Spaces:
Paused
Paused
File size: 7,600 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
python examples/scripts/ddpo.py \
--num_epochs=200 \
--train_gradient_accumulation_steps=1 \
--sample_num_steps=50 \
--sample_batch_size=6 \
--train_batch_size=3 \
--sample_num_batches_per_epoch=4 \
--per_prompt_stat_tracking=True \
--per_prompt_stat_tracking_buffer_size=32 \
--tracker_project_name="stable_diffusion_training" \
--log_with="wandb"
"""
import os
from dataclasses import dataclass, field
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import EntryNotFoundError
from transformers import CLIPModel, CLIPProcessor, HfArgumentParser, is_torch_npu_available, is_torch_xpu_available
from trl import DDPOConfig, DDPOTrainer, DefaultDDPOStableDiffusionPipeline
@dataclass
class ScriptArguments:
r"""
Arguments for the script.
Args:
pretrained_model (`str`, *optional*, defaults to `"runwayml/stable-diffusion-v1-5"`):
Pretrained model to use.
pretrained_revision (`str`, *optional*, defaults to `"main"`):
Pretrained model revision to use.
hf_hub_model_id (`str`, *optional*, defaults to `"ddpo-finetuned-stable-diffusion"`):
HuggingFace repo to save model weights to.
hf_hub_aesthetic_model_id (`str`, *optional*, defaults to `"trl-lib/ddpo-aesthetic-predictor"`):
Hugging Face model ID for aesthetic scorer model weights.
hf_hub_aesthetic_model_filename (`str`, *optional*, defaults to `"aesthetic-model.pth"`):
Hugging Face model filename for aesthetic scorer model weights.
use_lora (`bool`, *optional*, defaults to `True`):
Whether to use LoRA.
"""
pretrained_model: str = field(
default="runwayml/stable-diffusion-v1-5", metadata={"help": "Pretrained model to use."}
)
pretrained_revision: str = field(default="main", metadata={"help": "Pretrained model revision to use."})
hf_hub_model_id: str = field(
default="ddpo-finetuned-stable-diffusion", metadata={"help": "HuggingFace repo to save model weights to."}
)
hf_hub_aesthetic_model_id: str = field(
default="trl-lib/ddpo-aesthetic-predictor",
metadata={"help": "Hugging Face model ID for aesthetic scorer model weights."},
)
hf_hub_aesthetic_model_filename: str = field(
default="aesthetic-model.pth",
metadata={"help": "Hugging Face model filename for aesthetic scorer model weights."},
)
use_lora: bool = field(default=True, metadata={"help": "Whether to use LoRA."})
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(768, 1024),
nn.Dropout(0.2),
nn.Linear(1024, 128),
nn.Dropout(0.2),
nn.Linear(128, 64),
nn.Dropout(0.1),
nn.Linear(64, 16),
nn.Linear(16, 1),
)
@torch.no_grad()
def forward(self, embed):
return self.layers(embed)
class AestheticScorer(torch.nn.Module):
"""
This model attempts to predict the aesthetic score of an image. The aesthetic score
is a numerical approximation of how much a specific image is liked by humans on average.
This is from https://github.com/christophschuhmann/improved-aesthetic-predictor
"""
def __init__(self, *, dtype, model_id, model_filename):
super().__init__()
self.clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
self.mlp = MLP()
try:
cached_path = hf_hub_download(model_id, model_filename)
except EntryNotFoundError:
cached_path = os.path.join(model_id, model_filename)
state_dict = torch.load(cached_path, map_location=torch.device("cpu"), weights_only=True)
self.mlp.load_state_dict(state_dict)
self.dtype = dtype
self.eval()
@torch.no_grad()
def __call__(self, images):
device = next(self.parameters()).device
inputs = self.processor(images=images, return_tensors="pt")
inputs = {k: v.to(self.dtype).to(device) for k, v in inputs.items()}
embed = self.clip.get_image_features(**inputs)
# normalize embedding
embed = embed / torch.linalg.vector_norm(embed, dim=-1, keepdim=True)
return self.mlp(embed).squeeze(1)
def aesthetic_scorer(hub_model_id, model_filename):
scorer = AestheticScorer(
model_id=hub_model_id,
model_filename=model_filename,
dtype=torch.float32,
)
if is_torch_npu_available():
scorer = scorer.npu()
elif is_torch_xpu_available():
scorer = scorer.xpu()
else:
scorer = scorer.cuda()
def _fn(images, prompts, metadata):
images = (images * 255).round().clamp(0, 255).to(torch.uint8)
scores = scorer(images)
return scores, {}
return _fn
# list of example prompts to feed stable diffusion
animals = [
"cat",
"dog",
"horse",
"monkey",
"rabbit",
"zebra",
"spider",
"bird",
"sheep",
"deer",
"cow",
"goat",
"lion",
"frog",
"chicken",
"duck",
"goose",
"bee",
"pig",
"turkey",
"fly",
"llama",
"camel",
"bat",
"gorilla",
"hedgehog",
"kangaroo",
]
def prompt_fn():
return np.random.choice(animals), {}
def image_outputs_logger(image_data, global_step, accelerate_logger):
# For the sake of this example, we will only log the last batch of images
# and associated data
result = {}
images, prompts, _, rewards, _ = image_data[-1]
for i, image in enumerate(images):
prompt = prompts[i]
reward = rewards[i].item()
result[f"{prompt:.25} | {reward:.2f}"] = image.unsqueeze(0).float()
accelerate_logger.log_images(
result,
step=global_step,
)
if __name__ == "__main__":
parser = HfArgumentParser((ScriptArguments, DDPOConfig))
script_args, training_args = parser.parse_args_into_dataclasses()
training_args.project_kwargs = {
"logging_dir": "./logs",
"automatic_checkpoint_naming": True,
"total_limit": 5,
"project_dir": "./save",
}
pipeline = DefaultDDPOStableDiffusionPipeline(
script_args.pretrained_model,
pretrained_model_revision=script_args.pretrained_revision,
use_lora=script_args.use_lora,
)
trainer = DDPOTrainer(
training_args,
aesthetic_scorer(script_args.hf_hub_aesthetic_model_id, script_args.hf_hub_aesthetic_model_filename),
prompt_fn,
pipeline,
image_samples_hook=image_outputs_logger,
)
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)
|