File size: 11,289 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import importlib
import inspect
import logging
import os
import subprocess
import sys
from collections.abc import Iterable
from dataclasses import dataclass, field
from typing import Optional, Union

import yaml
from transformers import HfArgumentParser
from transformers.hf_argparser import DataClass, DataClassType
from transformers.utils import is_rich_available


logger = logging.getLogger(__name__)


@dataclass
class ScriptArguments:
    """
    Arguments common to all scripts.

    Args:
        dataset_name (`str`):
            Dataset name.
        dataset_config (`str` or `None`, *optional*, defaults to `None`):
            Dataset configuration name. Corresponds to the `name` argument of the [`~datasets.load_dataset`] function.
        dataset_train_split (`str`, *optional*, defaults to `"train"`):
            Dataset split to use for training.
        dataset_test_split (`str`, *optional*, defaults to `"test"`):
            Dataset split to use for evaluation.
        dataset_streaming (`bool`, *optional*, defaults to `False`):
            Whether to stream the dataset. If True, the dataset will be loaded in streaming mode.
        gradient_checkpointing_use_reentrant (`bool`, *optional*, defaults to `False`):
            Whether to apply `use_reentrant` for gradient checkpointing.
        ignore_bias_buffers (`bool`, *optional*, defaults to `False`):
            Debug argument for distributed training. Fix for DDP issues with LM bias/mask buffers - invalid scalar
            type, inplace operation. See https://github.com/huggingface/transformers/issues/22482#issuecomment-1595790992.
    """

    dataset_name: Optional[str] = field(default=None, metadata={"help": "Dataset name."})
    dataset_config: Optional[str] = field(
        default=None,
        metadata={
            "help": "Dataset configuration name. Corresponds to the `name` argument of the `datasets.load_dataset` "
            "function."
        },
    )
    dataset_train_split: str = field(default="train", metadata={"help": "Dataset split to use for training."})
    dataset_test_split: str = field(default="test", metadata={"help": "Dataset split to use for evaluation."})
    dataset_streaming: bool = field(
        default=False,
        metadata={"help": "Whether to stream the dataset. If True, the dataset will be loaded in streaming mode."},
    )
    gradient_checkpointing_use_reentrant: bool = field(
        default=False,
        metadata={"help": "Whether to apply `use_reentrant` for gradient checkpointing."},
    )
    ignore_bias_buffers: bool = field(
        default=False,
        metadata={
            "help": "Debug argument for distributed training. Fix for DDP issues with LM bias/mask buffers - invalid "
            "scalar type, inplace operation. See "
            "https://github.com/huggingface/transformers/issues/22482#issuecomment-1595790992."
        },
    )


def init_zero_verbose():
    """
    Perform zero verbose init - use this method on top of the CLI modules to make
    logging and warning output cleaner. Uses Rich if available, falls back otherwise.
    """
    import logging
    import warnings

    FORMAT = "%(message)s"

    if is_rich_available():
        from rich.logging import RichHandler

        handler = RichHandler()
    else:
        handler = logging.StreamHandler()

    logging.basicConfig(format=FORMAT, datefmt="[%X]", handlers=[handler], level=logging.ERROR)

    # Custom warning handler to redirect warnings to the logging system
    def warning_handler(message, category, filename, lineno, file=None, line=None):
        logging.warning(f"{filename}:{lineno}: {category.__name__}: {message}")

    # Add the custom warning handler - we need to do that before importing anything to make sure the loggers work well
    warnings.showwarning = warning_handler


class TrlParser(HfArgumentParser):
    """
    A subclass of [`transformers.HfArgumentParser`] designed for parsing command-line arguments with dataclass-backed
    configurations, while also supporting configuration file loading and environment variable management.

    Args:
        dataclass_types (`Union[DataClassType, Iterable[DataClassType]]` or `None`, *optional*, defaults to `None`):
            Dataclass types to use for argument parsing.
        **kwargs:
            Additional keyword arguments passed to the [`transformers.HfArgumentParser`] constructor.

    Examples:

    ```yaml
    # config.yaml
    env:
        VAR1: value1
    arg1: 23
    ```

    ```python
    # main.py
    import os
    from dataclasses import dataclass
    from trl import TrlParser

    @dataclass
    class MyArguments:
        arg1: int
        arg2: str = "alpha"

    parser = TrlParser(dataclass_types=[MyArguments])
    training_args = parser.parse_args_and_config()

    print(training_args, os.environ.get("VAR1"))
    ```

    ```bash
    $ python main.py --config config.yaml
    (MyArguments(arg1=23, arg2='alpha'),) value1

    $ python main.py --arg1 5 --arg2 beta
    (MyArguments(arg1=5, arg2='beta'),) None
    ```
    """

    def __init__(
        self,
        dataclass_types: Optional[Union[DataClassType, Iterable[DataClassType]]] = None,
        **kwargs,
    ):
        # Make sure dataclass_types is an iterable
        if dataclass_types is None:
            dataclass_types = []
        elif not isinstance(dataclass_types, Iterable):
            dataclass_types = [dataclass_types]

        # Check that none of the dataclasses have the "config" field
        for dataclass_type in dataclass_types:
            if "config" in dataclass_type.__dataclass_fields__:
                raise ValueError(
                    f"Dataclass {dataclass_type.__name__} has a field named 'config'. This field is reserved for the "
                    f"config file path and should not be used in the dataclass."
                )

        super().__init__(dataclass_types=dataclass_types, **kwargs)

    def parse_args_and_config(
        self,
        args: Optional[Iterable[str]] = None,
        return_remaining_strings: bool = False,
        fail_with_unknown_args: bool = True,
    ) -> tuple[DataClass, ...]:
        """
        Parse command-line args and config file into instances of the specified dataclass types.

        This method wraps [`transformers.HfArgumentParser.parse_args_into_dataclasses`] and also parses the config file
        specified with the `--config` flag. The config file (in YAML format) provides argument values that replace the
        default values in the dataclasses. Command line arguments can override values set by the config file. The
        method also sets any environment variables specified in the `env` field of the config file.
        """
        args = list(args) if args is not None else sys.argv[1:]
        if "--config" in args:
            # Get the config file path from
            config_index = args.index("--config")
            args.pop(config_index)  # remove the --config flag
            config_path = args.pop(config_index)  # get the path to the config file
            with open(config_path) as yaml_file:
                config = yaml.safe_load(yaml_file)

            # Set the environment variables specified in the config file
            if "env" in config:
                env_vars = config.pop("env", {})
                if not isinstance(env_vars, dict):
                    raise ValueError("`env` field should be a dict in the YAML file.")
                for key, value in env_vars.items():
                    os.environ[key] = str(value)

            # Set the defaults from the config values
            config_remaining_strings = self.set_defaults_with_config(**config)
        else:
            config_remaining_strings = []

        # Parse the arguments from the command line
        output = self.parse_args_into_dataclasses(args=args, return_remaining_strings=return_remaining_strings)

        # Merge remaining strings from the config file with the remaining strings from the command line
        if return_remaining_strings:
            args_remaining_strings = output[-1]
            return output[:-1] + (config_remaining_strings + args_remaining_strings,)
        elif fail_with_unknown_args and config_remaining_strings:
            raise ValueError(
                f"Unknown arguments from config file: {config_remaining_strings}. Please remove them, add them to the "
                "dataclass, or set `fail_with_unknown_args=False`."
            )
        else:
            return output

    def set_defaults_with_config(self, **kwargs) -> list[str]:
        """
        Overrides the parser's default values with those provided via keyword arguments, including for subparsers.

        Any argument with an updated default will also be marked as not required
        if it was previously required.

        Returns a list of strings that were not consumed by the parser.
        """

        def apply_defaults(parser, kw):
            used_keys = set()
            for action in parser._actions:
                # Handle subparsers recursively
                if isinstance(action, argparse._SubParsersAction):
                    for subparser in action.choices.values():
                        used_keys.update(apply_defaults(subparser, kw))
                elif action.dest in kw:
                    action.default = kw[action.dest]
                    action.required = False
                    used_keys.add(action.dest)
            return used_keys

        used_keys = apply_defaults(self, kwargs)
        # Remaining args not consumed by the parser
        remaining = [
            item for key, value in kwargs.items() if key not in used_keys for item in (f"--{key}", str(value))
        ]
        return remaining


def get_git_commit_hash(package_name):
    try:
        # Import the package to locate its path
        package = importlib.import_module(package_name)
        # Get the path to the package using inspect
        package_path = os.path.dirname(inspect.getfile(package))

        # Navigate up to the Git repository root if the package is inside a subdirectory
        git_repo_path = os.path.abspath(os.path.join(package_path, ".."))
        git_dir = os.path.join(git_repo_path, ".git")

        if os.path.isdir(git_dir):
            # Run the git command to get the current commit hash
            commit_hash = (
                subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=git_repo_path).strip().decode("utf-8")
            )
            return commit_hash
        else:
            return None
    except Exception as e:
        return f"Error: {str(e)}"