_new_tokens=gen_len, **gen_kwargs\n",
" ).squeeze()\n",
" response_tensors_best_of.append(tokenizer.batch_decode(output))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Jp5FC0Y5h_Sf"
},
"source": [
"Scoring"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"id": "PyDbbAQ0F_h7"
},
"outputs": [],
"source": [
"scores_ref = [\n",
" output[0][\"score\"] for output in reward_pipe(response_tensors_ref, **sent_kwargs)\n",
"]\n",
"scores = [output[0][\"score\"] for output in reward_pipe(response_tensors, **sent_kwargs)]\n",
"scores_best_of = []\n",
"for i, response in enumerate(response_tensors_best_of):\n",
" # base_score = scores_ref[i]\n",
" scores_best_of.append(\n",
" torch.tensor(\n",
" [output[0][\"score\"] for output in reward_pipe(response, **sent_kwargs)]\n",
" )\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 682
},
"id": "nA1GDNJEiGm-",
"outputId": "1389c686-0751-4304-dea2-b71fd68748e1"
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>query</th>\n",
" <th>response (ref)</th>\n",
" <th>scores (ref)</th>\n",
" <th>response (RLHF)</th>\n",
" <th>scores (RLHF)</th>\n",
" <th>response (best_of)</th>\n",
" <th>scores (best_of)</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>This movie</td>\n",
" <td>This movie should have read some books, and</td>\n",
" <td>1.411889</td>\n",
" <td>This movie has plenty of extraordinary feature...</td>\n",
" <td>2.735337</td>\n",
" <td>This movie was unexpectedly funny and funny, you</td>\n",
" <td>2.405301</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>OK where do i begin?</td>\n",
" <td>OK where do i begin? *** Acting is decent (not...</td>\n",
" <td>1.555380</td>\n",
" <td>OK where do i begin? For all of you who are no...</td>\n",
" <td>0.019694</td>\n",
" <td>OK where do i begin? i just wanted to add some...</td>\n",
" <td>0.622912</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>I watched</td>\n",
" <td>I watched one can compare themselves upon view...</td>\n",
" <td>1.380120</td>\n",
" <td>I watched it because of its excellent cast. Th...</td>\n",
" <td>2.498309</td>\n",
" <td>I watched the trial trial for teaches us a goo...</td>\n",
" <td>2.057187</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>It's been 19 years since Gordon</td>\n",
" <td>It's been 19 years since Gordon finally left c...</td>\n",
" <td>1.554914</td>\n",
" <td>It's been 19 years since Gordon Tree has becom...</td>\n",
" <td>1.632266</td>\n",
" <td>It's been 19 years since Gordon Clarke put me ...</td>\n",
" <td>2.783458</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Just kidding</td>\n",
" <td>Just kidding; I know a lot</td>\n",
" <td>-0.069533</td>\n",
" <td>Just kidding \"Third World Snopes</td>\n",
" <td>0.944632</td>\n",
" <td>Just kidding, I didn't even</td>\n",
" <td>1.945202</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>shakespeare's plays have a way</td>\n",
" <td>shakespeare's plays have a way of weaving into...</td>\n",
" <td>1.656927</td>\n",
" <td>shakespeare's plays have a way. It's the look ...</td>\n",
" <td>1.444803</td>\n",
" <td>shakespeare's plays have a way of getting back...</td>\n",
" <td>1.834373</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>This movie is wonderful. What</td>\n",
" <td>This movie is wonderful. What could have been ...</td>\n",
" <td>2.749068</td>\n",
" <td>This movie is wonderful. What someone likes ab...</td>\n",
" <td>2.759510</td>\n",
" <td>This movie is wonderful. What a different look,</td>\n",
" <td>2.695312</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>I loved</td>\n",
" <td>I loved this film. <br /><</td>\n",
" <td>2.576181</td>\n",
" <td>I loved it, and I really loved Audrey</td>\n",
" <td>2.578412</td>\n",
" <td>I loved this film. Reading reviews of it</td>\n",
" <td>2.751773</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>A superb and</td>\n",
" <td>A superb and very cool drama. The novel is</td>\n",
" <td>2.910374</td>\n",
" <td>A superb and super fun movie that removes all the</td>\n",
" <td>2.783201</td>\n",
" <td>A superb and most finely acted role that I will</td>\n",
" <td>2.894923</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>I remember</td>\n",
" <td>I remember.Very poor execution but good movies</td>\n",
" <td>0.923775</td>\n",
" <td>I remember when Shelter saw some girls on TV</td>\n",
" <td>0.825408</td>\n",
" <td>I remember thinking to myself how SOMEONE who</td>\n",
" <td>1.634163</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>This su*k</td>\n",
" <td>This su*k camel down your kidd</td>\n",
" <td>1.605957</td>\n",
" <td>This su*k Dress! I loved it</td>\n",
" <td>2.345865</td>\n",
" <td>This su*k like a roll of crap</td>\n",
" <td>2.422874</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>One Stink</td>\n",
" <td>One Stink Act...<br /><br</td>\n",
" <td>1.456476</td>\n",
" <td>One Stinkl was a great actor, particularly</td>\n",
" <td>1.782818</td>\n",
" <td>One Stink?: Invisible of Saint Barbara, poor</td>\n",
" <td>1.667756</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>I pulled down a VHS</td>\n",
" <td>I pulled down a VHS copy and watched it with m...</td>\n",
" <td>0.756151</td>\n",
" <td>I pulled down a VHS looking a good looking, and a</td>\n",
" <td>-0.008258</td>\n",
" <td>I pulled down a VHS copy the other day and all I</td>\n",
" <td>0.992919</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>For some</td>\n",
" <td>For some alone no more Buddy Trumbull would ha...</td>\n",
" <td>0.790762</td>\n",
" <td>For some enthraled time, the film will impress...</td>\n",
" <td>2.455694</td>\n",
" <td>For some reason, a bomb crashed on the rear of...</td>\n",
" <td>0.857423</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>This one features all</td>\n",
" <td>This one features all the good elements of spi...</td>\n",
" <td>1.452079</td>\n",
" <td>This one features all kinds of wit and humor r...</td>\n",
" <td>2.743043</td>\n",
" <td>This one features all the best Birdprogram sup...</td>\n",
" <td>2.343950</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>Somehow a woman working with</td>\n",
" <td>Somehow a woman working with Jim Wynorski prof...</td>\n",
" <td>0.242172</td>\n",
" <td>Somehow a woman working with her daughter play...</td>\n",
" <td>0.092226</td>\n",
" <td>Somehow a woman working with an overweight ins...</td>\n",
" <td>1.415525</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" query \\\n",
"0 This movie \n",
"1 OK where do i begin? \n",
"2 I watched \n",
"3 It's been 19 years since Gordon \n",
"4 Just kidding \n",
"5 shakespeare's plays have a way \n",
"6 This movie is wonderful. What \n",
"7 I loved \n",
"8 A superb and \n",
"9 I remember \n",
"10 This su*k \n",
"11 One Stink \n",
"12 I pulled down a VHS \n",
"13 For some \n",
"14 This one features all \n",
"15 Somehow a woman working with \n",
"\n",
" response (ref) scores (ref) \\\n",
"0 This movie should have read some books, and 1.411889 \n",
"1 OK where do i begin? *** Acting is decent (not... 1.555380 \n",
"2 I watched one can compare themselves upon view... 1.380120 \n",
"3 It's been 19 years since Gordon finally left c... 1.554914 \n",
"4 Just kidding; I know a lot -0.069533 \n",
"5 shakespeare's plays have a way of weaving into... 1.656927 \n",
"6 This movie is wonderful. What could have been ... 2.749068 \n",
"7 I loved this film. <br />< 2.576181 \n",
"8 A superb and very cool drama. The novel is 2.910374 \n",
"9 I remember.Very poor execution but good movies 0.923775 \n",
"10 This su*k camel down your kidd 1.605957 \n",
"11 One Stink Act...<br /><br 1.456476 \n",
"12 I pulled down a VHS copy and watched it with m... 0.756151 \n",
"13 For some alone no more Buddy Trumbull would ha... 0.790762 \n",
"14 This one features all the good elements of spi... 1.452079 \n",
"15 Somehow a woman working with Jim Wynorski prof... 0.242172 \n",
"\n",
" response (RLHF) scores (RLHF) \\\n",
"0 This movie has plenty of extraordinary feature... 2.735337 \n",
"1 OK where do i begin? For all of you who are no... 0.019694 \n",
"2 I watched it because of its excellent cast. Th... 2.498309 \n",
"3 It's been 19 years since Gordon Tree has becom... 1.632266 \n",
"4 Just kidding \"Third World Snopes 0.944632 \n",
"5 shakespeare's plays have a way. It's the look ... 1.444803 \n",
"6 This movie is wonderful. What someone likes ab... 2.759510 \n",
"7 I loved it, and I really loved Audrey 2.578412 \n",
"8 A superb and super fun movie that removes all the 2.783201 \n",
"9 I remember when Shelter saw some girls on TV 0.825408 \n",
"10 This su*k Dress! I loved it 2.345865 \n",
"11 One Stinkl was a great actor, particularly 1.782818 \n",
"12 I pulled down a VHS looking a good looking, and a -0.008258 \n",
"13 For some enthraled time, the film will impress... 2.455694 \n",
"14 This one features all kinds of wit and humor r... 2.743043 \n",
"15 Somehow a woman working with her daughter play... 0.092226 \n",
"\n",
" response (best_of) scores (best_of) \n",
"0 This movie was unexpectedly funny and funny, you 2.405301 \n",
"1 OK where do i begin? i just wanted to add some... 0.622912 \n",
"2 I watched the trial trial for teaches us a goo... 2.057187 \n",
"3 It's been 19 years since Gordon Clarke put me ... 2.783458 \n",
"4 Just kidding, I didn't even 1.945202 \n",
"5 shakespeare's plays have a way of getting back... 1.834373 \n",
"6 This movie is wonderful. What a different look, 2.695312 \n",
"7 I loved this film. Reading reviews of it 2.751773 \n",
"8 A superb and most finely acted role that I will 2.894923 \n",
"9 I remember thinking to myself how SOMEONE who 1.634163 \n",
"10 This su*k like a roll of crap 2.422874 \n",
"11 One Stink?: Invisible of Saint Barbara, poor 1.667756 \n",
"12 I pulled down a VHS copy the other day and all I 0.992919 \n",
"13 For some reason, a bomb crashed on the rear of... 0.857423 \n",
"14 This one features all the best Birdprogram sup... 2.343950 \n",
"15 Somehow a woman working with an overweight ins... 1.415525 "
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"output_data[\"response (ref)\"] = response_tensors_ref\n",
"output_data[\"scores (ref)\"] = scores_ref\n",
"output_data[\"response (RLHF)\"] = response_tensors\n",
"output_data[\"scores (RLHF)\"] = scores\n",
"output_data[\"response (best_of)\"] = [\n",
" response_tensors_best_of[i][a.argmax().item()] for i, a in enumerate(scores_best_of)\n",
"]\n",
"output_data[\"scores (best_of)\"] = [a.max().item() for a in scores_best_of]\n",
"\n",
"\n",
"# store results in a dataframe\n",
"df_results = pd.DataFrame(output_data)\n",
"df_results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.10"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
|