Spaces:
Paused
Paused
File size: 54,008 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tune GPT2 to generate controlled sentiment reviews\n",
"> Optimise GPT2 to produce IMDB movie reviews with controlled sentiment using a BERT sentiment classifier for rewards.\n",
"\n",
"**WARNING:** We often experienced loss spikes in this examples which caused model training to fail or slow down. There is a [GitHub issue](https://github.com/lvwerra/trl/issues/101) to track the issue."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<div style=\"text-align: center\">\n",
"<img src='https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/gpt2-ctrl-training-setup.png' width='600'>\n",
"<p style=\"text-align: center;\"> <b>Figure:</b> Experiment setup to tune GPT2. The yellow arrows are outside the scope of this notebook, but the trained models are available through Hugging Face. </p>\n",
"</div>\n",
"\n",
"\n",
"The experiment setup is very similar to the positive sentiment notebook. However, in this notebook we fine-tune GPT2 (small) to generate **controlled** movie reviews based on the IMDB dataset. The model gets the target sentiment and 5 tokens from a real review and is tasked to produce continuations with the targeted sentiment. The reward for the continuations is calculated with the logits of a BERT sentiment classifier. That reward is then used for PPO training."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup experiment"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import dependencies"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/leandro_huggingface_co/miniconda3/envs/trl/lib/python3.9/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"import random\n",
"import torch\n",
"import wandb\n",
"import time\n",
"import os\n",
"from tqdm import tqdm\n",
"import numpy as np\n",
"import pandas as pd\n",
"from random import choices\n",
"import matplotlib.pyplot as plt\n",
"\n",
"tqdm.pandas()\n",
"\n",
"from datasets import load_dataset\n",
"\n",
"from transformers import AutoTokenizer, pipeline\n",
"\n",
"from trl import (\n",
" PPOTrainer,\n",
" PPOConfig,\n",
" AutoModelForCausalLMWithValueHead,\n",
" create_reference_model,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configuration"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"sentiment_pipe_kwargs = {\"top_k\": None, \"function_to_apply\": \"none\"}\n",
"\n",
"config = PPOConfig(\n",
" model_name=\"lvwerra/gpt2-imdb\",\n",
" steps=51200,\n",
" learning_rate=1.41e-5,\n",
" remove_unused_columns=False,\n",
" log_with=\"wandb\",\n",
")\n",
"\n",
"txt_in_len = 5\n",
"txt_out_len = 20\n",
"seed = 1"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(seed)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can see that we load a GPT2 model called `gpt2_imdb`. This model was additionally fine-tuned on the IMDB dataset for 1 epoch with the huggingface [script](https://github.com/huggingface/transformers/blob/master/examples/run_language_modeling.py) (no special settings). The other parameters are mostly taken from the original paper [\"Fine-Tuning Language Models from Human Preferences\"](\n",
"https://huggingface.co/papers/1909.08593). This model as well as the BERT model is available in the Huggingface model zoo [here](https://huggingface.co/models). The following code should automatically download the models."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load data and models"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load pre-trained GPT2 language models"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We load the GPT2 model with a value head and the tokenizer. We load the model twice; the first model is optimized while the second model serves as a reference to calculate the KL-divergence from the starting point. This serves as an additional reward signal in the PPO training to make sure the optimized model does not deviate too much from the original language model."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"gpt2_model = AutoModelForCausalLMWithValueHead.from_pretrained(config.model_name)\n",
"gpt2_ref_model = create_reference_model(gpt2_model)\n",
"gpt2_tokenizer = AutoTokenizer.from_pretrained(config.model_name)\n",
"\n",
"gpt2_tokenizer.pad_token = gpt2_tokenizer.eos_token"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load IMDB dataset\n",
"The IMDB dataset contains 50k movie review annotated with \"positive\"/\"negative\" feedback indicating the sentiment. We load the IMDB dataset into a DataFrame and filter for comments that are at least 500 characters long and take the first 1000 characters of each comment. The first filter we apply to avoid comments that are less than `txt_in_len` token long and the second to avoid tokenizing way more text than we actually need."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset imdb (/home/leandro_huggingface_co/.cache/huggingface/datasets/imdb/plain_text/1.0.0/2fdd8b9bcadd6e7055e742a706876ba43f19faee861df134affd7a3f60fc38a1)\n",
"Loading cached processed dataset at /home/leandro_huggingface_co/.cache/huggingface/datasets/imdb/plain_text/1.0.0/2fdd8b9bcadd6e7055e742a706876ba43f19faee861df134affd7a3f60fc38a1/cache-d314b4c14499bf03.arrow\n",
"Loading cached processed dataset at /home/leandro_huggingface_co/.cache/huggingface/datasets/imdb/plain_text/1.0.0/2fdd8b9bcadd6e7055e742a706876ba43f19faee861df134affd7a3f60fc38a1/cache-0d5fcb05c95b1186.arrow\n"
]
},
{
"data": {
"text/plain": [
"Dataset({\n",
" features: ['review', 'sentiment'],\n",
" num_rows: 22578\n",
"})"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# create the dataset\n",
"#\n",
"dataset = load_dataset(\"stanfordnlp/imdb\", split=\"train\")\n",
"dataset = dataset.rename_columns({\"text\": \"review\", \"label\": \"sentiment\"})\n",
"# make sure the comments are are at least 500 and trim to 1000\n",
"dataset = dataset.filter(lambda x: len(x[\"review\"]) > 500, batched=False)\n",
"dataset = dataset.map(lambda x: {\"review\": x[\"review\"][:1000]}, batched=False)\n",
"\n",
"dataset"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Tokenize IMDB reviews"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We tokenize all IMDB in advance to avoid tokenizing twice. In the first step we encode the queries and slice the first `txt_in_len` tokens. In a second step we decode these tokens back to text for later display."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Loading cached processed dataset at /home/leandro_huggingface_co/.cache/huggingface/datasets/imdb/plain_text/1.0.0/2fdd8b9bcadd6e7055e742a706876ba43f19faee861df134affd7a3f60fc38a1/cache-383f6ebf0ae41ee4.arrow\n",
"Loading cached processed dataset at /home/leandro_huggingface_co/.cache/huggingface/datasets/imdb/plain_text/1.0.0/2fdd8b9bcadd6e7055e742a706876ba43f19faee861df134affd7a3f60fc38a1/cache-f4875ad4fccbbc1f.arrow\n"
]
}
],
"source": [
"dataset = dataset.map(\n",
" lambda x: {\n",
" \"input_ids\": gpt2_tokenizer.encode(\" \" + x[\"review\"], return_tensors=\"pt\")[\n",
" 0, :txt_in_len\n",
" ]\n",
" },\n",
" batched=False,\n",
")\n",
"dataset = dataset.map(\n",
" lambda x: {\"query\": gpt2_tokenizer.decode(x[\"input_ids\"])}, batched=False\n",
")\n",
"dataset = dataset[:20480]\n",
"\n",
"from datasets import Dataset\n",
"\n",
"dataset = Dataset.from_dict(dataset)\n",
"dataset.set_format(\"pytorch\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([ 770, 2646, 373, 2192, 7867])"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset[3][\"input_ids\"]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"def collator(data):\n",
" return dict((key, [d[key] for d in data]) for key in data[0])"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mlvwerra\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.13.9"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/leandro_huggingface_co/trl/examples/sentiment/notebooks/wandb/run-20230206_125743-jpcnr7jx</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href=\"https://wandb.ai/lvwerra/trl/runs/jpcnr7jx\" target=\"_blank\">comic-music-184</a></strong> to <a href=\"https://wandb.ai/lvwerra/trl\" target=\"_blank\">Weights & Biases</a> (<a href=\"https://wandb.me/run\" target=\"_blank\">docs</a>)<br/>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href=\"https://wandb.ai/lvwerra/trl\" target=\"_blank\">https://wandb.ai/lvwerra/trl</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href=\"https://wandb.ai/lvwerra/trl/runs/jpcnr7jx\" target=\"_blank\">https://wandb.ai/lvwerra/trl/runs/jpcnr7jx</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"ppo_trainer = PPOTrainer(\n",
" config, gpt2_model, gpt2_ref_model, gpt2_tokenizer, dataset, data_collator=collator\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load BERT classifier\n",
"We load a BERT classifier fine-tuned on the IMDB dataset."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"if ppo_trainer.accelerator.num_processes == 1:\n",
" device = 0 if torch.cuda.is_available() else \"cpu\" # to avoid a `pipeline` bug\n",
"else:\n",
" device = ppo_trainer.accelerator.device\n",
"sentiment_pipe = pipeline(\n",
" \"sentiment-analysis\", \"lvwerra/distilbert-imdb\", device=device\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The model outputs are the logits for the negative and positive class. We will use the logits for positive class as a reward signal for the language model."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'label': 'NEGATIVE', 'score': 2.3350484371185303},\n",
" {'label': 'POSITIVE', 'score': -2.726576328277588}]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"text = \"this movie was really bad!!\"\n",
"output = sentiment_pipe(text, **sentiment_pipe_kwargs)\n",
"output"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'label': 'POSITIVE', 'score': 2.557040214538574},\n",
" {'label': 'NEGATIVE', 'score': -2.294790267944336}]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"text = \"this movie was really good!!\"\n",
"output = sentiment_pipe(text, **sentiment_pipe_kwargs)\n",
"output"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'label': 'POSITIVE', 'score': 0.8562759160995483},\n",
" {'label': 'NEGATIVE', 'score': -0.7086048126220703}]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"text = \"this movie was a documentary\"\n",
"output = sentiment_pipe(text, **sentiment_pipe_kwargs)\n",
"output"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The resulting reward signal:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"def extract_pipe_output(outputs):\n",
" positive_logits = []\n",
" for out in outputs:\n",
" for element in out:\n",
" if element[\"label\"] == \"POSITIVE\":\n",
" positive_logits.append(torch.tensor(element[\"score\"]))\n",
" return positive_logits"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"-0.7086048126220703"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"output[1][\"score\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Control token dict\n",
"We will append the control token at the beginning of each query to signal the model what the target sentiment is. Each control sequence consists of three tokens:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"ctrl_str = [\"[negative]\", \"[neutral]\", \"[positive]\"]\n",
"device = torch.device(\n",
" \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
") # this should be handled by accelerate\n",
"ctrl_tokens = dict(\n",
" (s, gpt2_tokenizer.encode(s, return_tensors=\"pt\").squeeze().to(device))\n",
" for s in ctrl_str\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'[negative]': tensor([ 58, 31591, 60], device='cuda:0'),\n",
" '[neutral]': tensor([ 58, 29797, 60], device='cuda:0'),\n",
" '[positive]': tensor([ 58, 24561, 60], device='cuda:0')}"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ctrl_tokens"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Reward function"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"def pos_logit_to_reward(logit, task):\n",
" \"\"\"\n",
" Take the positive sentiment logit and scale it for the task.\n",
" task [negative]: reward = -logit\n",
" task [neutral]: reward = -2*abs(logit)+4\n",
" task [positive]: reward = logit\n",
" \"\"\"\n",
" for i in range(len(logit)):\n",
" if task[i] == \"[negative]\":\n",
" logit[i] = -logit[i]\n",
" elif task[i] == \"[neutral]\":\n",
" logit[i] = -2 * torch.abs(logit[i]) + 4\n",
" elif task[i] == \"[positive]\":\n",
" pass\n",
" else:\n",
" raise ValueError(\"task has to be in [0, 1, 2]!\")\n",
" return logit"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following examples show the rewards for the cases where the classifier logit is 4, -4 and 0 for the three targets `['negative]`, `['neutral]` and `['positive']`. The scaling is not perfect as it differs between neutral and the other two classes. This is something to further investigate in the future. Ideally, one would use the logit output for each class individually, but since there is no dedicated class for neutral this is a workaround."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['[negative]', '[neutral]', '[positive]']\n"
]
}
],
"source": [
"print(ctrl_str)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([-4., -4., 4.])"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pos_logit_to_reward(torch.Tensor([4, 4, 4]), ctrl_str)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([ 4., -4., -4.])"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pos_logit_to_reward(torch.Tensor([-4, -4, -4]), ctrl_str)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([-0., 4., 0.])"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pos_logit_to_reward(torch.Tensor([0, 0, 0]), ctrl_str)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Generation settings"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"generation_kwargs = {\n",
" \"min_length\": -1,\n",
" \"top_k\": 0.0,\n",
" \"top_p\": 1.0,\n",
" \"do_sample\": True,\n",
" \"pad_token_id\": gpt2_tokenizer.eos_token_id,\n",
" \"max_new_tokens\": txt_out_len,\n",
" \"eos_token_id\": -1,\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Optimize model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Steps**\n",
"\n",
"The training loop consists of the following steps:\n",
"1. Get a batch of queries and create random controls\n",
"2. Get the query responses from the policy\n",
"3. Join query and responses and tokenize for BERT analysis\n",
"4. Get sentiments for query/responses from BERT\n",
"5. Optimize policy with PPO using the (query, response, reward) triplet\n",
"6. Log all the training statistics\n",
"\n",
"**Training time**\n",
"\n",
"This step takes **~2h** on a P6000 GPU with the above specified settings."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 8%|β | 6/80 [12:44<2:37:54, 128.03s/it]/home/leandro_huggingface_co/miniconda3/envs/trl/lib/python3.9/site-packages/transformers/pipelines/base.py:1045: UserWarning: You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset\n",
" warnings.warn(\n",
"100%|ββββββββββ| 80/80 [2:46:39<00:00, 124.99s/it] \n",
" 91%|ββββββββββ| 73/80 [2:30:39<14:35, 125.03s/it] "
]
}
],
"source": [
"for epoch in range(2):\n",
" for batch in tqdm(ppo_trainer.dataloader):\n",
" (\n",
" logs,\n",
" game_data,\n",
" ) = (\n",
" dict(),\n",
" dict(),\n",
" )\n",
"\n",
" #### prepend a random control token\n",
" task_list = choices(ctrl_str, k=config.batch_size)\n",
" game_data[\"query\"] = [t + q for t, q in zip(task_list, batch[\"query\"])]\n",
" query_tensors = [\n",
" torch.cat((ctrl_tokens[t], input_ids))\n",
" for t, input_ids in zip(task_list, batch[\"input_ids\"])\n",
" ]\n",
"\n",
" #### get response from gpt2\n",
" response_tensors = []\n",
" for query in query_tensors:\n",
" response = ppo_trainer.generate(query, **generation_kwargs)\n",
" response_tensors.append(response.squeeze()[-txt_out_len:])\n",
" game_data[\"response\"] = [\n",
" gpt2_tokenizer.decode(r.squeeze()) for r in response_tensors\n",
" ]\n",
"\n",
" #### sentiment analysis\n",
" texts = [q + r for q, r in zip(batch[\"query\"], game_data[\"response\"])]\n",
" logits = extract_pipe_output(sentiment_pipe(texts, **sentiment_pipe_kwargs))\n",
" rewards = pos_logit_to_reward(logits, task_list)\n",
"\n",
" #### Run PPO training\n",
" t = time.time()\n",
" stats = ppo_trainer.step(query_tensors, response_tensors, rewards)\n",
"\n",
" for cs in ctrl_str:\n",
" key = \"env/reward_\" + cs.strip(\"[]\")\n",
" stats[key] = np.mean(\n",
" [r.cpu().numpy() for r, t in zip(rewards, task_list) if t == cs]\n",
" )\n",
" ppo_trainer.log_stats(stats, game_data, rewards)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Training progress\n",
"If you are tracking the training progress with Weights&Biases you should see a plot similar to the following:\n",
"\n",
"<div style=\"text-align: center\">\n",
"<img src='https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/gpt2-ctrl-training-stats.png' width='800'>\n",
"<p style=\"text-align: center;\"> <b>Figure:</b> Reward mean and distribution evolution during training. </p>\n",
"</div>\n",
"\n",
"One can observe how the model starts to generate more positive outputs after a few optimisation steps.\n",
"\n",
"> Note: Investigating the KL-divergence will probably show that at this point the model has not converged to the target KL-divergence, yet. To get there would require longer training or starting with a higher inital coefficient."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Model inspection"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Reward distribution\n",
"First, we can have a look at the reward distribution. Both the negative and positive rewards are clearly shifted to high rewards. The neutral rewards, however, are still centered around zero. There are a few possible explanations for this. There could be a bug in the code and the way the neutral rewards are calculated. Another problem could be that sentence sometimes start with a strong sentiment and it is hard for the model shift the sentiment towards neutral."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGzCAYAAAAMr0ziAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPCUlEQVR4nO3deVwVZf8//tecw4HDroiyibKImSmQkKi5B6K3mt4tLvm4RSq7S7lvjTtNLAVcPqip0aLZnbdL3ZK0qP2+5o0SSVmiFor7lklubGqIgB4OnPn9YWfyyGE5h+UM8Ho+Hjw8c80117znOoPzZuaaGUEURRFEREREMqawdABEREREdWHCQkRERLLHhIWIiIhkjwkLERERyR4TFiIiIpI9JixEREQke0xYiIiISPaYsBAREZHsMWEhIiIi2WPCQkQNtmnTJgiCgNzcXLOWnzZtGnx8fAzKBEFAQkJCg2OrS2ZmJgRBQGZmplQ2dOhQ9OrVq8nXDQC5ubkQBAGbNm1qlvURtVRMWIio1UhJSUFycrKlwzBKzrERtQRWlg6AiMiYO3fuwMrKtP+iUlJScOLECcyePbveywwePBh37tyBtbW1iRGapqbYunbtijt37kClUjXp+olaOp5hIZKBsrIyS4dQK51Oh7t37zbrOtVqtckJiynu3r0LnU4HhUIBtVoNhcIy/x0KggC1Wg2lUmmR9RO1FExYiJpZQkICBEHAqVOn8Nxzz6F9+/YYOHCgNP+///0vQkJCYGtrCxcXF0yaNAmXL1+W5r/77rtQKpUoLi6WylatWgVBEBAbGyuVVVVVwdHREa+//rpUtnLlSgwYMAAdOnSAra0tQkJC8MUXX1SLURAExMTEYMuWLXjkkUdgY2ODtLQ0AMDJkycxfPhw2NraonPnzliyZAl0Ol29t3/Hjh3o1asX1Go1evXqhe3btxut9+AYltu3b2P27Nnw8fGBjY0NOnXqhIiICBw+fBjAvXEnX3/9NX777TcIggBBEKRxMfpxKlu3bsWbb74JLy8v2NnZoaSkxOgYFr3s7GwMGDAAtra28PX1xbp16wzm1zR258E2a4utpjEs3377LQYNGgR7e3u0a9cO48aNw+nTpw3q6PelX375BdOmTUO7du3g7OyM6OholJeX1/wlELVAvCREZCHPPvssAgIC8H//938QRREAsHTpUixYsAATJkzAiy++iKKiIrz33nsYPHgwjhw5gnbt2mHQoEHQ6XT44YcfMGbMGADAvn37oFAosG/fPqn9I0eOoLS0FIMHD5bK3nnnHTz55JOYMmUKKioqsHXrVjz77LPYuXMnRo8ebRDft99+i88++wwxMTFwdXWFj48P8vPzMWzYMFRWVmLevHmwt7fHv//9b9ja2tZrm/fs2YOnn34aPXv2RFJSEm7cuIHo6Gh07ty5zmVffvllfPHFF4iJiUHPnj1x48YN/PDDDzh9+jT69OmDN954A7du3cKVK1fw9ttvAwAcHBwM2li8eDGsra3x2muvQaPR1HoZ6Pfff8df/vIXTJgwAZMnT8Znn32GV155BdbW1nj++efrtb169Yntft988w1GjRoFPz8/JCQk4M6dO3jvvffw+OOP4/Dhw9UGKE+YMAG+vr5ISkrC4cOHsX79enTq1AnLly83KU4iWROJqFnFx8eLAMTJkycblOfm5opKpVJcunSpQfnx48dFKysrqbyqqkp0cnIS586dK4qiKOp0OrFDhw7is88+KyqVSvH27duiKIri6tWrRYVCIf7+++9SW+Xl5QZtV1RUiL169RKHDx9uUA5AVCgU4smTJw3KZ8+eLQIQDx48KJUVFhaKzs7OIgDx4sWLtW57cHCw6OHhIRYXF0tle/bsEQGIXbt2rRZDfHy8NO3s7CzOnDmz1vZHjx5drR1RFMW9e/eKAEQ/P79qfaCft3fvXqlsyJAhIgBx1apVUplGoxGDg4PFTp06iRUVFaIoiuLGjRuNbrexNmuK7eLFiyIAcePGjVKZfj03btyQyo4ePSoqFApx6tSpUpl+X3r++ecN2vzrX/8qdujQodq6iFoyXhIispCXX37ZYHrbtm3Q6XSYMGECrl+/Lv24u7sjICAAe/fuBQAoFAoMGDAA33//PQDg9OnTuHHjBubNmwdRFJGVlQXg3lmXXr16oV27dtI67j8T8vvvv+PWrVsYNGiQdFnlfkOGDEHPnj0Nynbt2oV+/fqhb9++UlnHjh0xZcqUOrc3Ly8POTk5iIqKgrOzs1QeERFRbT3GtGvXDgcPHsS1a9fqrFuTqKioep8NsrKywt///ndp2traGn//+99RWFiI7Oxss2Ooi76fpk2bBhcXF6k8MDAQERER2LVrV7VlHtyXBg0ahBs3bqCkpKTJ4iRqbkxYiCzE19fXYPr8+fMQRREBAQHo2LGjwc/p06dRWFgo1R00aBCys7Nx584d7Nu3Dx4eHujTpw+CgoKky0I//PADBg0aZLCOnTt3ol+/flCr1XBxcUHHjh3xwQcf4NatW3XGBwC//fYbAgICqpU/9NBDdW7vb7/9BgBmL79ixQqcOHEC3t7e6Nu3LxISEvDrr7/Wudz9jG1TTTw9PWFvb29Q1r17dwAw+3kz9aHvJ2N98vDDD+P69evVBml36dLFYLp9+/YA7iWlRK0Fx7AQWciDf+nrdDoIgoD//e9/Ru8YuX/Mw8CBA6HVapGVlYV9+/ZJicmgQYOwb98+nDlzBkVFRQYJy759+/Dkk09i8ODBWLt2LTw8PKBSqbBx40akpKTUGZ+lTZgwAYMGDcL27duxZ88evPXWW1i+fDm2bduGUaNG1auNxt4mQRCMlldVVTXqeupS0x1G4h9jo4haAyYsRDLh7+8PURTh6+sr/SVfk759+8La2hr79u3Dvn37MGfOHAD3niny0UcfISMjQ5rW+/LLL6FWq7F7927Y2NhI5Rs3bqx3jF27dsX58+erlZ89e7ZeywIwe3kA8PDwwIwZMzBjxgwUFhaiT58+WLp0qZSw1JRAmOPatWsoKyszOMty7tw5AJAGverPZNx/xxbw51mS+9U3Nn0/GeuTM2fOwNXVtdqZH6K2gJeEiGTiqaeeglKpRGJiYrW/jEVRxI0bN6RptVqNxx57DJ9++ikuXbpkcIblzp07ePfdd+Hv7w8PDw9pGaVSCUEQDP76z83NxY4dO+od41/+8hccOHAAhw4dksqKioqwZcuWOpf18PBAcHAwNm/ebHAJKj09HadOnap12aqqqmqXrTp16gRPT09oNBqpzN7e3ujlLXNUVlbiww8/lKYrKirw4YcfomPHjggJCQFwL8kEII0n0sf673//u1p79Y3t/n66PxE6ceIE9uzZg7/85S/mbhJRi8YzLEQy4e/vjyVLliAuLg65ubkYP348HB0dcfHiRWzfvh0vvfQSXnvtNan+oEGDsGzZMjg7O6N3794A7h3EH3roIZw9exbTpk0zaH/06NFYvXo1Ro4cieeeew6FhYVYs2YNunXrhmPHjtUrxrlz5+KTTz7ByJEjMWvWLOm25q5du9arjaSkJIwePRoDBw7E888/j5s3b+K9997DI488gtLS0hqXu337Njp37oxnnnkGQUFBcHBwwDfffIOffvoJq1atkuqFhIQgNTUVsbGxeOyxx+Dg4ICxY8fWa9se5OnpieXLlyM3Nxfdu3dHamoqcnJy8O9//1t6Ku0jjzyCfv36IS4uDjdv3oSLiwu2bt2KysrKau2ZEttbb72FUaNGoX///njhhRek25qdnZ2b5f1KRLJkyVuUiNoi/a2oRUVFRud/+eWX4sCBA0V7e3vR3t5e7NGjhzhz5kzx7NmzBvW+/vprEYA4atQog/IXX3xRBCD+5z//qdb2f/7zHzEgIEC0sbERe/ToIW7cuFGK534AaryF+NixY+KQIUNEtVotenl5iYsXLxb/85//1Ou2Zv32Pfzww6KNjY3Ys2dPcdu2bWJUVFSttzVrNBpxzpw5YlBQkOjo6Cja29uLQUFB4tq1aw2WKS0tFZ977jmxXbt2BrdK628z/vzzz6vFU9NtzY888oj4888/i/379xfVarXYtWtX8f3336+2/IULF8Tw8HDRxsZGdHNzE+fPny+mp6dXa7Om2Izd1iyKovjNN9+Ijz/+uGhrays6OTmJY8eOFU+dOmVQp6Z9qabbrYlaMkEUOSqLiIiI5I1jWIiIiEj2mLAQERGR7DFhISIiItljwkJERESyx4SFiIiIZI8JCxEREcleq3hwnE6nw7Vr1+Do6Nioj+YmIiKipiOKIm7fvg1PT08oFLWfQ2kVCcu1a9fg7e1t6TCIiIjIDJcvX0bnzp1rrdMqEhZHR0cA9zbYycnJ7Ha0Wi327NmDESNGSI/ebovYD+wDgH0AsA/02A/sA6Bp+qCkpATe3t7Scbw2rSJh0V8GcnJyanDCYmdnBycnpza7QwLsB4B9ALAPAPaBHvuBfQA0bR/UZzgHB90SERGR7DFhISIiItljwkJERESy1yrGsNSHKIqorKxEVVVVjXW0Wi2srKxw9+7dWuu1di2xH1QqFZRKpaXDICKiJtImEpaKigrk5eWhvLy81nqiKMLd3R2XL19u089zaYn9IAgCOnfuDAcHB0uHQkRETaDVJyw6nQ4XL16EUqmEp6cnrK2tazwI63Q6lJaWwsHBoc4H2LRmLa0fRFFEUVERrly5goCAAJ5pISJqhVp9wlJRUQGdTgdvb2/Y2dnVWlen06GiogJqtbpFHKibSkvsh44dOyI3NxdarZYJCxFRK9QyjkaNoKUceMk8LeXSFRERmYdHcSIiIpI9JixEREQke61+DEtt3k4/ZzAtiiI0Gg1sbGya5BLDqxHdTao/dOhQfPfddwCAI0eOIDg4uNFjamyCIGD79u0YP358o7SXmZmJYcOGAQDGjRuHHTt2NEq7RETUsvAMi8xNnz4deXl56NWrl6VDMZCQkGA0gcrLy8OoUaMabT0DBgxAXl4eJkyY0GhtEhFRy9Omz7C0BHZ2dnB3d7d0GPXW2LFaW1vD3d0dtra20Gg0jdo2ERG1HDzD0oJkZmZCEARkZGQgNDQUdnZ2GDBgAM6ePWtQ76uvvkKfPn2gVqvh5+eHxMREVFZWSvPPnDmDgQMHQq1Wo2fPnvjmm28gCILB5Zb4+Hj06NEDdnZ28PPzw4IFC6DVagEAmzZtQmJiIo4ePQpBECAIAjZt2gQABu0MGDAAr7/+ukFsRUVFUKlU+P777wEAGo0Gr732Gry8vGBvb4+wsDBkZmY2bscREVGLxzMsLdAbb7yBVatWoWPHjnj55Zfx/PPP48cffwQA7Nu3D1OnTsW7776LQYMG4cKFC3jppZcA3EtCqqqqMH78eHTp0gUHDx7E7du38a9//avaOhwdHbFhwwZ07twZx48fx/Tp0+Ho6Ii5c+di4sSJOHHiBNLS0vDNN98AAJydnau1MWXKFKxYsQLLli2TxgSlpqbC09MTgwYNAgDExMTg1KlT2Lp1Kzw9PbF9+3aMHDkSx48fR0BAQJP0H9Vsbc5a6bOgE+AJT6w/vh6iQrRgVMCM4BkWXT8RWR7PsLRAS5cuxZAhQ9CzZ0/MmzcP+/fvx927dwEAiYmJmDdvHqKiouDn54eIiAgsXrwYH374IQAgPT0dFy5cwMcff4ygoCAMHDgQS5curbaO1157DQMGDICPjw/Gjh2L1157DZ999hkAwNbWFg4ODrCysoK7u7t0yeZBEyZMwLVr1/DDDz9IZSkpKZg8eTIEQcClS5ewceNGfP755xg0aBD8/f3x2muvYeDAgdi4cWNTdB0REbVQPMPSAgUGBkqfPTw8AACFhYXo0qULjh49ih9//NEgCamqqsLdu3dRXl6Os2fPwtvb22CsSd++fautY9u2bfjPf/6DCxcuoLS0FJWVlXBycjIpzo4dO2LEiBHYsmULBg0ahIsXLyIrK0tKno4fP46qqip0725495RGo0GHDh1MWhcREbVuTFhaIJVKJX3WX2rR6XQAgNLSUiQmJuKpp56qtpxara5X+1lZWXjppZeQkJCAkSNHwtnZGVu3bsWqVatMjnXKlCn45z//iffeew8pKSno3bs3evfuLcWqVCqRnZ1d7XH6fIkhERHdz6xLQmvWrIGPjw/UajXCwsJw6NChGutu27YNoaGhaNeuHezt7REcHIxPPvnEoM60adOkwZv6n5EjR5oTWpvXp08fnD17Ft26dav2o1Ao8NBDD+Hy5csoKCiQlvnpp58M2sjKyoK3tzfmz5+P0NBQBAQE4LfffjOoY21tjaqqqjrjGTduHO7evYu0tDSkpKRgypQp0rxHH30UVVVVKCwsrBZrS7ozioiImp7JZ1hSU1MRGxuLdevWISwsDMnJyYiMjMTZs2fRqVOnavVdXFzwxhtvoEePHrC2tsbOnTsRHR2NTp06ITIyUqo3cuRIg3ELNjY2Zm5S27Zw4UKMGTMGXbp0wTPPPAOFQoGjR4/ixIkTWLJkCSIiIuDv74+oqCisWLECt2/fxptvvgngz7M13bp1w5UrV7B161aEhYXh66+/xvbt2w3W4+Pjg4sXLyInJwedO3eGo6Oj0e/M3t4e48ePx4IFC3D69GlMnjxZmte9e3dMmTIFU6dOxapVq/Doo4+iqKgIGRkZCAwMxOjRo5uwp4iIqCUxOWFZvXo1pk+fjujoaADAunXr8PXXX2PDhg2YN29etfpDhw41mJ41axY2b96MH374wSBhsbGxafa/qh988qxOp0NJSQmcnJxa7MsSIyMjsXPnTixatAjLly+HSqVCjx498OKLLwIAlEolduzYgRdffBGPPfYY/Pz88NZbb2Hs2LHSJaMnn3wSr7zyCv75z39Co9Fg9OjRWLBgARISEqT1PP3009i2bRuGDRuG4uJibNy4EdOmTTMa05QpU/CXv/wFgwcPRpcuXQzmbdy4EUuWLMG//vUvXL16Fa6urujXrx/GjBnTJP1DREQtk0kJS0VFBbKzsxEXFyeVKRQKhIeHIysrq87lRVHEt99+i7Nnz2L58uUG8zIzM9GpUye0b98ew4cPx5IlS2oceKnRaAweIlZSUgIA0Gq10rNC9LRaLURRhE6nk8Z51Baf/t+66jaX+2MZPHiwdBlGXxYYGFitLCIiAhEREdXa0s/v3r279BwUANIt0X5+ftDpdBBFEYsWLcLbb79t8IqCf/7zn1IbKpVKumvo/vYfjAW4l0QZKwfuJVDx8fGIj4+vMV59P9T2vejj1mq11cbDmEO/Hz24P7V2gk6o9vn+Mkux1PfQVveDB7Ef2AdA0/SBKW0Jov4oXQ/Xrl2Dl5cX9u/fj/79+0vlc+fOxXfffYeDBw8aXe7WrVvw8vKCRqOBUqnE2rVr8fzzz0vzt27dCjs7O/j6+uLChQuYP38+HBwckJWVZfTgk5CQgMTExGrlKSkpsLOzMyjT33rr7e0Na2vr+m6qLIwZMwaHDh2CtbU1du/ejUceeaRR2t25cyfs7e3h7++PX3/9FXFxcXB2dkZaWlqjtN+Y9u/fjwkTJkCj0Uh3HBlTUVGBy5cvIz8/3+AheUREJF/l5eV47rnncOvWrTrvRG2Wu4QcHR2Rk5OD0tJSZGRkIDY2Fn5+ftLlokmTJkl1e/fujcDAQPj7+yMzMxNPPPFEtfbi4uIQGxsrTZeUlMDb2xsjRoyotsF3797F5cuX4eDgUOddMqIo4vbt23B0dGySlx+a6tNPP8WdO3cAAF26dGm0hKuyshKvv/46Ll26BFdXVzzxxBNYuXKl1Hdy6ochQ4bg8OHDAO7dOVTTDn337l3Y2tpi8ODB9b4bqjZarRbp6emIiIgwuCurtVt/fL30WdAJ8LjqgTyvPIs/OO7F3i9aZL1tdT94EPuBfQA0TR/or5DUh0kJi6urK5RKpcEdJgBQUFBQ6/gThUKBbt26AQCCg4Nx+vRpJCUlVRvfoufn5wdXV1f88ssvRhMWGxsbowM8VSpVtU6sqqqCIAhQKBR1jkvRX27Q17c0b2/vJml32rRpNY43AeTVD/b29tWe02KMQqGAIAhG94GGaOz25M5YYiIqRIsnLJb+DtraflAT9gP7AGjcPjClHZOORtbW1ggJCUFGRoZUptPpkJGRYXCJqC46na7WF9lduXIFN27ckB6KRkRERG2byZeEYmNjERUVhdDQUPTt2xfJyckoKyuT7hqaOnUqvLy8kJSUBABISkpCaGgo/P39odFosGvXLnzyySf44IMPAPz5oLOnn34a7u7uuHDhAubOnYtu3boZ3EVEREREbZfJCcvEiRNRVFSEhQsXIj8/H8HBwUhLS4ObmxsA4NKlSwaXEcrKyjBjxgxcuXIFtra26NGjB/773/9i4sSJAO7dJXLs2DFs3rwZxcXF8PT0xIgRI7B48WI+i4WIiIgAmDnoNiYmBjExMUbnZWZmGkwvWbIES5YsqbEtW1tb7N6925wwiIiIqI2w/MhSIiIiojowYSEiIiLZa9tva96bZDApiCLUGg0EGxugKZ4/Miyu7jr3GTp0KL777jsAwJEjRxAcHNz4MTWDTZs2Yfbs2SguLpam9YO0Z82aheTkZMsFR0RELQLPsMjc9OnTkZeXh169ejXbOjMzM9G+fXspwWhsEydORF5enkm3whMRUdvWts+wtAB2dnbN/lLI+qqoqDDr6bu2trawtbVtca9KICIiy+EZlhYkMzMTgiAgIyMDoaGhsLOzw4ABA3D27FmDel999RX69OkDtVoNPz8/JCYmSu/Xyc3NhSAIyMnJkeoXFxdDEARkZmYiNzdXerpwhw4dIAiC9FTcoUOHIiYmBrNnz4arq6v0nJzVq1ejd+/esLe3h7e3N2bMmIHS0tKm7xAiImozmLC0QG+88QZWrVqFn3/+GVZWVgYvkty3bx+mTp2KWbNm4dSpU/jwww+xadMmLF26tF5te3t74/PPPwcAnD59Gnl5eXjnnXek+Zs3b4a1tTV+/PFHrFu3DsC9x+K/++67OHnyJDZv3oxvv/0Wc+fObcQtJiKito6XhFqgpUuXYsiQIQCAefPmYfTo0bh79y7UajUSExMxb948REVFAbj3XqbFixdj7ty5iI+Pr7NtpVIJFxcXAECnTp2kz3oBAQFYsWKFQdns2bOlzz4+PliyZAlefvllrF27tiGbSUREJGHC0gIFBgZKn/XvWyosLESXLl1w9OhR/PjjjwZnVKqqqnD37l2Ul5c3eN0hISHVyr755hskJSXhzJkzKCkpQWVlpbQ+Ozu7Bq+TiIiICUsLdP/bLYU/br/Wv2FZ/26mp556qtpyarVaem2CKP759l2tVlvvddvb2xtM5+bmYsyYMXjllVewdOlSuLi44IcffsALL7yAiooKJixERNQomLC0Mn369MHZs2fRrVs3o/M7duwIAMjLy8Ojjz4KAAYDcAFId+9UVVXVub7s7GzodDqsWrVKSoY+++wzc8MnIiIyiglLK7Nw4UKMGTMGXbp0wTPPPAOFQoGjR4/ixIkTWLJkCWxtbdGvXz8sW7YMvr6+KCwsxJtvvmnQRteuXSEIAnbu3IkxY8bA1tYWDg4ORtfXrVs3aLVavPfeexg7dqzBYFwiIqLG0rYTlgeePCvqdLhbUgJrJycIipZ5A1VkZCR27tyJRYsWYfny5VCpVOjRowdefPFFqc6GDRvwwgsvICQkBA899BBWrFiBESNGSPO9vLwQFxeH+fPn44UXXsDUqVOxadMmo+sLCgrC6tWrsXz5csTFxWHw4MFISkrC1KlTm3pTiYioDWnbCUsLM3ToUIOxJwAQHBxcrSwyMlJ6RooxDz/8MPbv329Q9mAbc+bMweLFi6XLPED1N3Hrvfrqq3j11VcNyv72t79Jn6dNmyY9y4WIiMgcLfM0Qhuydu1aODg44Pjx45YOpdFs2bIFDg4O2Ldvn6VDISKiFoJnWGRsy5YtuHPnDgCgS5cuFo6m8Tz55JMICwsDALRr186ywRARUYvAhEXGvLy8LB1Ck3B0dISjo6OlwyAiohaEl4SIiIhI9piwEBERkewxYSEiIiLZY8JCREREsseEhYiIiGSPdwkREdXH3iRLR2DcA0/spnoy9fsUFQB6APtWA4KuSUICwO+zFm06YVmbs9ZgWhRFaDQa2NjYSG9BbkwzgmeYVH/o0KH47rvvAABHjhxBcHBwo8dkbJ1BQUFITEyssc6mTZswe/ZsFBcXN9p6p02bhs2bNwMAtm/fjvHjxzda20RE1PLxkpDMTZ8+HXl5eejVq1ezrG/btm1YtGiRNO3j44Pk5GSDOhMnTsS5c+cadb3vvPMO8vLyGrVNIiJqPdr0GZaWwM7ODu7u7s22PhcXF+h0OpSUlNRYx9bWFra2to26XmdnZzg7Ozdqm0RE1HrwDEsLkpmZCUEQ8PXXXyMwMBBqtRr9+vXDiRMnDOp9+eWXeOSRR2BjYwMfHx+sWrXKYP7atWsREBAAtVoNNzc3PPPMM9K8oUOHSi8yHD58OH777Te8+uqrEARBuky2adMm6ZH6586dgyAIOHPmjME63n77bfj7+0vTJ06cwKhRo+Dg4AA3Nzf87W9/w/Xr1xutb4iIqHVjwtICzZkzB6tWrcJPP/2Ejh07YuzYsdBqtQCA7OxsTJgwAZMmTcLx48eRkJCABQsWYNOmTQCAn3/+Gf/85z+xaNEinD17FmlpaRg8eLDR9XzxxRfo3LkzFi1ahLy8PKOXbLp3747Q0FBs2bLFoHzLli147rnnAADFxcUYPnw4Hn30Ufz8889IS0tDQUEBJkyY0Ii9QkRErRkvCbVA8fHxiIiIAABs3rwZnTt3xvbt2zFhwgSsXr0aTzzxBBYsWADgXkJx6tQpvPXWW5g2bRouXboEe3t7jBkzBo6OjujatSseffRRo+txcXGBUqmEo6NjrZelpkyZgvfffx+LFy8GcO+sS3Z2Nv773/8CAN5//308+uij+L//+z9pmQ0bNsDb2xvnzp1D9+7dG6VfiIio9eIZlhaof//+0mcXFxc89NBDOH36NADg9OnTePzxxw3qP/744zh//jyqqqoQERGBrl27ws/PD3/729+wZcsWlJeXNyieSZMmITc3FwcOHABw7+xKnz590KNHDwDA0aNHsXfvXjg4OEg/+nkXLlxo0LqJiKhtYMLSxjg6OuLw4cP49NNP4eHhgYULFyIoKKhBtyi7u7tj+PDhSElJAQCkpKRgypQp0vzS0lKMHTsWOTk5Bj/nz5+v8XIUERHR/ZiwtED6MxkA8Pvvv+PcuXN4+OGHAQAPP/wwfvzxR4P6P/74I7p37w6lUgkAsLKyQnh4OFasWIFjx44hNzcX3377rdF1WVtbo6qqqs6YpkyZgtTUVGRlZeHXX3/FpEmTpHl9+vTByZMn4ePjg27duhn82Nvbm7z9RETU9jBhaYEWLVqEjIwMnDhxAtOmTYOrq6v0oLV//etfyMjIwOLFi3Hu3Dls3rwZ77//Pl577TUAwM6dO/Huu+8iJycHv/32Gz7++GPodDo89NBDRtfl4+OD77//HlevXq31rp6nnnoKt2/fxiuvvIJhw4bB09NTmjdz5kzcvHkTkydPxk8//YQLFy5g9+7diI6OrlcyRERE1KYH3T745Fn980ecnJygUMg3l1u2bBlmzZqF8+fPIzg4GP/v//0/WFtbA7h3NuOzzz7DwoULsXjxYnh4eGDRokWYNm0aAKBdu3bYtm0bEhIScPfuXQQEBODTTz/FI488YnRdixYtwt///nf4+/tDo9FAFEWj9RwdHTF27Fh89tln2LBhg8E8T09P/Pjjj3j99dcxYsQIaDQadO3aFSNHjpR1PxMRkXy06YSlpRo4cGC1Z6/c7+mnn8bTTz9d47KZmZk1LpuZmWnw4Lh+/frh6NGjBnWmTZsmJUD3S01NRWpqqtF2AwICsG3bthrXS0REVBv+eStza9euhYODA44fP27pUJrUyy+/DAcHB0uHQUREMsUzLDK2ZcsW3LlzBwDQpUsX7N+/38IRNZ1FixZJ42w8PDwsHA0REckNExYZ8/LyMpgeOnRojWNIWrpOnTqhU6dOlg6DiIhkyqxLQmvWrIGPjw/UajXCwsJw6NChGutu27YNoaGhaNeuHezt7REcHIxPPvnEoI4oili4cCE8PDxga2uL8PBwnD9/3pzQiIiIqBUyOWFJTU1FbGws4uPjcfjwYQQFBSEyMhKFhYVG67u4uOCNN95AVlYWjh07hujoaERHR2P37t1SnRUrVuDdd9/FunXrcPDgQdjb2yMyMhJ37941f8se0FrPTNA9/H6JiFo3kxOW1atXY/r06YiOjkbPnj2xbt062NnZVbuVVW/o0KH461//iocffhj+/v6YNWsWAgMD8cMPPwC4d6BJTk7Gm2++iXHjxiEwMBAff/wxrl27hh07djRo4wBApVIBQIMfP0/yVlFRAQDSw/GIiKh1MWkMS0VFBbKzsxEXFyeVKRQKhIeHIysrq87lRVHEt99+i7Nnz2L58uUAgIsXLyI/Px/h4eFSPWdnZ4SFhSErK8vgial6Go0GGo1GmtbfgqvVaqW3Ft/P0dERBQUF0Ol0sLOzgyAINcZXUVGBO3fu1FinLWhp/aDT6VBYWAi1Wg1RFI3uA6bSt9EYbbUkgk6o9vn+Mkux1PdgsB+IMr2pshn6plX+Ppj4fWr/qK9t6v1Axn3cFPuBKW2ZlLBcv34dVVVVcHNzMyh3c3PDmTNnalzu1q1b8PLygkajgVKpxNq1a6W3Defn50ttPNimft6DkpKSkJiYWK18z549sLOzM7qMo6MjysrK+KCyVkqr1aKoqAjHjh1r1HbT09MbtT2584RntTKPq5a/a2vX5V0WXf+9/aCHRWOo0a7m65vW9ftg3veZXtrEb5dvxu/TXI25H5hy9aNZ7hJydHRETk4OSktLkZGRgdjYWPj5+WHo0KFmtRcXF4fY2FhpuqSkBN7e3hgxYgScnJxqXK6qqgqVlZU1jneorKzE/v37MWDAAFhZtd0bqFpaPwiCAJVK1ajJqFarRXp6OiIiIqTLim3B+uPrpc+CToDHVQ/keeVBVFh2jNCLvV+0yHoN9oMD71kkhjoNiq27TgO1yt+HfatNqq4VFUgv7Y4Ih3NQCbomCgrN8n2aqyn2A/0Vkvow6Wjk6uoKpVKJgoICg/KCggK4u7vXuJxCoUC3bt0AAMHBwTh9+jSSkpIwdOhQabmCggKD528UFBQgODjYaHs2NjawsbGpVq5SqWrtxLo6WKvVorKyEg4ODq3nl9IM7Ic/1bVPtTbGEhNRIVo8YbH0d6BSqZr2INUQzdg3rer3wczvUyXomnZfaAH925j7gSntmPQnqbW1NUJCQpCRkSGV6XQ6ZGRkoH///vVuR6fTSWNQfH194e7ubtBmSUkJDh48aFKbRERE1HqZfL4/NjYWUVFRCA0NRd++fZGcnIyysjJER0cDAKZOnQovLy8kJSUBuDfeJDQ0VHp53q5du/DJJ5/ggw8+AHDvdP7s2bOxZMkSBAQEwNfXFwsWLICnp6f0BmIiIiJq20xOWCZOnIiioiIsXLgQ+fn5CA4ORlpamjRo9tKlSwZjCcrKyjBjxgxcuXIFtra26NGjB/773/9i4sSJUp25c+eirKwML730EoqLizFw4ECkpaVBrVY3wiYSERFRS2fWiMqYmBjExMQYnffgm4CXLFmCJUuW1NqeIAhYtGgRFi1aZE44RERE1MrxHl8iIiKSPSYsREREJHtMWIiIiEj2mLAQERGR7DFhISIiItljwkJERESyx4SFiIiIZI8JCxEREckeExYiIiKSPSYsREREJHtMWIiIiEj2zHqXEFFr8Xb6OaPlglgFXwBr9v4CUVA2a0yvRnRv1vUREbUEPMNCREREsseEhYiIiGSPCQsRERHJHhMWIiIikj0mLERERCR7TFiIiIhI9piwEBERkewxYSEiIiLZY8JCREREsseEhYiIiGSPCQsRERHJHhMWIiIikj0mLERERCR7TFiIiIhI9piwEBERkewxYSEiIiLZY8JCREREsseEhYiIiGSPCQsRERHJHhMWIiIikj0rSwdARIbeTj9nsXUfLrkhfbaCAuOtPC0WCxHR/XiGhYiIiGSPCQsRERHJHhMWIiIikj0mLERERCR7TFiIiIhI9sxKWNasWQMfHx+o1WqEhYXh0KFDNdb96KOPMGjQILRv3x7t27dHeHh4tfrTpk2DIAgGPyNHjjQnNCIiImqFTE5YUlNTERsbi/j4eBw+fBhBQUGIjIxEYWGh0fqZmZmYPHky9u7di6ysLHh7e2PEiBG4evWqQb2RI0ciLy9P+vn000/N2yIiIiJqdUxOWFavXo3p06cjOjoaPXv2xLp162BnZ4cNGzYYrb9lyxbMmDEDwcHB6NGjB9avXw+dToeMjAyDejY2NnB3d5d+2rdvb94WERERUatj0oPjKioqkJ2djbi4OKlMoVAgPDwcWVlZ9WqjvLwcWq0WLi4uBuWZmZno1KkT2rdvj+HDh2PJkiXo0KGD0TY0Gg00Go00XVJSAgDQarXQarWmbJIB/bINaaM1aEv9IIhVtZbXNL+1srrvbxj9Z0EnWCociaX2RYPfBVGmQ/6aoW9a5f8JJn6f2j/qa5t6P5BxHzfFfmBKW4IoimJ9K1+7dg1eXl7Yv38/+vfvL5XPnTsX3333HQ4ePFhnGzNmzMDu3btx8uRJqNVqAMDWrVthZ2cHX19fXLhwAfPnz4eDgwOysrKgVCqrtZGQkIDExMRq5SkpKbCzs6vv5hAREZEFlZeX47nnnsOtW7fg5ORUa91mfTT/smXLsHXrVmRmZkrJCgBMmjRJ+ty7d28EBgbC398fmZmZeOKJJ6q1ExcXh9jYWGm6pKREGhtT1wbXRqvVIj09HREREVCpVGa309K1pX5Ys/cXo+WCWAWfuxeQq/aHKFRPmluro7e3SZ+toMAYq57I88qDqKj33zVN4sXeL1pkvQa/Cwfes0gMdRoUW3edBmqV/yfsW21Sda2oQHppd0Q4nINK0DVRUPKm7fePRt8P9FdI6sOkhMXV1RVKpRIFBQUG5QUFBXB3d6912ZUrV2LZsmX45ptvEBgYWGtdPz8/uLq64pdffjGasNjY2MDGxqZauUqlapRObKx2Wrq20A91JSOioGxTCUslqv9HLCpEiycslt4PVSqVfA9Szdg3rer/BDO/T5Wgk+++0NT++O4bcz8wpR2TLsZZW1sjJCTEYMCsfgDt/ZeIHrRixQosXrwYaWlpCA0NrXM9V65cwY0bN+Dh4WFKeERERNRKmTx6KDY2Fh999BE2b96M06dP45VXXkFZWRmio6MBAFOnTjUYlLt8+XIsWLAAGzZsgI+PD/Lz85Gfn4/S0lIAQGlpKebMmYMDBw4gNzcXGRkZGDduHLp164bIyMhG2kwiIiJqyUwewzJx4kQUFRVh4cKFyM/PR3BwMNLS0uDm5gYAuHTpEhSKP/OgDz74ABUVFXjmmWcM2omPj0dCQgKUSiWOHTuGzZs3o7i4GJ6enhgxYgQWL15s9LIPERERtT1mDbqNiYlBTEyM0XmZmZkG07m5ubW2ZWtri927d5sTBhEREbURMn2wABEREdGfmLAQERGR7DFhISIiItljwkJERESyx4SFiIiIZI8JCxEREckeExYiIiKSPSYsREREJHtMWIiIiEj2mLAQERGR7DFhISIiItljwkJERESyx4SFiIiIZI8JCxEREckeExYiIiKSPSYsREREJHtMWIiIiEj2mLAQERGR7DFhISIiItmzsnQA1LqszVlr6RCqmRE8w9IhUCu0tviYpUO4pxl+5wSdAE94Yv3x9RAVosnL83eQGgPPsBAREZHsMWEhIiIi2WPCQkRERLLHhIWIiIhkjwkLERERyR4TFiIiIpI93tZMzSrrwo1mX6em6Fyzr7M1OXTxJiqhs2gM93+Hr0Z0t2AkRGQpPMNCREREsseEhYiIiGSPl4SIiKhpXNx379/fb1k2DmoVeIaFiIiIZI8JCxEREckeExYiIiKSPSYsREREJHtMWIiIiEj2mLAQERGR7DFhISIiItljwkJERESyx4SFiIiIZM+shGXNmjXw8fGBWq1GWFgYDh06VGPdjz76CIMGDUL79u3Rvn17hIeHV6sviiIWLlwIDw8P2NraIjw8HOfPnzcnNCIiImqFTE5YUlNTERsbi/j4eBw+fBhBQUGIjIxEYWGh0fqZmZmYPHky9u7di6ysLHh7e2PEiBG4evWqVGfFihV49913sW7dOhw8eBD29vaIjIzE3bt3zd8yIiIiajVMfpfQ6tWrMX36dERHRwMA1q1bh6+//hobNmzAvHnzqtXfsmWLwfT69evx5ZdfIiMjA1OnToUoikhOTsabb76JcePGAQA+/vhjuLm5YceOHZg0aVK1NjUaDTQajTRdUlICANBqtdBqtaZukkS/bEPaaA0a0g+CTqh1vpUFrkIKYpXZy5izbEt2//ej/2yJ7+xB938Pzfn7afC7IBr2gyCXV7HV8TvXGPS/13X9fld3r4+0ouX3oYbSb0Nr2BZzNcUx0pS2BFEUxfpWrqiogJ2dHb744guMHz9eKo+KikJxcTG++uqrOtu4ffs2OnXqhM8//xxjxozBr7/+Cn9/fxw5cgTBwcFSvSFDhiA4OBjvvPNOtTYSEhKQmJhYrTwlJQV2dnb13RwiIiKyoPLycjz33HO4desWnJycaq1r0p8I169fR1VVFdzc3AzK3dzccObMmXq18frrr8PT0xPh4eEAgPz8fKmNB9vUz3tQXFwcYmNjpemSkhLpUlNdG1wbrVaL9PR0REREQKVSmd1OS9eQflh/fH2t8w9dvNmQ0MwS5PiUycsIYhV87l5ArtofoqBsgqjk6ejtbdJnKygwxqondlaeQiV0FozK8DucOaxbs63X4HfhwHsG89bfOtFscdSq64AmX4WgE+Bx1QN5XnkQFfX+Gxf4bT8A4EXnXk0UWfPRigqkl3ZHhMM5qATL/j5YirbfPxr9GKm/QlIfzXpOc9myZdi6dSsyMzOhVqvNbsfGxgY2NjbVylUqVaN0YmO109KZ0w91/WdmiQNfQxIOUVC2qYTF2PdTCZ3FE5b7vwNL/G6qVKpqBykRlc0eh1GmJBANJCpE0xKWP/qoNR3gVYKuVW2PSf743WvMY6Qp7Zh0Mc7V1RVKpRIFBQUG5QUFBXB3d6912ZUrV2LZsmXYs2cPAgMDpXL9cua0SURERG2DSQmLtbU1QkJCkJGRIZXpdDpkZGSgf//+NS63YsUKLF68GGlpaQgNDTWY5+vrC3d3d4M2S0pKcPDgwVrbJCIiorbD5EtCsbGxiIqKQmhoKPr27Yvk5GSUlZVJdw1NnToVXl5eSEpKAgAsX74cCxcuREpKCnx8fKRxKQ4ODnBwcIAgCJg9ezaWLFmCgIAA+Pr6YsGCBfD09DQY2EtERERtl8kJy8SJE1FUVISFCxciPz8fwcHBSEtLkwbNXrp0CQrFnyduPvjgA1RUVOCZZ54xaCc+Ph4JCQkAgLlz56KsrAwvvfQSiouLMXDgQKSlpTVonAsRERG1HmYNuo2JiUFMTIzReZmZmQbTubm5dbYnCAIWLVqERYsWmRMOERERtXJt9wk4RERE1GIwYSEiIiLZY8JCREREsseEhYiIiGSPCQsRERHJHhMWIiIikj0mLERERCR7TFiIiIhI9piwEBERkewxYSEiIiLZY8JCREREsseEhYiIiGSPCQsRERHJnllvayYiak6HS1Klz2tzOjTbegWdAE94Yv3x9RCLjzXbeomoOp5hISIiItljwkJERESyx4SFiIiIZI8JCxEREckeExYiIiKSPd4lRETUAJeL71h0/Vcu3GjydVhBgfFWnjh08SYqoav3cp1L/uibdk0TF7UtPMNCREREsseEhYiIiGSPCQsRERHJHhMWIiIikj0mLERERCR7TFiIiIhI9piwEBERkewxYSEiIiLZY8JCREREsseEhYiIiGSPCQsRERHJHhMWIiIikj0mLERERCR7TFiIiIhI9piwEBERkewxYSEiIiLZY8JCREREsseEhYiIiGTPrIRlzZo18PHxgVqtRlhYGA4dOlRj3ZMnT+Lpp5+Gj48PBEFAcnJytToJCQkQBMHgp0ePHuaERkRERK2QyQlLamoqYmNjER8fj8OHDyMoKAiRkZEoLCw0Wr+8vBx+fn5YtmwZ3N3da2z3kUceQV5envTzww8/mBoaERERtVJWpi6wevVqTJ8+HdHR0QCAdevW4euvv8aGDRswb968avUfe+wxPPbYYwBgdL4UiJVVrQlNS/B2+jlLh1DNqxHdLR0CERFRg5mUsFRUVCA7OxtxcXFSmUKhQHh4OLKyshoUyPnz5+Hp6Qm1Wo3+/fsjKSkJXbp0MVpXo9FAo9FI0yUlJQAArVYLrVZrdgz6Zc1tQxCrzF53UzFnWxrSD4JOqHW+lQWGTZnzveiXkeN32pTu/370ny3xndWmrn2sKdZ171/j/10qoWq2eIxpju/H3H1B3zdaUV77kDn029AatsVcDT1G1tZmfQiiKIr1rXzt2jV4eXlh//796N+/v1Q+d+5cfPfddzh48GCty/v4+GD27NmYPXu2Qfn//vc/lJaW4qGHHkJeXh4SExNx9epVnDhxAo6OjtXaSUhIQGJiYrXylJQU2NnZ1XdziIiIyILKy8vx3HPP4datW3Bycqq1rsmXhJrCqFGjpM+BgYEICwtD165d8dlnn+GFF16oVj8uLg6xsbHSdElJCby9vTFixIg6N7g2Wq0W6enpiIiIgEpl+l9Na/b+Yva6m8rMYd1MXqYh/bD++Ppa5x+6eNPkeBoqyPEpk5cRxCr43L2AXLU/REHZBFHJ09Hb26TPVlBgjFVP7Kw8hUroLBiVob6+Ls22LkEnwOOqB/K88iBe/tFonavFd5stHqPrdwpu8nWYuy94leQAAOK7hjZRZM1HKyqQXtodEQ7noBLk8/vQnLT9/tGgY6Qx+isk9WFSwuLq6gqlUomCggKD8oKCgkYdf9KuXTt0794dv/xiPAGwsbGBjY1NtXKVStUonWhuO3I8sDWkP8zpB1FR+wk7Sxz4GvK9iIJSlt9rUzH2/VRCJ6uEpa59rKnWKaLS6LwqNN7pcXM053dj6r6g75vWdIBXCbpWtT0m+eN40FjHWn1b9WXSxThra2uEhIQgIyNDKtPpdMjIyDC4RNRQpaWluHDhAjw8PBqtTSIiImq5TL4kFBsbi6ioKISGhqJv375ITk5GWVmZdNfQ1KlT4eXlhaSkJAD3BuqeOnVK+nz16lXk5OTAwcEB3brdu1zx2muvYezYsejatSuuXbuG+Ph4KJVKTJ48ubG2k4iIiFowkxOWiRMnoqioCAsXLkR+fj6Cg4ORlpYGNzc3AMClS5egUPx54ubatWt49NFHpemVK1di5cqVGDJkCDIzMwEAV65cweTJk3Hjxg107NgRAwcOxIEDB9CxY8cGbh4RERG1BmYNuo2JiUFMTIzRefokRM/Hxwd13Yi0detWc8IgIiKiNkIWdwkRmatzSXaddfoV3zK5XZ2gxPUOA/DYlU1QtMJnsRzo8pKlQyAiMknbfQIOERERtRhMWIiIiEj2mLAQERGR7DFhISIiItljwkJERESyx4SFiIiIZI8JCxEREcken8NCrd7/pzD9LdpKqPAYBuB/wq+oEprm5XZP6kx/kzYRUVvFMyxEREQke0xYiIiISPaYsBAREZHscQwLERE1qaxfb1g6BAP9/TpYOgQyA8+wEBERkewxYSEiIiLZY8JCREREsseEhYiIiGSPCQsRERHJHhMWIiIikj0mLERERCR7TFiIiIhI9piwEBERkewxYSEiIiLZY8JCREREsseEhYiIiGSPCQsRERHJHhMWIiIikj0mLERERCR7TFiIiIhI9piwEBERkexZWToAorbq/1P8YrF1XylJtdi6qe2x5L5uzJHiq5jRLtDSYZCJeIaFiIiIZI8JCxEREckeExYiIiKSPY5hIaIWJevCjWZblxUUGG/liUMXb8K95E6zrZeIquMZFiIiIpI9JixEREQke0xYiIiISPbMSljWrFkDHx8fqNVqhIWF4dChQzXWPXnyJJ5++mn4+PhAEAQkJyc3uE0iIiJqW0xOWFJTUxEbG4v4+HgcPnwYQUFBiIyMRGFhodH65eXl8PPzw7Jly+Du7t4obRIREVHbYnLCsnr1akyfPh3R0dHo2bMn1q1bBzs7O2zYsMFo/cceewxvvfUWJk2aBBsbm0Zpk4iIiNoWk25rrqioQHZ2NuLi4qQyhUKB8PBwZGVlmRWAOW1qNBpoNBppuqSkBACg1Wqh1WrNikO//P3/mkoQq8xed1MxZ1sa0g+CTqh1vlUjD5tSQtWo7ekp/mhX0UTtW1p9vgd9ncb+zlqS+/ugqfa1hmqO78fcfUGufSbAClrRtG3R1zd1udakocfI2tqsD5MSluvXr6Oqqgpubm4G5W5ubjhz5owpTTWozaSkJCQmJlYr37NnD+zs7MyK437p6elmLefb4DU3vl27zpm9rDn94AnPWuePt6p9vslcejVuew8IcZnYpO1bymMm1B1j1bPJ4mgpxlj1BFzk2Q+mfJcNZfK+0MS/nw2x67Z5y6WXdm/cQFqSP44J5h4jjSkvL6933Rb54Li4uDjExsZK0yUlJfD29saIESPg5ORkdrtarRbp6emIiIiASmX6XwZr9srrBV8AMHNYN5OXaUg/rD++vtb5hy7eNDme2niV5DRqe3oKqBDiMhHZN1OhQ+P9NSEXV52C66xjBQXGWPXEzspTqISu6YOSofv7wK3ksKXDMao+32VDmbsvNNXvZ0N5tVPjRWfTkimtqEB6aXdEOJyDSmibvw/afv9o0DHSGP0VkvowKWFxdXWFUqlEQUGBQXlBQUGNA2qbok0bGxuj42FUKlWjdKK57YiCssHrbmwN6Q9z+kFUiLXOb+wDX1UTJxM6aJt8HZZgyvdQCV2bTVj0KqGT7X7QnN+NqfuCXPtMhJXZSYdK0LXZhAV/HA8a61irb6u+TLoYZ21tjZCQEGRkZEhlOp0OGRkZ6N+/vylNNWmbRERE1LqYfEkoNjYWUVFRCA0NRd++fZGcnIyysjJER0cDAKZOnQovLy8kJSUBuDeo9tSpU9Lnq1evIicnBw4ODujWrVu92iQiIqK2zeSEZeLEiSgqKsLChQuRn5+P4OBgpKWlSYNmL126BIXizxM3165dw6OPPipNr1y5EitXrsSQIUOQmZlZrzaJiIiobTNr0G1MTAxiYmKMztMnIXo+Pj4QxdrHNdTVJhEREbVtbfeGciIiImoxmLAQERGR7DFhISIiItlrkQ+Oa25rc9bWq97hkhtNHInp1uZ0MHkZQSfAE55Yf3x9nc9VISIiag5MWIhINjqXZFs6BANKqACXXvAqyYH83hR2T3P0mWE/yPNhcNT68ZIQERERyR7PsLRyWRdMv0xlBQXGW3ni0MWbbf6R7EREJA88w0JERESyx4SFiIiIZI8JCxEREckeExYiIiKSPSYsREREJHtMWIiIiEj2mLAQERGR7DFhISIiItljwkJERESyx4SFiIiIZI8JCxEREckeExYiIiKSPSYsREREJHtMWIiIiEj2rCwdABE1v84l2XXWUUIFuPSCV0kOqqBthqiIiGrGMyxEREQke0xYiIiISPaYsBAREZHsMWEhIiIi2WPCQkRERLLHhIWIiIhkjwkLERERyR4TFiIiIpI9JixEREQke0xYiIiISPaYsBAREZHsMWEhIiIi2WPCQkRERLLHhIWIiIhkjwkLERERyR4TFiIiIpI9sxKWNWvWwMfHB2q1GmFhYTh06FCt9T///HP06NEDarUavXv3xq5duwzmT5s2DYIgGPyMHDnSnNCIiIioFbIydYHU1FTExsZi3bp1CAsLQ3JyMiIjI3H27Fl06tSpWv39+/dj8uTJSEpKwpgxY5CSkoLx48fj8OHD6NWrl1Rv5MiR2LhxozRtY2Nj5iZRU+hckm3pEIiIqA0z+QzL6tWrMX36dERHR6Nnz55Yt24d7OzssGHDBqP133nnHYwcORJz5szBww8/jMWLF6NPnz54//33DerZ2NjA3d1d+mnfvr15W0REREStjklnWCoqKpCdnY24uDipTKFQIDw8HFlZWUaXycrKQmxsrEFZZGQkduzYYVCWmZmJTp06oX379hg+fDiWLFmCDh06GG1To9FAo9FI0yUlJQAArVYLrVZryiYZ0C/7YBuCTqjX8latZEiQfjvu3x4lVJYKxyIUf2yvoo1t9/3YB+wDvdbWDwKsoBVN+/9aX9/U5VqTmo6RjdFmfZiUsFy/fh1VVVVwc3MzKHdzc8OZM2eMLpOfn2+0fn5+vjQ9cuRIPPXUU/D19cWFCxcwf/58jBo1CllZWVAqldXaTEpKQmJiYrXyPXv2wM7OzpRNMio9Pd1g2hOe9VpuvFX96rUUY6x6/jnh0qvmiq1YiMtES4dgcewD9oFea+qHXbfNWy69tHvjBtKS/HFsfPAY2RDl5eX1rmvyGJamMGnSJOlz7969ERgYCH9/f2RmZuKJJ56oVj8uLs7grE1JSQm8vb0xYsQIODk5mR2HVqtFeno6IiIioFL9+ZfE+uPr67X8oYs3zV63nFhBgTFWPbGz8hQqoQMAeJXkWDaoZqaACiEuE5F9MxU6NN5fEy0J+4B9oNfa+sGrnRovOpv2R5hWVCC9tDsiHM5BJeiaKDJ50/b7h9FjZEPor5DUh0kJi6urK5RKJQoKCgzKCwoK4O7ubnQZd3d3k+oDgJ+fH1xdXfHLL78YTVhsbGyMDspVqVSN0okPtiMqxHotpz+4txaV0EnbVNUK/pMyhw7aNrvteuwD9oFea+kHEVZmJx0qQddmExb8cVxsrGOtvq36MulinLW1NUJCQpCRkSGV6XQ6ZGRkoH///kaX6d+/v0F94N7ppJrqA8CVK1dw48YNeHh4mBIeERERtVImjx6KjY3FRx99hM2bN+P06dN45ZVXUFZWhujoaADA1KlTDQblzpo1C2lpaVi1ahXOnDmDhIQE/Pzzz4iJiQEAlJaWYs6cOThw4AByc3ORkZGBcePGoVu3boiMjGykzSQiIqKWzOQxLBMnTkRRUREWLlyI/Px8BAcHIy0tTRpYe+nSJSgUf+ZBAwYMQEpKCt58803Mnz8fAQEB2LFjh/QMFqVSiWPHjmHz5s0oLi6Gp6cnRowYgcWLF/NZLERERATAzEG3MTEx0hmSB2VmZlYre/bZZ/Hss88arW9ra4vdu3ebEwYRERG1EW33hnIiIiJqMZiwEBERkewxYSEiIiLZY8JCREREsseEhYiIiGSPCQsRERHJHhMWIiIikj0mLERERCR7TFiIiIhI9piwEBERkewxYSEiIiLZY8JCREREsseEhYiIiGSPCQsRERHJHhMWIiIikj0mLERERCR7TFiIiIhI9piwEBERkewxYSEiIiLZY8JCREREsseEhYiIiGSPCQsRERHJHhMWIiIikj0mLERERCR7TFiIiIhI9piwEBERkewxYSEiIiLZY8JCREREsseEhYiIiGSPCQsRERHJHhMWIiIikj0mLERERCR7TFiIiIhI9piwEBERkewxYSEiIiLZY8JCREREsseEhYiIiGSPCQsRERHJnlkJy5o1a+Dj4wO1Wo2wsDAcOnSo1vqff/45evToAbVajd69e2PXrl0G80VRxMKFC+Hh4QFbW1uEh4fj/Pnz5oRGRERErZDJCUtqaipiY2MRHx+Pw4cPIygoCJGRkSgsLDRaf//+/Zg8eTJeeOEFHDlyBOPHj8f48eNx4sQJqc6KFSvw7rvvYt26dTh48CDs7e0RGRmJu3fvmr9lRERE1GqYnLCsXr0a06dPR3R0NHr27Il169bBzs4OGzZsMFr/nXfewciRIzFnzhw8/PDDWLx4Mfr06YP3338fwL2zK8nJyXjzzTcxbtw4BAYG4uOPP8a1a9ewY8eOBm0cERERtQ5WplSuqKhAdnY24uLipDKFQoHw8HBkZWUZXSYrKwuxsbEGZZGRkVIycvHiReTn5yM8PFya7+zsjLCwMGRlZWHSpEnV2tRoNNBoNNL0rVu3AAA3b96EVqs1ZZMMaLValJeX48aNG1CpVFL53ZL6nenRlVeYvW450UGBcqty6CoroIMOAFB5x8JBNTMdgPLycmjv4I8eaHvYB+wDvdbWD3etdbhhZdr/11pRce/4IFRAJbSGXjCd9sYNo8fIhrh9+zaAeycv6mJSwnL9+nVUVVXBzc3NoNzNzQ1nzpwxukx+fr7R+vn5+dJ8fVlNdR6UlJSExMTEauW+vr712xCq08eWDkAWvrB0ADLAPmAf6LWufviXpQNokRKarOXbt2/D2dm51jomJSxyERcXZ3DWRqfT4ebNm+jQoQMEQTC73ZKSEnh7e+Py5ctwcnJqjFBbJPYD+wBgHwDsAz32A/sAaJo+EEURt2/fhqenZ511TUpYXF1doVQqUVBQYFBeUFAAd3d3o8u4u7vXWl//b0FBATw8PAzqBAcHG23TxsYGNjY2BmXt2rUzZVNq5eTk1GZ3yPuxH9gHAPsAYB/osR/YB0Dj90FdZ1b0TBp0a21tjZCQEGRkZEhlOp0OGRkZ6N+/v9Fl+vfvb1AfANLT06X6vr6+cHd3N6hTUlKCgwcP1tgmERERtS0mXxKKjY1FVFQUQkND0bdvXyQnJ6OsrAzR0dEAgKlTp8LLywtJSUkAgFmzZmHIkCFYtWoVRo8eja1bt+Lnn3/Gv//9bwCAIAiYPXs2lixZgoCAAPj6+mLBggXw9PTE+PHjG29LiYiIqMUyOWGZOHEiioqKsHDhQuTn5yM4OBhpaWnSoNlLly5BofjzxM2AAQOQkpKCN998E/Pnz0dAQAB27NiBXr16SXXmzp2LsrIyvPTSSyguLsbAgQORlpYGtVrdCJtYfzY2NoiPj692uamtYT+wDwD2AcA+0GM/sA8Ay/eBINbnXiIiIiIiC+K7hIiIiEj2mLAQERGR7DFhISIiItljwkJERESyx4SFiIiIZI8JSy2efPJJdOnSBWq1Gh4eHvjb3/6Ga9euWTqsZpObm4sXXngBvr6+sLW1hb+/P+Lj41FR0Tpe8lhfS5cuxYABA2BnZ9eoT1SWuzVr1sDHxwdqtRphYWE4dOiQpUNqVt9//z3Gjh0LT09PCILQ5t4en5SUhMceewyOjo7o1KkTxo8fj7Nnz1o6rGb3wQcfIDAwUHq6a//+/fG///3P0mFZ1LJly6RnqDUnJiy1GDZsGD777DOcPXsWX375JS5cuIBnnnnG0mE1mzNnzkCn0+HDDz/EyZMn8fbbb2PdunWYP3++pUNrVhUVFXj22WfxyiuvWDqUZpOamorY2FjEx8fj8OHDCAoKQmRkJAoLCy0dWrMpKytDUFAQ1qxZY+lQLOK7777DzJkzceDAAaSnp0Or1WLEiBEoKyuzdGjNqnPnzli2bBmys7Px888/Y/jw4Rg3bhxOnjxp6dAs4qeffsKHH36IwMDA5l+5SPX21VdfiYIgiBUVFZYOxWJWrFgh+vr6WjoMi9i4caPo7Oxs6TCaRd++fcWZM2dK01VVVaKnp6eYlJRkwagsB4C4fft2S4dhUYWFhSIA8bvvvrN0KBbXvn17cf369ZYOo9ndvn1bDAgIENPT08UhQ4aIs2bNatb18wxLPd28eRNbtmzBgAEDoFKpLB2Oxdy6dQsuLi6WDoOaUEVFBbKzsxEeHi6VKRQKhIeHIysry4KRkSXdunULANr0739VVRW2bt2KsrKyNvmuu5kzZ2L06NEG/zc0JyYsdXj99ddhb2+PDh064NKlS/jqq68sHZLF/PLLL3jvvffw97//3dKhUBO6fv06qqqqpNdt6Lm5uSE/P99CUZEl6XQ6zJ49G48//rjBa1XaiuPHj8PBwQE2NjZ4+eWXsX37dvTs2dPSYTWrrVu34vDhw9J7Ai2hzSUs8+bNgyAItf6cOXNGqj9nzhwcOXIEe/bsgVKpxNSpUyG28LcZmNoHAHD16lWMHDkSzz77LKZPn26hyBuPOX1A1FbNnDkTJ06cwNatWy0dikU89NBDyMnJwcGDB/HKK68gKioKp06dsnRYzeby5cuYNWsWtmzZ0uzv+Ltfm3uXUFFREW7cuFFrHT8/P1hbW1crv3LlCry9vbF///4WfTrQ1D64du0ahg4din79+mHTpk0GL7dsqczZDzZt2oTZs2ejuLi4iaOzrIqKCtjZ2eGLL74weGN6VFQUiouL2+RZRkEQsH379jb5BvmYmBh89dVX+P777+Hr62vpcGQhPDwc/v7++PDDDy0dSrPYsWMH/vrXv0KpVEplVVVVEAQBCoUCGo3GYF5TMfltzS1dx44d0bFjR7OW1el0AACNRtOYITU7U/rg6tWrGDZsGEJCQrBx48ZWkawADdsPWjtra2uEhIQgIyNDOkDrdDpkZGQgJibGssFRsxFFEf/4xz+wfft2ZGZmMlm5j06na/HHAVM88cQTOH78uEFZdHQ0evTogddff71ZkhWgDSYs9XXw4EH89NNPGDhwINq3b48LFy5gwYIF8Pf3b9FnV0xx9epVDB06FF27dsXKlStRVFQkzXN3d7dgZM3r0qVLuHnzJi5duoSqqirk5OQAALp16wYHBwfLBtdEYmNjERUVhdDQUPTt2xfJyckoKytDdHS0pUNrNqWlpfjll1+k6YsXLyInJwcuLi7o0qWLBSNrHjNnzkRKSgq++uorODo6SuOXnJ2dYWtra+Homk9cXBxGjRqFLl264Pbt20hJSUFmZiZ2795t6dCajaOjY7WxS/qxnc06pqlZ70lqQY4dOyYOGzZMdHFxEW1sbEQfHx/x5ZdfFq9cuWLp0JrNxo0bRQBGf9qSqKgoo32wd+9eS4fWpN577z2xS5cuorW1tdi3b1/xwIEDlg6pWe3du9fo9x4VFWXp0JpFTb/7GzdutHRozer5558Xu3btKlpbW4sdO3YUn3jiCXHPnj2WDsviLHFbc5sbw0JEREQtT+sYkEBEREStGhMWIiIikj0mLERERCR7TFiIiIhI9piwEBERkewxYSEiIiLZY8JCREREsseEhYiIiGSPCQsRERHJHhMWIiIikj0mLERERCR7/z9HhY5nYwKkDgAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for ctrl_s in ctrl_str:\n",
" plt.hist(\n",
" [r for r, t in zip(logs[\"env/reward_dist\"], task_list) if t == ctrl_s],\n",
" density=True,\n",
" alpha=0.5,\n",
" label=ctrl_s,\n",
" )\n",
"plt.legend(loc=\"best\")\n",
"plt.title(\"reward distribution\")\n",
"plt.grid(True)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Save model\n",
"Finally, we save the model to disk for later usage."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gpt2_model.save_pretrained(\"gpt2-imdb-ctrl\")\n",
"gpt2_tokenizer.save_pretrained(\"gpt2-imdb-ctrl\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "trl",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
},
"vscode": {
"interpreter": {
"hash": "d2cfb53525227c89f8d14fa784301fa46c451cc9223d94ccce9e17956835eea2"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|