File size: 6,798 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

import torch
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.testing_utils import require_peft

from trl import ORPOConfig, ORPOTrainer
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE


class ORPOTrainerTester(unittest.TestCase):
    def setUp(self):
        self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
        self.model = AutoModelForCausalLM.from_pretrained(self.model_id)
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
        self.tokenizer.pad_token = self.tokenizer.eos_token

        # get t5 as seq2seq example:
        model_id = "trl-internal-testing/tiny-T5ForConditionalGeneration"
        self.t5_model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
        self.t5_tokenizer = AutoTokenizer.from_pretrained(model_id)
        self.t5_tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE

    @parameterized.expand(
        [
            ("qwen", "standard_preference"),
            ("t5", "standard_implicit_prompt_preference"),
            ("qwen", "conversational_preference"),
            ("t5", "conversational_implicit_prompt_preference"),
        ]
    )
    def test_orpo_trainer(self, name, config_name):
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = ORPOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                max_steps=3,
                remove_unused_columns=False,
                gradient_accumulation_steps=1,
                learning_rate=9e-1,
                eval_strategy="steps",
                beta=0.1,
                report_to="none",
            )

            dummy_dataset = load_dataset("trl-internal-testing/zen", config_name)

            if name == "qwen":
                model = self.model
                tokenizer = self.tokenizer
            elif name == "t5":
                model = self.t5_model
                tokenizer = self.t5_tokenizer
                training_args.is_encoder_decoder = True

            trainer = ORPOTrainer(
                model=model,
                args=training_args,
                processing_class=tokenizer,
                train_dataset=dummy_dataset["train"],
                eval_dataset=dummy_dataset["test"],
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the parameters have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                if param.sum() != 0:  # ignore 0 biases
                    self.assertFalse(torch.equal(param, new_param))

    @parameterized.expand(
        [
            ("standard_preference",),
            ("standard_implicit_prompt_preference",),
            ("conversational_preference",),
            ("conversational_implicit_prompt_preference",),
        ]
    )
    @require_peft
    def test_orpo_trainer_with_lora(self, config_name):
        from peft import LoraConfig

        lora_config = LoraConfig(
            r=16,
            lora_alpha=32,
            lora_dropout=0.05,
            bias="none",
            task_type="CAUSAL_LM",
        )

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = ORPOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                max_steps=3,
                remove_unused_columns=False,
                gradient_accumulation_steps=4,
                learning_rate=9e-1,
                eval_strategy="steps",
                beta=0.1,
                report_to="none",
            )

            dummy_dataset = load_dataset("trl-internal-testing/zen", config_name)

            trainer = ORPOTrainer(
                model=self.model,
                args=training_args,
                processing_class=self.tokenizer,
                train_dataset=dummy_dataset["train"],
                eval_dataset=dummy_dataset["test"],
                peft_config=lora_config,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the parameters have changed
            for n, param in previous_trainable_params.items():
                if "lora" in n:
                    new_param = trainer.model.get_parameter(n)
                    if param.sum() != 0:  # ignore 0 biases
                        self.assertFalse(torch.equal(param, new_param))

    def test_compute_metrics(self):
        model = AutoModelForCausalLM.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5")
        tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5")
        tokenizer.pad_token = tokenizer.eos_token

        dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")

        def dummy_compute_metrics(*args, **kwargs):
            return {"test": 0.0}

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = ORPOConfig(
                output_dir=tmp_dir,
                remove_unused_columns=False,
                per_device_train_batch_size=2,
                do_eval=True,
                eval_strategy="steps",
                eval_steps=1,
                per_device_eval_batch_size=2,
                report_to="none",
            )

            trainer = ORPOTrainer(
                model=model,
                args=training_args,
                processing_class=tokenizer,
                train_dataset=dummy_dataset["train"],
                eval_dataset=dummy_dataset["test"],
                compute_metrics=dummy_compute_metrics,
            )

            trainer.train()

            self.assertEqual(trainer.state.log_history[-2]["eval_test"], 0.0)