Spaces:
Paused
Paused
File size: 8,399 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Train Gemma-3 on the HuggingFaceH4/llava-instruct-mix-vsft dataset (single-image).
accelerate launch \
--config_file examples/accelerate_configs/deepspeed_zero3.yaml \
examples/scripts/sft_vlm_gemma3.py \
--dataset_name HuggingFaceH4/llava-instruct-mix-vsft \
--model_name_or_path google/gemma-3-4b-it \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 1 \
--output_dir gemma-3-4b-it-trl-sft-llava-instruct-mix-vsft \
--bf16 \
--torch_dtype bfloat16 \
--use_peft \
--lora_target_modules all-linear \
--attn_implementation eager
Train Gemma-3 on the FanqingM/MMIU-Benchmark dataset (multi-image).
accelerate launch \
--config_file examples/accelerate_configs/deepspeed_zero3.yaml \
examples/scripts/sft_vlm_gemma3.py \
--dataset_name FanqingM/MMIU-Benchmark \
--dataset_train_split test \
--model_name_or_path google/gemma-3-4b-it \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 1 \
--output_dir gemma-3-4b-it-trl-sft-MMIU-Benchmark \
--bf16 \
--torch_dtype bfloat16 \
--use_peft \
--lora_target_modules all-linear
--attn_implementation eager
"""
import io
import os
import zipfile
import torch
from datasets import DatasetDict, load_dataset
from huggingface_hub import hf_hub_download, list_repo_files
from PIL import Image
from transformers import AutoModelForImageTextToText, AutoProcessor
from trl import (
ModelConfig,
ScriptArguments,
SFTConfig,
SFTTrainer,
TrlParser,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
)
# For multi-image example
def process_vision_info(messages: list[dict]) -> list[Image.Image]:
image_inputs = []
for msg in messages:
content = msg.get("content", [])
if not isinstance(content, list):
content = [content]
for element in content:
if isinstance(element, dict) and ("image" in element or element.get("type") == "image"):
if "image" in element:
image = element["image"]
else:
image = element
if image is not None:
image = Image.open(io.BytesIO(image["bytes"]))
image_inputs.append(image.convert("RGB"))
return image_inputs
def format_data(samples: dict[str, any]) -> dict[str, list]:
formatted_samples = {"messages": []}
for cont in range(len(samples["question"])):
images = []
for img_path in samples["input_image_path"][cont]:
try:
with open(img_path, "rb") as f:
img_bytes = f.read()
image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
images.append({"type": "image", "image": image})
except Exception as e:
print(f"Error processing image {img_path}: {e}")
continue
formatted_samples["messages"].append(
[
{"role": "system", "content": [{"type": "text", "text": samples["context"][cont]}]},
{"role": "user", "content": images + [{"type": "text", "text": samples["question"][cont]}]},
{"role": "assistant", "content": [{"type": "text", "text": samples["output"][cont]}]},
]
)
return formatted_samples
# For multi-image example
def prepare_dataset(dataset: DatasetDict, dataset_name: str, dataset_train_split: str) -> DatasetDict:
all_files = list_repo_files(dataset_name, repo_type="dataset")
zip_files = [f for f in all_files if f.endswith(".zip")]
for zip_filename in zip_files:
zip_path = hf_hub_download(repo_id=dataset_name, filename=zip_filename, repo_type="dataset")
extract_folder = zip_filename.replace(".zip", "")
os.makedirs(extract_folder, exist_ok=True)
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extract_folder)
dataset = dataset.map(format_data, batched=True, batch_size=4, num_proc=16)
return dataset
def main():
parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)
training_args.remove_unused_columns = False
training_args.dataset_kwargs = {"skip_prepare_dataset": True}
################
# Model, Tokenizer & Processor
################
torch_dtype = (
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
processor = AutoProcessor.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
processor.tokenizer.padding_side = "right"
model = AutoModelForImageTextToText.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs
)
def collate_fn(examples):
texts = [
processor.apply_chat_template(example["messages"], tokenize=False, add_generation_prompt=False).strip()
for example in examples
]
if "images" in examples[0]: # single-image
images = [[img.convert("RGB") for img in example["images"]] for example in examples]
else: # multi-image
images = [process_vision_info(example["messages"]) for example in examples]
# Tokenize the texts and process the images
batch = processor(
text=texts, images=images, return_tensors="pt", padding=True
) # Encode texts and images into tensors
# The labels are the input_ids, and we mask the padding tokens in the loss computation
labels = batch["input_ids"].clone() # Clone input IDs for labels
# Mask image tokens
image_token_id = [
processor.tokenizer.convert_tokens_to_ids(processor.tokenizer.special_tokens_map["boi_token"])
]
# Mask tokens for not being used in the loss computation
labels[labels == processor.tokenizer.pad_token_id] = -100
labels[labels == image_token_id] = -100
labels[labels == 262144] = -100
batch["labels"] = labels
return batch # Return the prepared batch
################
# Dataset
################
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
if script_args.dataset_name == "FanqingM/MMIU-Benchmark":
dataset = prepare_dataset(dataset, script_args.dataset_name, script_args.dataset_train_split)
################
# Training
################
trainer = SFTTrainer(
model=model,
args=training_args,
data_collator=collate_fn,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
processing_class=processor.tokenizer,
peft_config=get_peft_config(model_args),
)
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)
if trainer.accelerator.is_main_process:
processor.push_to_hub(training_args.hub_model_id)
if __name__ == "__main__":
main()
|