File size: 8,250 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import itertools
import tempfile
import unittest

import pytest
import torch
from accelerate.utils.memory import release_memory
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from transformers.testing_utils import backend_empty_cache, require_peft, require_torch_accelerator, torch_device
from transformers.utils import is_peft_available

from trl import DPOConfig, DPOTrainer

from ..testing_utils import require_bitsandbytes
from .testing_constants import DPO_LOSS_TYPES, DPO_PRECOMPUTE_LOGITS, GRADIENT_CHECKPOINTING_KWARGS, MODELS_TO_TEST


if is_peft_available():
    from peft import LoraConfig, PeftModel


@pytest.mark.slow
@require_torch_accelerator
@require_peft
class DPOTrainerSlowTester(unittest.TestCase):
    def setUp(self):
        self.dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
        self.peft_config = LoraConfig(
            lora_alpha=16,
            lora_dropout=0.1,
            r=8,
            bias="none",
            task_type="CAUSAL_LM",
        )
        self.max_length = 128

    def tearDown(self):
        gc.collect()
        backend_empty_cache(torch_device)
        gc.collect()

    @parameterized.expand(list(itertools.product(MODELS_TO_TEST, DPO_LOSS_TYPES, DPO_PRECOMPUTE_LOGITS)))
    def test_dpo_bare_model(self, model_id, loss_type, pre_compute_logits):
        """
        A test that tests the simple usage of `DPOTrainer` using a bare model in full precision.
        """
        model = AutoModelForCausalLM.from_pretrained(model_id)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        tokenizer.pad_token = tokenizer.eos_token if tokenizer.pad_token is None else tokenizer.pad_token

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = DPOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                max_steps=2,
                remove_unused_columns=False,
                gradient_accumulation_steps=2,
                learning_rate=9e-1,
                eval_strategy="steps",
                fp16=True,
                logging_strategy="no",
                report_to="none",
                beta=0.1,
                loss_type=loss_type,
                precompute_ref_log_probs=pre_compute_logits,
                max_length=self.max_length,
            )

            # dpo train lora model
            trainer = DPOTrainer(
                model=model,
                ref_model=None,
                args=training_args,
                train_dataset=self.dataset["train"],
                eval_dataset=self.dataset["test"],
                processing_class=tokenizer,
            )

            # train the model
            trainer.train()

            # save trained model or adapter
            trainer.save_model()

        release_memory(model, trainer)

    @parameterized.expand(
        list(
            itertools.product(
                MODELS_TO_TEST,
                DPO_LOSS_TYPES,
                DPO_PRECOMPUTE_LOGITS,
                GRADIENT_CHECKPOINTING_KWARGS,
            )
        )
    )
    @require_peft
    def test_dpo_peft_model(self, model_id, loss_type, pre_compute_logits, gradient_checkpointing_kwargs):
        """
        A test that tests the simple usage of `DPOTrainer` using a peft model in full precision + different scenarios of gradient checkpointing.
        """
        model = AutoModelForCausalLM.from_pretrained(model_id)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        tokenizer.pad_token = tokenizer.eos_token if tokenizer.pad_token is None else tokenizer.pad_token

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = DPOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                max_steps=2,
                remove_unused_columns=False,
                gradient_accumulation_steps=2,
                learning_rate=9e-1,
                eval_strategy="steps",
                fp16=True,
                logging_strategy="no",
                report_to="none",
                gradient_checkpointing=True,
                gradient_checkpointing_kwargs=gradient_checkpointing_kwargs,
                generate_during_eval=False,
                loss_type=loss_type,
                precompute_ref_log_probs=pre_compute_logits,
                beta=0.1,
                max_length=self.max_length,
            )

            # dpo train lora model
            trainer = DPOTrainer(
                model=model,
                ref_model=None,
                args=training_args,
                train_dataset=self.dataset["train"],
                eval_dataset=self.dataset["test"],
                processing_class=tokenizer,
                peft_config=self.peft_config,
            )

            self.assertIsInstance(trainer.model, PeftModel)
            self.assertIsNone(trainer.ref_model)

            # train the model
            trainer.train()

            # save trained model or adapter
            trainer.save_model()

        release_memory(model, trainer)

    @parameterized.expand(
        list(
            itertools.product(
                MODELS_TO_TEST,
                DPO_LOSS_TYPES,
                DPO_PRECOMPUTE_LOGITS,
                GRADIENT_CHECKPOINTING_KWARGS,
            )
        )
    )
    @require_bitsandbytes
    @require_peft
    def test_dpo_peft_model_qlora(self, model_id, loss_type, pre_compute_logits, gradient_checkpointing_kwargs):
        """
        A test that tests the simple usage of `DPOTrainer` using QLoRA + different scenarios of gradient checkpointing.
        """
        quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16)

        model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        tokenizer.pad_token = tokenizer.eos_token if tokenizer.pad_token is None else tokenizer.pad_token

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = DPOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                max_steps=2,
                remove_unused_columns=False,
                gradient_accumulation_steps=2,
                learning_rate=9e-1,
                eval_strategy="steps",
                fp16=True,
                logging_strategy="no",
                report_to="none",
                gradient_checkpointing=True,
                gradient_checkpointing_kwargs=gradient_checkpointing_kwargs,
                beta=0.1,
                generate_during_eval=False,
                loss_type=loss_type,
                precompute_ref_log_probs=pre_compute_logits,
                max_length=self.max_length,
            )

            # dpo train lora model
            trainer = DPOTrainer(
                model=model,
                ref_model=None,
                args=training_args,
                train_dataset=self.dataset["train"],
                eval_dataset=self.dataset["test"],
                processing_class=tokenizer,
                peft_config=self.peft_config,
            )

            self.assertIsInstance(trainer.model, PeftModel)
            self.assertIsNone(trainer.ref_model)

            # train the model
            trainer.train()

            # save trained model or adapter
            trainer.save_model()

        release_memory(model, trainer)