Spaces:
Paused
Paused
File size: 11,890 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Any, Optional, Union
import evaluate
import numpy as np
import torch
import torch.nn as nn
from datasets import load_dataset
from peft import LoraConfig, TaskType, get_peft_model
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
HfArgumentParser,
PreTrainedTokenizerBase,
Trainer,
TrainerCallback,
TrainingArguments,
set_seed,
)
from transformers.utils import PaddingStrategy
# Define and parse arguments.
@dataclass
class ScriptArguments:
"""
These arguments vary depending on how many GPUs you have, what their capacity and features are, and what size model you want to train.
"""
local_rank: Optional[int] = field(default=-1, metadata={"help": "Used for multi-gpu"})
resume_from_checkpoint: Optional[bool] = field(
default=False,
metadata={"help": "If you want to resume training where it left off."},
)
deepspeed: Optional[str] = field(
default=None,
metadata={
"help": "Path to deepspeed config if using deepspeed. You may need this if the model that you want to train doesn't fit on a single GPU."
},
)
per_device_train_batch_size: Optional[int] = field(default=4)
per_device_eval_batch_size: Optional[int] = field(default=1)
gradient_accumulation_steps: Optional[int] = field(default=1)
learning_rate: Optional[float] = field(default=2e-5)
weight_decay: Optional[float] = field(default=0.001)
model_name: Optional[str] = field(
default="gpt2",
metadata={
"help": "The model that you want to train from the Hugging Face hub. E.g. gpt2, gpt2-xl, bert, etc."
},
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={
"help": "The tokenizer for your model, if left empty will use the default for your model",
},
)
bf16: Optional[bool] = field(
default=True,
metadata={
"help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU."
},
)
num_train_epochs: Optional[int] = field(
default=1,
metadata={"help": "The number of training epochs for the reward model."},
)
train_subset: Optional[int] = field(
default=100000,
metadata={"help": "The size of the subset of the training data to use"},
)
eval_subset: Optional[int] = field(
default=50000,
metadata={"help": "The size of the subset of the eval data to use"},
)
gradient_checkpointing: Optional[bool] = field(
default=False,
metadata={"help": "Enables gradient checkpointing."},
)
optim: Optional[str] = field(
default="adamw_hf",
metadata={"help": "The optimizer to use."},
)
lr_scheduler_type: Optional[str] = field(
default="linear",
metadata={"help": "The lr scheduler"},
)
max_length: Optional[int] = field(default=512)
eval_first_step: Optional[bool] = field(
default=False,
metadata={"help": "Whether to run eval after the first step"},
)
seed: Optional[int] = field(
default=0, metadata={"help": "Random seed that will be set at the beginning of training."}
)
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
set_seed(script_args.seed)
# Load the human stack-exchange-paired dataset for tuning the reward model.
train_dataset = load_dataset(
"lvwerra/stack-exchange-paired", data_dir="data/reward", split="train", verification_mode="no_checks"
)
if script_args.train_subset > 0:
train_dataset = train_dataset.select(range(script_args.train_subset))
eval_dataset = load_dataset(
"lvwerra/stack-exchange-paired", data_dir="data/evaluation", split="train", verification_mode="no_checks"
)
if script_args.eval_subset > 0:
eval_dataset = eval_dataset.select(range(script_args.eval_subset))
# Define the training args. Needs to be done before the model is loaded if you are using deepspeed.
model_name_split = script_args.model_name.split("/")[-1]
output_name = (
f"{model_name_split}_peft_stack-exchange-paired_rmts__{script_args.train_subset}_{script_args.learning_rate}"
)
training_args = TrainingArguments(
output_dir=output_name,
learning_rate=script_args.learning_rate,
per_device_train_batch_size=script_args.per_device_train_batch_size,
per_device_eval_batch_size=script_args.per_device_eval_batch_size,
num_train_epochs=script_args.num_train_epochs,
weight_decay=script_args.weight_decay,
eval_strategy="steps",
eval_steps=500,
save_strategy="steps",
save_steps=500,
gradient_accumulation_steps=script_args.gradient_accumulation_steps,
gradient_checkpointing=script_args.gradient_checkpointing,
deepspeed=script_args.deepspeed,
local_rank=script_args.local_rank,
remove_unused_columns=False,
label_names=[],
bf16=script_args.bf16,
logging_strategy="steps",
logging_steps=10,
optim=script_args.optim,
lr_scheduler_type=script_args.lr_scheduler_type,
seed=script_args.seed,
)
# Load the value-head model and tokenizer.
tokenizer_name = script_args.tokenizer_name if script_args.tokenizer_name is not None else script_args.model_name
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_auth_token=True)
tokenizer.pad_token = tokenizer.eos_token
peft_config = LoraConfig(
task_type=TaskType.SEQ_CLS,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1,
)
model = AutoModelForSequenceClassification.from_pretrained(
script_args.model_name, num_labels=1, torch_dtype=torch.bfloat16
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
# Need to do this for gpt2, because it doesn't have an official pad token.
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = tokenizer.eos_token_id
model.config.use_cache = not script_args.gradient_checkpointing
num_proc = 24 # Can adjust to be higher if you have more processors.
original_columns = train_dataset.column_names
# Turn the dataset into pairs of post + summaries, where text_j is the preferred question + answer and text_k is the other.
# Then tokenize the dataset.
def preprocess_function(examples):
new_examples = {
"input_ids_j": [],
"attention_mask_j": [],
"input_ids_k": [],
"attention_mask_k": [],
}
for question, response_j, response_k in zip(examples["question"], examples["response_j"], examples["response_k"]):
tokenized_j = tokenizer("Question: " + question + "\n\nAnswer: " + response_j, truncation=True)
tokenized_k = tokenizer("Question: " + question + "\n\nAnswer: " + response_k, truncation=True)
new_examples["input_ids_j"].append(tokenized_j["input_ids"])
new_examples["attention_mask_j"].append(tokenized_j["attention_mask"])
new_examples["input_ids_k"].append(tokenized_k["input_ids"])
new_examples["attention_mask_k"].append(tokenized_k["attention_mask"])
return new_examples
# preprocess the dataset and filter out QAs that are longer than script_args.max_length
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=num_proc,
remove_columns=original_columns,
)
train_dataset = train_dataset.filter(
lambda x: len(x["input_ids_j"]) <= script_args.max_length and len(x["input_ids_k"]) <= script_args.max_length,
num_proc=num_proc,
)
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=num_proc,
remove_columns=original_columns,
)
eval_dataset = eval_dataset.filter(
lambda x: len(x["input_ids_j"]) <= script_args.max_length and len(x["input_ids_k"]) <= script_args.max_length,
num_proc=num_proc,
)
# We need to define a special data collator that batches the data in our j vs k format.
@dataclass
class RewardDataCollatorWithPadding:
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
pad_to_multiple_of: Optional[int] = None
return_tensors: str = "pt"
def __call__(self, features: list[dict[str, Any]]) -> dict[str, Any]:
features_j = []
features_k = []
for feature in features:
features_j.append(
{
"input_ids": feature["input_ids_j"],
"attention_mask": feature["attention_mask_j"],
}
)
features_k.append(
{
"input_ids": feature["input_ids_k"],
"attention_mask": feature["attention_mask_k"],
}
)
batch_j = self.tokenizer.pad(
features_j,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=self.return_tensors,
)
batch_k = self.tokenizer.pad(
features_k,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=self.return_tensors,
)
batch = {
"input_ids_j": batch_j["input_ids"],
"attention_mask_j": batch_j["attention_mask"],
"input_ids_k": batch_k["input_ids"],
"attention_mask_k": batch_k["attention_mask"],
"return_loss": True,
}
return batch
# Define the metric that we'll use for validation.
accuracy = evaluate.load("accuracy")
def compute_metrics(eval_pred):
predictions, _ = eval_pred
# Here, predictions is rewards_j and rewards_k.
# We want to see how much of the time rewards_j > rewards_k.
predictions = np.argmax(predictions, axis=0)
labels = np.zeros(predictions.shape)
return accuracy.compute(predictions=predictions, references=labels)
class RewardTrainer(Trainer):
# Define how to compute the reward loss. We use the InstructGPT pairwise logloss: https://huggingface.co/papers/2203.02155
def compute_loss(self, model, inputs, return_outputs=False):
rewards_j = model(input_ids=inputs["input_ids_j"], attention_mask=inputs["attention_mask_j"])[0]
rewards_k = model(input_ids=inputs["input_ids_k"], attention_mask=inputs["attention_mask_k"])[0]
loss = -nn.functional.logsigmoid(rewards_j - rewards_k).mean()
if return_outputs:
return loss, {"rewards_j": rewards_j, "rewards_k": rewards_k}
return loss
# Train the model, woohoo.
trainer = RewardTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
data_collator=RewardDataCollatorWithPadding(tokenizer=tokenizer),
)
if script_args.eval_first_step:
class EvaluateFirstStepCallback(TrainerCallback):
def on_step_end(self, args, state, control, **kwargs):
if state.global_step == 1:
control.should_evaluate = True
trainer.add_callback(EvaluateFirstStepCallback())
trainer.train(script_args.resume_from_checkpoint)
print("Saving last checkpoint of the model")
model.save_pretrained(output_name + "_peft_last_checkpoint")
|