Spaces:
Paused
Paused
File size: 60,222 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from unittest.mock import patch
import torch
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer
from transformers.testing_utils import require_peft
from transformers.utils import is_peft_available
from trl import GRPOConfig, GRPOTrainer
from trl.trainer.grpo_trainer import RepeatSampler, shuffle_tensor_dict, split_tensor_dict
from .testing_utils import require_vllm
if is_peft_available():
from peft import LoraConfig, PeftModel
class SplitTensorDictTester(unittest.TestCase):
def test_split_equal_chunks(self):
x = torch.arange(12).reshape(6, 2)
y = torch.arange(6).reshape(6, 1)
tensor_dict = {"x": x, "y": y}
result = split_tensor_dict(tensor_dict, 3)
expected_x_chunks = torch.chunk(x, 3, dim=0)
expected_y_chunks = torch.chunk(y, 3, dim=0)
self.assertEqual(len(result), 3)
for i in range(3):
self.assertTrue(torch.equal(result[i]["x"], expected_x_chunks[i]))
self.assertTrue(torch.equal(result[i]["y"], expected_y_chunks[i]))
def test_with_none_tensor(self):
x = torch.arange(12).reshape(6, 2)
tensor_dict = {"x": x, "y": None}
result = split_tensor_dict(tensor_dict, 2)
expected_x_chunks = torch.chunk(x, 2, dim=0)
self.assertEqual(len(result), 2)
for i in range(2):
self.assertTrue(torch.equal(result[i]["x"], expected_x_chunks[i]))
self.assertIsNone(result[i]["y"])
class ShuffleTensorDictTester(unittest.TestCase):
def test_shuffle_preserves_shape(self):
x = torch.arange(6).reshape(3, 2)
y = torch.arange(3).reshape(3, 1)
tensor_dict = {"x": x.clone(), "y": y.clone()}
shuffled = shuffle_tensor_dict(tensor_dict)
self.assertEqual(shuffled["x"].shape, x.shape)
self.assertEqual(shuffled["y"].shape, y.shape)
def test_shuffle_consistent_across_tensors(self):
# Use known patterns to check alignment
x = torch.tensor([[10, 11], [20, 21], [30, 31]])
y = torch.tensor([[1], [2], [3]])
tensor_dict = {"x": x.clone(), "y": y.clone()}
shuffled = shuffle_tensor_dict(tensor_dict)
# Build a reverse map from shuffled x rows to y values
for i in range(3):
x_row = shuffled["x"][i]
y_val = shuffled["y"][i].item()
if torch.equal(x_row, torch.tensor([10, 11])):
self.assertEqual(y_val, 1)
elif torch.equal(x_row, torch.tensor([20, 21])):
self.assertEqual(y_val, 2)
elif torch.equal(x_row, torch.tensor([30, 31])):
self.assertEqual(y_val, 3)
else:
self.fail("Unexpected x row in shuffled output.")
def test_none_tensor_remains_none(self):
x = torch.arange(6).reshape(3, 2)
tensor_dict = {"x": x.clone(), "y": None}
shuffled = shuffle_tensor_dict(tensor_dict)
self.assertIsNone(shuffled["y"])
self.assertEqual(shuffled["x"].shape, x.shape)
class RepeatRandomSamplerTester(unittest.TestCase):
def test_sampler(self):
dataset = ["a", "b", "c", "d", "e", "f", "g"]
sampler = RepeatSampler(dataset, mini_repeat_count=2)
# Should output something like [4, 4, 3, 3, 0, 0, 1, 1, 2, 2, 6, 6, 5, 5]
sampled = list(sampler)
# Check that the length is doubled
assert len(sampled) == 2 * len(dataset)
# Check that all indexes are present
assert set(sampled) == set(range(len(dataset)))
# Check that each element is repeated twice
assert all(sampled[i] == sampled[i + 1] for i in range(0, len(sampled), 2))
def test_sampler_no_shuffle(self):
dataset = ["a", "b", "c", "d", "e", "f", "g"]
sampler = RepeatSampler(dataset, mini_repeat_count=2, shuffle=False)
sampled = list(sampler)
expected = [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
self.assertEqual(sampled, expected)
def test_sampler_no_repeat(self):
dataset = ["a", "b", "c", "d", "e", "f", "g"]
sampler = RepeatSampler(dataset, mini_repeat_count=1)
# Should output something like [4, 3, 0, 1, 2, 6, 5]
sampled = list(sampler)
# Check that the length is the same
assert len(sampled) == len(dataset)
# Check that all indexes are present
assert set(sampled) == set(range(len(dataset)))
def test_sampler_with_batch_size(self):
dataset = ["a", "b", "c", "d", "e", "f", "g", "h"]
sampler = RepeatSampler(dataset, mini_repeat_count=1, batch_size=2, repeat_count=2)
# Should output something like [4, 3, 4, 3, 0, 1, 0, 1, 2, 6, 2, 6, 5, 7, 5, 7]
sampled = list(sampler)
# Check that the length is doubled
assert len(sampled) == 2 * len(dataset)
# Check that all indexes are present
assert set(sampled) == set(range(len(dataset)))
# Check that each element is repeated as expected
assert all(sampled[i : i + 1] == sampled[i + 2 : i + 3] for i in range(0, len(sampled), 4))
def test_sampler_with_batch_size_and_drop(self):
dataset = ["a", "b", "c", "d", "e", "f", "g"]
sampler = RepeatSampler(dataset, mini_repeat_count=1, batch_size=2, repeat_count=2)
# Should output something like [4, 3, 4, 3, 0, 1, 0, 1, 2, 6, 2, 6]
sampled = list(sampler)
# Check that the length is doubled
assert len(sampled) == 2 * (
len(dataset) - 1
) # one element is dropped, because it's not enough to form a batch
# Check that the sampled indexes are a subset of the dataset indexes
assert set(sampled).issubset(set(range(len(dataset))))
# Check that each element is repeated as expected
assert all(sampled[i : i + 1] == sampled[i + 2 : i + 3] for i in range(0, len(sampled), 4))
def test_sampler_with_mini_repeat_count_and_batch_size_1(self):
dataset = ["a", "b", "c", "d", "e", "f", "g"]
sampler = RepeatSampler(dataset, mini_repeat_count=2, batch_size=3, repeat_count=2)
# Should output something like [4, 4, 3, 3, 0, 0, 4, 4, 3, 3, 0, 0,
# 1, 1, 2, 2, 6, 6, 1, 1, 2, 2, 6, 6]
sampled = list(sampler)
# Check that the length is quadrupled
assert len(sampled) == 4 * (len(dataset) - 1) # 1 element is dropped, because it's not enough to form a batch
# Check that the sampled indexes are a subset of the dataset indexes
assert set(sampled).issubset(set(range(len(dataset))))
# Check that each element is repeated as expected
assert all(sampled[i] == sampled[i + 1] for i in range(0, len(sampled), 2))
# Check that the batch is repeated as expected
assert sampled[0:6] == sampled[6:12]
assert sampled[12:18] == sampled[18:24]
def test_sampler_with_mini_repeat_count_and_batch_size_2(self):
dataset = ["a", "b", "c", "d", "e", "f", "g"]
sampler = RepeatSampler(dataset, mini_repeat_count=3, batch_size=2, repeat_count=2)
# Should output something like [4, 4, 4, 3, 3, 3, 4, 4, 4, 3, 3, 3,
# 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1,
# 2, 2, 2, 6, 6, 6, 2, 2, 2, 6, 6, 6]
sampled = list(sampler)
# Check that the length is sextupled
assert len(sampled) == 6 * (len(dataset) - 1) # 1 element is dropped, because it's not enough to form a batch
# Check that the sampled indexes are a subset of the dataset indexes
assert set(sampled).issubset(set(range(len(dataset))))
# Check that each element is repeated as expected
assert all(sampled[i] == sampled[i + 1] == sampled[i + 2] for i in range(0, len(sampled), 3))
# Check that the batch is repeated as expected
assert sampled[0:6] == sampled[6:12]
assert sampled[12:18] == sampled[18:24]
assert sampled[24:30] == sampled[30:36]
def test_sampler_with_mini_repeat_count_and_batch_size_3(self):
dataset = ["a", "b", "c", "d", "e", "f", "g"]
sampler = RepeatSampler(dataset, mini_repeat_count=2, batch_size=2, repeat_count=3)
# Should output something like [4, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3,
# 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,
# 2, 2, 6, 6, 2, 2, 6, 6, 2, 2, 6, 6]
sampled = list(sampler)
# Check that the length is sextupled
assert len(sampled) == 6 * (len(dataset) - 1) # 1 element is dropped, because it's not enough to form a batch
# Check that the sampled indexes are a subset of the dataset indexes
assert set(sampled).issubset(set(range(len(dataset))))
# Check that each element is repeated as expected
assert all(sampled[i] == sampled[i + 1] for i in range(0, len(sampled), 2))
# Check that the batch is repeated as expected
assert sampled[0:4] == sampled[4:8] == sampled[8:12]
assert sampled[12:16] == sampled[16:20] == sampled[20:24]
assert sampled[24:28] == sampled[28:32] == sampled[32:36]
class GRPOTrainerTester(unittest.TestCase):
def test_init_minimal(self):
# Test that GRPOTrainer can be instantiated with only model, reward_model and train_dataset
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
train_dataset=dataset,
)
@parameterized.expand([("standard_prompt_only",), ("conversational_prompt_only",)])
def test_training(self, config_name):
dataset = load_dataset("trl-internal-testing/zen", config_name, split="train")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
@parameterized.expand([("bnpo",), ("dr_grpo",)])
def test_training_loss_types(self, loss_type):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=32, # reduce the completion length to reduce memory usage
loss_type=loss_type,
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
def test_training_with_eval(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
per_device_eval_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
eval_strategy="steps",
eval_steps=2,
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
)
trainer.train()
def test_training_multiple_iterations(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
num_iterations=2,
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
@require_peft
def test_training_peft(self):
model = AutoModelForCausalLM.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5")
base_param_names = [f"base_model.model.{n}" for n, _ in model.named_parameters()]
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = GRPOTrainer(
model=model,
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
peft_config=LoraConfig(),
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the peft params have changed and the base model params have not changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if n in base_param_names: # We expect the base model params to be the same
self.assertTrue(torch.allclose(param, new_param), f"Parameter {n} has changed.")
elif "base_layer" not in n: # We expect the peft params to be different (except for the base layer)
self.assertFalse(torch.allclose(param, new_param), f"Parameter {n} has not changed.")
@require_peft
def test_training_peft_with_gradient_checkpointing(self):
"""Test that training works with PEFT and gradient checkpointing enabled."""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
model = AutoModelForCausalLM.from_pretrained(
"trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
torch_dtype=torch.float32, # Use float32 for testing to avoid precision issues
use_cache=False, # Required for gradient checkpointing
)
lora_config = LoraConfig(
r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none"
)
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1,
per_device_train_batch_size=3,
num_generations=3,
max_completion_length=8,
gradient_checkpointing=True, # Enable gradient checkpointing
report_to="none",
)
trainer = GRPOTrainer(
model=model,
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
peft_config=lora_config,
)
# Verify gradient checkpointing is enabled
self.assertIsInstance(trainer.model, PeftModel)
# Store initial parameters to check which ones change
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that only LoRA parameters have changed, base model parameters remain unchanged
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if "lora" in n.lower(): # LoRA parameters should change
self.assertFalse(torch.equal(param, new_param), f"LoRA parameter {n} has not changed.")
else: # Base model parameters should not change
self.assertTrue(torch.equal(param, new_param), f"Base parameter {n} has changed.")
def test_training_different_reward_model(self):
# Use a reward model different from the model: different chat template, tokenization, etc.
dataset = load_dataset("trl-internal-testing/zen", "conversational_prompt_only", split="train")
reward_model_id = "trl-internal-testing/tiny-LlamaForSequenceClassification-3.2"
reward_model = AutoModelForSequenceClassification.from_pretrained(reward_model_id)
reward_tokenizer = AutoTokenizer.from_pretrained(reward_model_id)
# By default, the trainer uses the eos token as the padding token. However, for Llama models, the eos token
# appears in the chat template. Using it as a pad token disrupts the reward calculation, as the calculation
# considers the score of the last token before the first pad token. To ensure correct reward calculations,
# we use a separate pad token instead.
reward_tokenizer.pad_token = "<|finetune_right_pad_id|>"
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=reward_model,
args=training_args,
train_dataset=dataset,
reward_processing_classes=reward_tokenizer,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
def test_training_reward_func_standard(self):
# Test if trainer can handle reward function with standard format
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
def reward_func(completions, **kwargs):
"""Reward function that rewards longer completions."""
return [float(len(completion)) for completion in completions]
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=reward_func,
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
def test_training_reward_func_conversational(self):
# Test if trainer can handle reward function with conversational format
dataset = load_dataset("trl-internal-testing/zen", "conversational_prompt_only", split="train")
def reward_func(completions, **kwargs):
"""Reward function that gives higher scores to longer completion content."""
completion_contents = [completion[0]["content"] for completion in completions]
return [float(len(content)) for content in completion_contents]
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=reward_func,
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
def test_training_multiple_reward_funcs(self):
# Test that GRPOTrainer can be instantiated with multiple reward functions
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
def reward_func1(completions, **kwargs):
"""Reward function that rewards longer completions."""
return [float(len(completion)) for completion in completions]
def reward_func2(completions, **kwargs):
"""Reward function that rewards completions with more unique letters."""
return [float(len(set(completion))) for completion in completions]
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=[reward_func1, reward_func2],
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
def test_training_multiple_reward_funcs_with_None_output(self):
"""Test that a valid math reward function is processed correctly while the code reward function returns None."""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
def applicable_reward_func(completions, **kwargs):
"""A reward function that rewards longer completions."""
return [float(len(completion)) for completion in completions]
def non_applicable_reward_func(completions, **kwargs):
"""A reward function that returns None for all inputs, as it is not applicable to this sample."""
return [None] * len(completions)
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1,
per_device_train_batch_size=3,
num_generations=3,
max_completion_length=8,
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=[
applicable_reward_func,
non_applicable_reward_func,
], # One applicable, one non applicable
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {
n: param.clone() for n, param in trainer.model.named_parameters() if param.requires_grad
}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
def test_training_multiple_reward_funcs_with_weights(self):
"""Test that GRPOTrainer can handle multiple reward functions with weights."""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
def reward_func1(completions, **kwargs):
"""Reward function that rewards longer completions."""
return [float(len(completion)) for completion in completions]
def reward_func2(completions, **kwargs):
"""Reward function that rewards completions with more unique letters."""
return [float(len(set(completion))) for completion in completions]
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
reward_weights=[0.7, 0.3], # weight of reward_func1 and reward_func2 respectively
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=[reward_func1, reward_func2],
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
# Check that training logs contain both reward metrics
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
self.assertIn("rewards/reward_func1/mean", trainer.state.log_history[-1])
self.assertIn("rewards/reward_func1/std", trainer.state.log_history[-1])
self.assertIn("rewards/reward_func2/mean", trainer.state.log_history[-1])
self.assertIn("rewards/reward_func2/std", trainer.state.log_history[-1])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
def test_training_multiple_mixed_reward_funcs(self):
# Test if the trainer can handle a mix of reward functions and reward models
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
def reward_func(completions, **kwargs):
"""Reward function that rewards longer completions."""
return [float(len(completion)) for completion in completions]
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=[reward_func, "trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5"],
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
def test_training_reward_func_additional_column(self):
# Test if trainer can handle reward function that rely on additional columns in the dataset
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
# Add a column to the dataset (dummy example, the column could be anything)
some_values = list(range(len(dataset)))
dataset = dataset.add_column("some_values", some_values)
def reward_func(completions, some_values, **kwargs):
"""Reward function that rewards completions with lengths closer to the values in some_values."""
return [float(abs(len(completion) - value)) for completion, value in zip(completions, some_values)]
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=reward_func,
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
@require_vllm
@unittest.skip("We should add a mock for the vLLM server.")
def test_training_vllm(self):
"""Test that training works with vLLM for generation."""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
use_vllm=True,
)
trainer = GRPOTrainer(
model="Qwen/Qwen2.5-0.5B-Instruct", # tiny is too small for vLLM
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
def test_training_with_sync_ref_model(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
sync_ref_model=True,
ref_model_sync_steps=2, # reduce sync steps to ensure a sync happens
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
def test_training_beta_non_zero(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
beta=0.1, # set beta to non-zero value to test the case where the reference model is used
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
@unittest.skip("We should add a mock for the vLLM server.")
@require_peft
@require_vllm
def test_training_vllm_and_peft(self):
"""Test that training works with vLLM for generation."""
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") # tiny model is too small for vLLM
base_param_names = [f"base_model.model.{n}" for n, _ in model.named_parameters()]
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
use_vllm=True,
)
lora_config = LoraConfig(
target_modules="all-linear",
# test with non-default modules as it add extra keys in state_dict tht we need to handle
modules_to_save=["embed_tokens", "lm_head"],
)
trainer = GRPOTrainer(
model=model,
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
peft_config=lora_config,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the peft params have changed and the base model params have not changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if n in base_param_names: # We expect the base model params to be the same
self.assertTrue(torch.allclose(param, new_param), f"Parameter {n} has changed.")
elif "base_layer" not in n and "original_module" not in n:
# We expect the peft params to be different (except for the base layer)
self.assertFalse(torch.allclose(param, new_param), f"Parameter {n} has not changed.")
@require_vllm
@unittest.skip("We should add a mock for the vLLM server.")
def test_training_vllm_guided_decoding(self):
"""Test that training works with vLLM for generation with guided decoding."""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
use_vllm=True,
vllm_guided_decoding_regex=r"<reasoning>\n.*\n</reasoning>\n<answer>\n.*\n</answer>",
)
trainer = GRPOTrainer(
model="Qwen/Qwen2.5-0.5B-Instruct", # tiny model is too small for vLLM
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
def test_training_with_additional_generation_kwargs(self):
"""Test that training works with additional generation kwargs."""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
top_p=0.9,
top_k=10,
min_p=0.01,
repetition_penalty=1.1,
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
@require_vllm
@unittest.skip("We should add a mock for the vLLM server.")
def test_training_vllm_with_additional_generation_kwargs(self):
"""Test that training works with vLLM and additional generation kwargs."""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
use_vllm=True,
top_p=0.9,
top_k=10,
min_p=0.01,
repetition_penalty=1.1,
)
trainer = GRPOTrainer(
model="Qwen/Qwen2.5-0.5B-Instruct", # tiny model is too small for vLLM
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
def test_training_no_scale_rewards(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
scale_rewards=False,
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
@patch("transformers.generation.utils.GenerationMixin.generate")
def test_training_with_mask_truncated_completions(self, mock_generate):
"""Test that training works with mask_truncated_completions=True parameter."""
# We mock the generate method because the model's random weights make it extremely unlikely to produce a
# sequence containing the EOS token within the allowed max_completion_length. As a result, all tokens are
# masked in the loss, the model doesn't update, and the final check (which verifies the update) fails.
def fake_generate(prompt_ids, **kwargs):
# pad_token_id = 151643; eos_token_id = 151645
completions_ids = torch.tensor(
[
[1, 2, 3, 4, 5, 6, 7, 8], # this one is truncated
[9, 10, 11, 151645, 151643, 151643, 151643, 151643], # this one contains eos
[12, 13, 14, 15, 16, 17, 18, 151645], # particular case, eos is generated just within the limit
],
device=prompt_ids.device,
)
return torch.cat([prompt_ids, completions_ids], dim=1)
mock_generate.side_effect = fake_generate
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
mask_truncated_completions=True, # Enable masking of truncated completions
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
def test_training_with_mask_truncated_completions_all_masked(self):
"""
Test that when all generated completions are truncated (i.e., none contain an EOS token), and
mask_truncated_completions=True, the model receives no effective learning signal and therefore does not update
its parameters.
Here, we don't mock the generate method, be we rely on the fact that the model the probability of generating
the EOS token is extremely low, so all generated completions are truncated.
"""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
mask_truncated_completions=True, # Enable masking of truncated completions
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertTrue(torch.equal(param, new_param), f"Parameter {n} has changed.")
def test_training_num_generations_larger_than_batch_size(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
num_generations=6, # the number of generations is larger than the batch size, but
gradient_accumulation_steps=2, # gradient accumulation should allow that
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
def test_training_delta_clipping(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
delta=2.0, # set delta to a non-None value
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
def test_training_multiple_dataloader_workers(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
dataloader_num_workers=2, # use multiple dataloader workers
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
|