File size: 5,770 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Callable, Optional, Union

import torch
from transformers import GenerationConfig, PreTrainedTokenizer, PreTrainedTokenizerFast, set_seed

from ..models import SUPPORTED_ARCHITECTURES, PreTrainedModelWrapper


class BestOfNSampler:
    def __init__(
        self,
        model: PreTrainedModelWrapper,
        tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
        queries_to_scores: Callable[[list[str]], list[float]],
        length_sampler: Any,
        sample_size: int = 4,
        seed: Optional[int] = None,
        n_candidates: int = 1,
        generation_config: Optional[GenerationConfig] = None,
    ) -> None:
        r"""
        Initialize the sampler for best-of-n generation

        Args:
            model (`PreTrainedModelWrapper`):
                The pretrained model to use for generation
            tokenizer (`PreTrainedTokenizer` or `PreTrainedTokenizerFast`):
                Tokenizer associated with the pretrained model
            queries_to_scores (`Callable[[list[str]], list[float]]`):
                Callable that takes a list of generated texts and returns the associated reward scores
            length_sampler (`Any`):
                Sampler used to sample the length of the generated text
            sample_size (`int`):
                Number of samples to generate for each query
            seed (`int`, *optional*):
                Random seed used to control generation
            n_candidates (`int`):
                Number of candidates to return for each query
            generation_config (`GenerationConfig`, *optional*):
                Generation config passed to the underlying model's `generate` method.
                See `GenerationConfig` (https://huggingface.co/docs/transformers/v4.29.1/en/main_classes/text_generation#transformers.GenerationConfig) for more details
        """
        if seed is not None:
            set_seed(seed)

        if not isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)):
            raise ValueError(
                f"tokenizer must be a PreTrainedTokenizer or PreTrainedTokenizerFast, got {type(tokenizer)}"
            )
        if not isinstance(model, (SUPPORTED_ARCHITECTURES)):
            raise ValueError(
                f"model must be a PreTrainedModelWrapper, got {type(model)} - supported architectures are: {SUPPORTED_ARCHITECTURES}"
            )

        self.model = model
        self.tokenizer = tokenizer

        self.queries_to_scores = queries_to_scores
        self.length_sampler = length_sampler
        self.gen_config = generation_config
        self.sample_size = sample_size
        self.n_candidates = n_candidates

    def generate(
        self,
        tokenized_query: Union[list[int], torch.Tensor, list[torch.Tensor], list[list[int]]],
        skip_special_tokens: bool = True,
        device: Optional[Union[str, torch.device]] = None,
        **generation_kwargs,
    ) -> list[list[str]]:
        r"""
        Generate the best of n samples for input queries

        Args:
            tokenized_query (`list[int]` or `torch.Tensor` or `list[torch.Tensor]` or `list[int]`):
                represents either a single tokenized query (a single tensor or a list of integers) or a batch of tokenized queries (a list of tensors or a list of lists of integers)
            skip_special_tokens (`bool`):
                Whether to remove the special tokens from the output
            device (`str` or `torch.device`, *optional*):
                The device on which the model will be loaded
            **generation_kwargs (`dict`, *optional*):
                Additional keyword arguments passed along to the underlying model's `generate` method.
                This is used to override generation config

        Returns:
            list[list[str]]: A list of lists of generated texts
        """
        queries = None

        if isinstance(tokenized_query, torch.Tensor) and tokenized_query.ndim == 1:
            queries = tokenized_query.unsqueeze(0)
        elif isinstance(tokenized_query, list):
            element_type = type(tokenized_query[0])
            if element_type is int:
                queries = torch.tensor(tokenized_query).unsqueeze(0)
            elif element_type is torch.Tensor:
                queries = [tensor.reshape((1, -1)) for tensor in tokenized_query]
            else:
                queries = [torch.tensor(query).reshape((1, -1)) for query in tokenized_query]

        result = []

        for query in queries:
            queries = query.repeat((self.sample_size, 1))
            output = self.model.generate(
                queries.to(device),
                max_new_tokens=self.length_sampler(),
                generation_config=self.gen_config,
                **generation_kwargs,
            ).squeeze()
            output = self.tokenizer.batch_decode(output, skip_special_tokens=skip_special_tokens)
            scores = torch.tensor(self.queries_to_scores(output))
            output = [output[i] for i in scores.topk(self.n_candidates).indices]
            result.append(output)

        return result