Spaces:
Paused
Paused
File size: 3,962 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Optional
from datasets import load_dataset
from transformers import HfArgumentParser
from vllm import LLM, SamplingParams
from trl import HfPairwiseJudge, OpenAIPairwiseJudge
"""
Examples:
python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/rloo_tldr --num_examples 1000
Model win rate: 31.40%
python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/rloo_tldr --judge_model gpt-3.5-turbo-0125 --num_examples 1000
Model win rate: 51.60%
python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/rloo_tldr --judge_model gpt-4o-mini --num_examples 1000
Model win rate: 51.20%
python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/ppo_tldr --num_examples 1000
Model win rate: 46.30%
python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/ppo_tldr --judge_model gpt-3.5-turbo-0125 --num_examples 1000
Model win rate: 52.50%
python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/ppo_tldr --judge_model gpt-4o-mini --num_examples 1000
Model win rate: 63.00%
"""
@dataclass
class ScriptArguments:
r"""
Arguments for the script.
Args:
model_name_or_path (`str`):
Model name or path to the model to evaluate.
judge_model (`str`, *optional*, defaults to `"meta-llama/Meta-Llama-3-70B-Instruct"`):
Model name or path to the model to use as a judge. E.g., 'gpt-3.5-turbo-0125' or
'meta-llama/Meta-Llama-3-70B-Instruct'.
num_examples (`int` or `None`, *optional*, defaults to `None`):
Number of examples to evaluate.
"""
model_name_or_path: str = field(metadata={"help": "Model name or path to the model to evaluate."})
judge_model: str = field(
default="meta-llama/Meta-Llama-3-70B-Instruct",
metadata={
"help": "Model name or path to the model to use as a judge. E.g., 'gpt-3.5-turbo-0125' or "
"'meta-llama/Meta-Llama-3-70B-Instruct'."
},
)
num_examples: Optional[int] = field(default=None, metadata={"help": "Number of examples to evaluate."})
# Parse the arguments
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
# Load the dataset
dataset = load_dataset("trl-lib/tldr", split="validation")
if script_args.num_examples is not None:
dataset = dataset.select(range(script_args.num_examples))
# Extract the prompts and reference completions
prompts = dataset["prompt"]
reference_completions = dataset["completion"]
# Generate the model completions
sampling_params = SamplingParams(temperature=0.0, top_p=0.95, max_tokens=200) # very generous max token length
llm = LLM(model=script_args.model_name_or_path, tensor_parallel_size=1)
outputs = llm.generate(prompts, sampling_params)
model_completions = [output.outputs[0].text.strip() for output in outputs]
# Judge the outputs
if "gpt" in script_args.judge_model:
judge = OpenAIPairwiseJudge(script_args.judge_model)
else:
judge = HfPairwiseJudge(script_args.judge_model)
completions = [[c0, c1] for c0, c1 in zip(reference_completions, model_completions)]
best_idxs = judge.judge(prompts, completions)
model_win_rate = best_idxs.count(1) / len(best_idxs)
print(f"Model win rate: {model_win_rate * 100:.2f}%")
|