File size: 5,225 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
# Full training
python trl/scripts/dpo.py \
    --dataset_name trl-lib/ultrafeedback_binarized \
    --dataset_streaming \
    --model_name_or_path Qwen/Qwen2-0.5B-Instruct \
    --learning_rate 5.0e-7 \
    --num_train_epochs 1 \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 8 \
    --gradient_checkpointing \
    --logging_steps 25 \
    --eval_strategy steps \
    --eval_steps 50 \
    --output_dir Qwen2-0.5B-DPO \
    --no_remove_unused_columns
    --report_to wandb

# LoRA:
python trl/scripts/dpo.py \
    --dataset_name trl-lib/ultrafeedback_binarized \
    --dataset_streaming \
    --model_name_or_path Qwen/Qwen2-0.5B-Instruct \
    --learning_rate 5.0e-6 \
    --num_train_epochs 1 \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 8 \
    --gradient_checkpointing \
    --logging_steps 25 \
    --eval_strategy steps \
    --eval_steps 50 \
    --output_dir Qwen2-0.5B-DPO \
    --no_remove_unused_columns \
    --use_peft \
    --lora_r 32 \
    --lora_alpha 16
    --report_to wandb
"""

import argparse

import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer

from trl import (
    DPOConfig,
    DPOTrainer,
    ModelConfig,
    ScriptArguments,
    TrlParser,
    get_kbit_device_map,
    get_peft_config,
    get_quantization_config,
)
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE


def main(script_args, training_args, model_args):
    ################
    # Model & Tokenizer
    ###################
    torch_dtype = (
        model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
    )
    quantization_config = get_quantization_config(model_args)
    model_kwargs = dict(
        revision=model_args.model_revision,
        attn_implementation=model_args.attn_implementation,
        torch_dtype=torch_dtype,
        use_cache=False if training_args.gradient_checkpointing else True,
        device_map=get_kbit_device_map() if quantization_config is not None else None,
        quantization_config=quantization_config,
    )
    model = AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs
    )
    peft_config = get_peft_config(model_args)
    if peft_config is None:
        ref_model = AutoModelForCausalLM.from_pretrained(
            model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs
        )
    else:
        ref_model = None
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
    )
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    if tokenizer.chat_template is None:
        tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE
    if script_args.ignore_bias_buffers:
        # torch distributed hack
        model._ddp_params_and_buffers_to_ignore = [
            name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool
        ]

    ################
    # Dataset
    ################
    dataset = load_dataset(
        script_args.dataset_name,
        name=script_args.dataset_config,
        streaming=script_args.dataset_streaming,
    )

    ##########
    # Training
    ################
    trainer = DPOTrainer(
        model,
        ref_model,
        args=training_args,
        train_dataset=dataset[script_args.dataset_train_split],
        eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
        processing_class=tokenizer,
        peft_config=peft_config,
    )

    trainer.train()

    if training_args.eval_strategy != "no":
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Save and push to hub
    trainer.save_model(training_args.output_dir)
    if training_args.push_to_hub:
        trainer.push_to_hub(dataset_name=script_args.dataset_name)


def make_parser(subparsers: argparse._SubParsersAction = None):
    dataclass_types = (ScriptArguments, DPOConfig, ModelConfig)
    if subparsers is not None:
        parser = subparsers.add_parser("dpo", help="Run the DPO training script", dataclass_types=dataclass_types)
    else:
        parser = TrlParser(dataclass_types)
    return parser


if __name__ == "__main__":
    parser = make_parser()
    script_args, training_args, model_args = parser.parse_args_and_config()
    main(script_args, training_args, model_args)