File size: 8,399 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Train Gemma-3 on the HuggingFaceH4/llava-instruct-mix-vsft dataset (single-image).

accelerate launch \
    --config_file examples/accelerate_configs/deepspeed_zero3.yaml \
    examples/scripts/sft_vlm_gemma3.py \
    --dataset_name HuggingFaceH4/llava-instruct-mix-vsft \
    --model_name_or_path google/gemma-3-4b-it \
    --per_device_train_batch_size 1 \
    --gradient_accumulation_steps 1 \
    --output_dir gemma-3-4b-it-trl-sft-llava-instruct-mix-vsft \
    --bf16 \
    --torch_dtype bfloat16 \
    --use_peft \
    --lora_target_modules all-linear \
    --attn_implementation eager

Train Gemma-3 on the FanqingM/MMIU-Benchmark dataset (multi-image).

accelerate launch \
    --config_file examples/accelerate_configs/deepspeed_zero3.yaml \
    examples/scripts/sft_vlm_gemma3.py \
    --dataset_name FanqingM/MMIU-Benchmark \
    --dataset_train_split test \
    --model_name_or_path google/gemma-3-4b-it \
    --per_device_train_batch_size 1 \
    --gradient_accumulation_steps 1 \
    --output_dir gemma-3-4b-it-trl-sft-MMIU-Benchmark \
    --bf16 \
    --torch_dtype bfloat16 \
    --use_peft \
    --lora_target_modules all-linear
    --attn_implementation eager
"""

import io
import os
import zipfile

import torch
from datasets import DatasetDict, load_dataset
from huggingface_hub import hf_hub_download, list_repo_files
from PIL import Image
from transformers import AutoModelForImageTextToText, AutoProcessor

from trl import (
    ModelConfig,
    ScriptArguments,
    SFTConfig,
    SFTTrainer,
    TrlParser,
    get_kbit_device_map,
    get_peft_config,
    get_quantization_config,
)


# For multi-image example
def process_vision_info(messages: list[dict]) -> list[Image.Image]:
    image_inputs = []
    for msg in messages:
        content = msg.get("content", [])
        if not isinstance(content, list):
            content = [content]

        for element in content:
            if isinstance(element, dict) and ("image" in element or element.get("type") == "image"):
                if "image" in element:
                    image = element["image"]
                else:
                    image = element
                if image is not None:
                    image = Image.open(io.BytesIO(image["bytes"]))
                    image_inputs.append(image.convert("RGB"))
    return image_inputs


def format_data(samples: dict[str, any]) -> dict[str, list]:
    formatted_samples = {"messages": []}
    for cont in range(len(samples["question"])):
        images = []
        for img_path in samples["input_image_path"][cont]:
            try:
                with open(img_path, "rb") as f:
                    img_bytes = f.read()
                image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
                images.append({"type": "image", "image": image})
            except Exception as e:
                print(f"Error processing image {img_path}: {e}")
                continue

        formatted_samples["messages"].append(
            [
                {"role": "system", "content": [{"type": "text", "text": samples["context"][cont]}]},
                {"role": "user", "content": images + [{"type": "text", "text": samples["question"][cont]}]},
                {"role": "assistant", "content": [{"type": "text", "text": samples["output"][cont]}]},
            ]
        )
    return formatted_samples


# For multi-image example
def prepare_dataset(dataset: DatasetDict, dataset_name: str, dataset_train_split: str) -> DatasetDict:
    all_files = list_repo_files(dataset_name, repo_type="dataset")
    zip_files = [f for f in all_files if f.endswith(".zip")]

    for zip_filename in zip_files:
        zip_path = hf_hub_download(repo_id=dataset_name, filename=zip_filename, repo_type="dataset")
        extract_folder = zip_filename.replace(".zip", "")
        os.makedirs(extract_folder, exist_ok=True)

        with zipfile.ZipFile(zip_path, "r") as zip_ref:
            zip_ref.extractall(extract_folder)

    dataset = dataset.map(format_data, batched=True, batch_size=4, num_proc=16)
    return dataset


def main():
    parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig))
    script_args, training_args, model_args = parser.parse_args_and_config()
    training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)
    training_args.remove_unused_columns = False
    training_args.dataset_kwargs = {"skip_prepare_dataset": True}

    ################
    # Model, Tokenizer & Processor
    ################
    torch_dtype = (
        model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
    )
    quantization_config = get_quantization_config(model_args)
    model_kwargs = dict(
        revision=model_args.model_revision,
        attn_implementation=model_args.attn_implementation,
        torch_dtype=torch_dtype,
        device_map=get_kbit_device_map() if quantization_config is not None else None,
        quantization_config=quantization_config,
    )
    processor = AutoProcessor.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
    )
    processor.tokenizer.padding_side = "right"

    model = AutoModelForImageTextToText.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs
    )

    def collate_fn(examples):
        texts = [
            processor.apply_chat_template(example["messages"], tokenize=False, add_generation_prompt=False).strip()
            for example in examples
        ]
        if "images" in examples[0]:  # single-image
            images = [[img.convert("RGB") for img in example["images"]] for example in examples]
        else:  # multi-image
            images = [process_vision_info(example["messages"]) for example in examples]

        # Tokenize the texts and process the images
        batch = processor(
            text=texts, images=images, return_tensors="pt", padding=True
        )  # Encode texts and images into tensors

        # The labels are the input_ids, and we mask the padding tokens in the loss computation
        labels = batch["input_ids"].clone()  # Clone input IDs for labels
        # Mask image tokens
        image_token_id = [
            processor.tokenizer.convert_tokens_to_ids(processor.tokenizer.special_tokens_map["boi_token"])
        ]
        # Mask tokens for not being used in the loss computation
        labels[labels == processor.tokenizer.pad_token_id] = -100
        labels[labels == image_token_id] = -100
        labels[labels == 262144] = -100

        batch["labels"] = labels
        return batch  # Return the prepared batch

    ################
    # Dataset
    ################
    dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
    if script_args.dataset_name == "FanqingM/MMIU-Benchmark":
        dataset = prepare_dataset(dataset, script_args.dataset_name, script_args.dataset_train_split)

    ################
    # Training
    ################
    trainer = SFTTrainer(
        model=model,
        args=training_args,
        data_collator=collate_fn,
        train_dataset=dataset[script_args.dataset_train_split],
        eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
        processing_class=processor.tokenizer,
        peft_config=get_peft_config(model_args),
    )

    trainer.train()

    # Save and push to hub
    trainer.save_model(training_args.output_dir)
    if training_args.push_to_hub:
        trainer.push_to_hub(dataset_name=script_args.dataset_name)
        if trainer.accelerator.is_main_process:
            processor.push_to_hub(training_args.hub_model_id)


if __name__ == "__main__":
    main()