Spaces:
Paused
Paused
File size: 24,508 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
from collections.abc import Sequence
from contextlib import asynccontextmanager
from dataclasses import dataclass, field
from itertools import chain
from multiprocessing import Pipe, Process
from multiprocessing.connection import Connection
from typing import Optional
import torch
from trl import TrlParser
from trl.import_utils import (
is_fastapi_available,
is_pydantic_available,
is_uvicorn_available,
is_vllm_ascend_available,
is_vllm_available,
)
if is_fastapi_available():
from fastapi import FastAPI
if is_pydantic_available():
from pydantic import BaseModel
if is_uvicorn_available():
import uvicorn
if is_vllm_available():
from vllm import LLM, SamplingParams
from vllm.distributed.device_communicators.pynccl import PyNcclCommunicator
from vllm.distributed.parallel_state import get_world_group
from vllm.distributed.utils import StatelessProcessGroup
from vllm.sampling_params import GuidedDecodingParams
from vllm.utils import get_open_port
if is_vllm_ascend_available():
from vllm_ascend.distributed.device_communicators.pyhccl import PyHcclCommunicator as PyNcclCommunicator
logger = logging.getLogger(__name__)
# We use CUDA with multiprocessing, so we must use the 'spawn' start method. Otherwise, we will get the following
# error: RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use
# the 'spawn' start method
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
class WeightSyncWorkerExtension:
"""
A vLLM worker extension that enables weight synchronization between a client and multiple server workers.
This worker uses a `StatelessProcessGroup` to establish communication and a `PyNcclCommunicator` to handle
efficient GPU-based communication using NCCL. The primary purpose of this class is to receive updated model weights
from a client process and distribute them to all worker processes participating in model inference.
"""
# The following attributes are initialized when `init_communicator` method is called.
pynccl_comm = None # Communicator for weight updates
client_rank = None # Source rank for broadcasting updated weights
def init_communicator(self, host: str, port: int, world_size: int) -> None:
"""
Initializes the weight update communicator using a stateless process group.
This method creates a `StatelessProcessGroup` that allows external training processes to
communicate with vLLM workers without interfering with the global torch distributed group.
Args:
host (`str`):
Hostname or IP address of the master node.
port (`int`):
Port number to be used for communication.
world_size (`int`):
Total number of participating processes in the update group.
"""
if self.pynccl_comm is not None:
raise RuntimeError("Weight update group already initialized. Call close_communicator first.")
# Get the rank of the current worker in the global world group.
rank = get_world_group().rank
# Create a stateless process group to manage communication between training processes and vLLM workers.
pg = StatelessProcessGroup.create(host=host, port=port, rank=rank, world_size=world_size)
# Initialize the NCCL-based communicator for weight synchronization.
self.pynccl_comm = PyNcclCommunicator(pg, device=self.device)
# The client process that sends updated weights has the highest rank (world_size - 1).
self.client_rank = world_size - 1
def update_named_param(self, name: str, dtype: torch.dtype, shape: Sequence[int]) -> None:
"""
Receives updated weights from the client process and updates the named parameter in the model.
Args:
name (`str`):
Name of the weight tensor being updated.
dtype (`torch.dtype`):
Data type of the weight tensor (e.g., `torch.float32`).
shape (`Sequence[int]`):
Shape of the weight tensor.
"""
if self.pynccl_comm is None:
raise RuntimeError("Communicator not initialized. Call `init_communicator` first.")
# Allocate memory for the incoming weight tensor on the correct device.
weight = torch.empty(shape, dtype=dtype, device=self.device)
# Use NCCL to broadcast the updated weights from the client (src) to all workers.
self.pynccl_comm.broadcast(weight, src=self.client_rank)
self.pynccl_comm.group.barrier()
# Load the received weights into the model.
self.model_runner.model.load_weights(weights=[(name, weight)])
def close_communicator(self) -> None:
"""
Closes the communicator when weight synchronization is no longer needed.
This method deletes the NCCL communicator to release associated resources.
"""
if self.pynccl_comm is not None:
del self.pynccl_comm
self.pynccl_comm = None # Ensure attribute is reset to None
self.client_rank = None # Ensure attribute is reset to None
@dataclass
class ScriptArguments:
r"""
Arguments for the script.
Args:
model (`str`):
Model name or path to load the model from.
revision (`str` or `None`, *optional*, defaults to `None`):
Revision to use for the model. If not specified, the default branch will be used.
tensor_parallel_size (`int`, *optional*, defaults to `1`):
Number of tensor parallel workers to use.
data_parallel_size (`int`, *optional*, defaults to `1`):
Number of data parallel workers to use.
host (`str`, *optional*, defaults to `"0.0.0.0"`):
Host address to run the server on.
port (`int`, *optional*, defaults to `8000`):
Port to run the server on.
gpu_memory_utilization (`float`, *optional*, defaults to `0.9`):
Ratio (between 0 and 1) of GPU memory to reserve for the model weights, activations, and KV cache on the
device dedicated to generation powered by vLLM. Higher values will increase the KV cache size and thus
improve the model's throughput. However, if the value is too high, it may cause out-of-memory (OOM) errors
during initialization.
dtype (`str`, *optional*, defaults to `"auto"`):
Data type to use for vLLM generation. If set to `"auto"`, the data type will be automatically determined
based on the model configuration. Find the supported values in the vLLM documentation.
max_model_len (`int` or `None`, *optional*, defaults to `None`):
If set, the `max_model_len` to use for vLLM. This can be useful when running with reduced
`vllm_gpu_memory_utilization`, leading to a reduced KV cache size. If not set, vLLM will use the model
context size, which might be much larger than the KV cache, leading to inefficiencies.
enable_prefix_caching (`bool` or `None`, *optional*, defaults to `None`):
Whether to enable prefix caching in vLLM. If set to `True`, ensure that the model and the hardware support
this feature.
enforce_eager (`bool` or `None`, *optional*, defaults to `None`):
Whether to enforce eager execution. If set to `True`, we will disable CUDA graph and always execute the
model in eager mode. If `False` (default behavior), we will use CUDA graph and eager execution in hybrid.
kv_cache_dtype (`str`, *optional*, defaults to `"auto"`):
Data type to use for KV cache. If set to `"auto"`, the dtype will default to the model data type.
log_level (`str`, *optional*, defaults to `"info"`):
Log level for uvicorn. Possible choices: `"critical"`, `"error"`, `"warning"`, `"info"`, `"debug"`,
`"trace"`.
"""
model: str = field(
metadata={"help": "Model name or path to load the model from."},
)
revision: Optional[str] = field(
default=None,
metadata={"help": "Revision to use for the model. If not specified, the default branch will be used."},
)
tensor_parallel_size: int = field(
default=1,
metadata={"help": "Number of tensor parallel workers to use."},
)
data_parallel_size: int = field(
default=1,
metadata={"help": "Number of data parallel workers to use."},
)
host: str = field(
default="0.0.0.0",
metadata={"help": "Host address to run the server on."},
)
port: int = field(
default=8000,
metadata={"help": "Port to run the server on."},
)
gpu_memory_utilization: float = field(
default=0.9,
metadata={
"help": "Ratio (between 0 and 1) of GPU memory to reserve for the model weights, activations, and KV "
"cache on the device dedicated to generation powered by vLLM. Higher values will increase the KV cache "
"size and thus improve the model's throughput. However, if the value is too high, it may cause "
"out-of-memory (OOM) errors during initialization."
},
)
dtype: str = field(
default="auto",
metadata={
"help": "Data type to use for vLLM generation. If set to 'auto', the data type will be automatically "
"determined based on the model configuration. Find the supported values in the vLLM documentation."
},
)
max_model_len: Optional[int] = field(
default=None,
metadata={
"help": "If set, the `max_model_len` to use for vLLM. This can be useful when running with reduced "
"`vllm_gpu_memory_utilization`, leading to a reduced KV cache size. If not set, vLLM will use the model "
"context size, which might be much larger than the KV cache, leading to inefficiencies."
},
)
enable_prefix_caching: Optional[bool] = field(
default=None,
metadata={
"help": "Whether to enable prefix caching in vLLM. If set to `True`, ensure that the model and the "
"hardware support this feature."
},
)
enforce_eager: Optional[bool] = field(
default=None,
metadata={
"help": "Whether to enforce eager execution. If set to `True`, we will disable CUDA graph and always "
"execute the model in eager mode. If `False` (default behavior), we will use CUDA graph and eager "
"execution in hybrid."
},
)
kv_cache_dtype: str = field(
default="auto",
metadata={
"help": "Data type to use for KV cache. If set to 'auto', the dtype will default to the model data type."
},
)
log_level: str = field(
default="info",
metadata={
"help": "Log level for uvicorn. Possible choices: 'critical', 'error', 'warning', 'info', 'debug', "
"'trace'."
},
)
def llm_worker(
script_args: ScriptArguments, data_parallel_rank: int, master_port: int, connection: Connection
) -> None:
# Set required environment variables for DP to work with vLLM
os.environ["VLLM_DP_RANK"] = str(data_parallel_rank)
os.environ["VLLM_DP_RANK_LOCAL"] = str(data_parallel_rank)
os.environ["VLLM_DP_SIZE"] = str(script_args.data_parallel_size)
os.environ["VLLM_DP_MASTER_PORT"] = str(master_port)
llm = LLM(
model=script_args.model,
revision=script_args.revision,
tensor_parallel_size=script_args.tensor_parallel_size,
gpu_memory_utilization=script_args.gpu_memory_utilization,
enforce_eager=script_args.enforce_eager,
dtype=script_args.dtype,
# Automatic Prefix Caching caches the KV cache of existing queries, so that a new query can
# directly reuse the KV cache if it shares the same prefix with one of the existing queries.
# This is particularly useful here because we generate completions from the same prompts.
enable_prefix_caching=script_args.enable_prefix_caching,
kv_cache_dtype=script_args.kv_cache_dtype,
max_model_len=script_args.max_model_len,
worker_extension_cls="trl.scripts.vllm_serve.WeightSyncWorkerExtension",
)
# Send ready signal to parent process
connection.send({"status": "ready"})
while True:
# Wait for commands from the parent process
try:
command = connection.recv()
except KeyboardInterrupt:
llm.collective_rpc(method="close_communicator")
break
# Handle commands
if command["type"] in ["call", "fire_and_forget"]:
method_name = command["method"]
args, kwargs = command.get("args", ()), command.get("kwargs", {})
method = getattr(llm, method_name)
result = method(*args, **kwargs)
if command["type"] == "call":
connection.send(result)
elif command["type"] == "shutdown":
break
def chunk_list(lst: list, n: int) -> list[list]:
"""
Split list `lst` into `n` evenly distributed sublists.
Example:
>>> chunk_list([1, 2, 3, 4, 5, 6], 2)
[[1, 2, 3], [4, 5, 6]]
>>> chunk_list([1, 2, 3, 4, 5, 6], 4)
[[1, 2], [3, 4], [5], [6]]
>>> chunk_list([1, 2, 3, 4, 5, 6], 8)
[[1], [2], [3], [4], [5], [6], [], []]
"""
k, r = divmod(len(lst), n)
return [lst[i * k + min(i, r) : (i + 1) * k + min(i + 1, r)] for i in range(n)]
def main(script_args: ScriptArguments):
if not is_fastapi_available():
raise ImportError(
"FastAPI is required to run the vLLM serve script. Please install it using `pip install fastapi`."
)
if not is_pydantic_available():
raise ImportError(
"Pydantic is required to run the vLLM serve script. Please install it using `pip install pydantic`."
)
if not is_uvicorn_available():
raise ImportError(
"Uvicorn is required to run the vLLM serve script. Please install it using `pip install uvicorn`."
)
if not is_vllm_available():
raise ImportError("vLLM is required to run the vLLM serve script. Please install it using `pip install vllm`.")
# Spawn dp workers, and setup pipes for communication
master_port = get_open_port()
connections = []
processes = []
for data_parallel_rank in range(script_args.data_parallel_size):
parent_connection, child_connection = Pipe()
process = Process(target=llm_worker, args=(script_args, data_parallel_rank, master_port, child_connection))
process.start()
connections.append(parent_connection)
processes.append(process)
@asynccontextmanager
async def lifespan(app: FastAPI):
# Wait for all workers to send "ready"
ready_connections = set()
while len(ready_connections) < script_args.data_parallel_size:
for connection in connections:
msg = connection.recv()
if isinstance(msg, dict) and msg.get("status") == "ready":
ready_connections.add(connection)
yield
# Wait for processes to terminate
for process in processes:
process.join(timeout=10) # Wait for 10 seconds for the process to terminate
if process.is_alive():
logger.warning(f"Process {process} is still alive after 10 seconds, attempting to terminate...")
process.terminate()
process.join() # ensure process termination after calling terminate()
app = FastAPI(lifespan=lifespan)
# Define the endpoints for the model server
@app.get("/health/")
async def health():
"""
Health check endpoint to verify that the server is running.
"""
return {"status": "ok"}
@app.get("/get_world_size/")
async def get_world_size():
"""
Retrieves the world size of the LLM engine, which is `tensor_parallel_size * data_parallel_size`.
Returns:
`dict`:
A dictionary containing the world size.
Example response:
```json
{"world_size": 8}
```
"""
return {"world_size": script_args.tensor_parallel_size * script_args.data_parallel_size}
class GenerateRequest(BaseModel):
prompts: list[str]
n: int = 1
repetition_penalty: float = 1.0
temperature: float = 1.0
top_p: float = 1.0
top_k: int = -1
min_p: float = 0.0
max_tokens: int = 16
guided_decoding_regex: Optional[str] = None
class GenerateResponse(BaseModel):
completion_ids: list[list[int]]
@app.post("/generate/", response_model=GenerateResponse)
async def generate(request: GenerateRequest):
"""
Generates completions for the provided prompts.
Args:
request (`GenerateRequest`):
- `prompts` (list of `str`): A list of prompts (text strings) for the model to generate completions.
Returns:
`GenerateResponse`:
- `completion_ids` (list of list of `int`): A list of lists of token IDs for each generated completion.
Example request:
```json
{"prompts": ["Hello world", "What is AI?"]}
```
Example response:
```json
{"completion_ids": [[101, 102, 103], [201, 202, 203]]}
```
"""
# Guided decoding, if enabled
if request.guided_decoding_regex is not None:
guided_decoding = GuidedDecodingParams(backend="outlines", regex=request.guided_decoding_regex)
else:
guided_decoding = None
# Sampling parameters
sampling_params = SamplingParams(
n=request.n,
repetition_penalty=request.repetition_penalty,
temperature=request.temperature,
top_p=request.top_p,
top_k=request.top_k,
min_p=request.min_p,
max_tokens=request.max_tokens,
guided_decoding=guided_decoding,
)
# Evenly distribute prompts across DP ranks
chunked_prompts = chunk_list(request.prompts, script_args.data_parallel_size)
# Send the prompts to each worker
for connection, prompts in zip(connections, chunked_prompts):
# When the number of prompts is less than data_parallel_size, some workers will receive empty prompts.
# However, vLLM requires that we always send at least one prompt. So we send a placeholder prompt to comply
# with vLLM's requirement, and we later ignore the result.
if not prompts:
prompts = ["<placeholder>"]
kwargs = {"prompts": prompts, "sampling_params": sampling_params}
connection.send({"type": "call", "method": "generate", "kwargs": kwargs})
# Receive results
all_outputs = [connection.recv() for connection in connections]
# Handle empty prompts (see above)
all_outputs = [output for output, prompts in zip(all_outputs, chunked_prompts) if prompts]
# Flatten and combine all results
all_outputs = list(chain.from_iterable(all_outputs)) # from list of list to single list
completion_ids = [list(output.token_ids) for outputs in all_outputs for output in outputs.outputs]
return {"completion_ids": completion_ids}
class InitCommunicatorRequest(BaseModel):
host: str
port: int
world_size: int
@app.post("/init_communicator/")
async def init_communicator(request: InitCommunicatorRequest):
"""
Initializes the communicator for synchronizing model weights between a client and multiple server
workers.
Args:
request (`InitCommunicatorRequest`):
- `host` (`str`): Hostname or IP address of the master node.
- `port` (`int`): Port number to be used for communication.
- `world_size` (`int`): Total number of participating processes in the group.
"""
world_size = script_args.tensor_parallel_size * script_args.data_parallel_size + 1
# The function init_communicator is called this way: init_communicator(host, port, world_size)
# So with collective_rpc we need to call it this way:
# llm.collective_rpc(method="init_communicator", args=(host, port, world_size))
kwargs = {"method": "init_communicator", "args": (request.host, request.port, world_size)}
for connection in connections:
connection.send({"type": "fire_and_forget", "method": "collective_rpc", "kwargs": kwargs})
return {"message": "Request received, initializing communicator"}
class UpdateWeightsRequest(BaseModel):
name: str
dtype: str
shape: list[int]
@app.post("/update_named_param/")
async def update_named_param(request: UpdateWeightsRequest):
"""
Updates the model weights with the provided tensor.
Once this endpoint is called, the client process should broadcast the updated weights to all server workers.
Args:
request (`UpdateWeightsRequest`):
- `name` (`str`): Name of the weight tensor being updated.
- `dtype` (`str`): Data type of the weight tensor (e.g., `"torch.float32"`).
- `shape` (list of `int`): Shape of the weight
"""
# The function update_named_param is called this way: update_named_param("name", torch.float32, (10, 10))
# So with collective_rpc we need to call it this way:
# llm.collective_rpc("update_named_param", args=("name", torch.float32, (10, 10)))
dtype = torch.__getattribute__(request.dtype.split(".")[-1])
kwargs = {"method": "update_named_param", "args": (request.name, dtype, tuple(request.shape))}
for connection in connections:
connection.send({"type": "fire_and_forget", "method": "collective_rpc", "kwargs": kwargs})
return {"message": "Request received, updating named parameter"}
@app.post("/reset_prefix_cache/")
async def reset_prefix_cache():
"""
Resets the prefix cache for the model.
"""
for connection in connections:
connection.send({"type": "call", "method": "reset_prefix_cache"})
# Wait for and collect all results
all_outputs = [connection.recv() for connection in connections]
success = all(output for output in all_outputs)
return {"message": "Request received, resetting prefix cache status: " + str(success)}
@app.post("/close_communicator/")
async def close_communicator():
"""
Closes the weight update group and cleans up associated resources.
"""
kwargs = {"method": "close_communicator"}
for connection in connections:
connection.send({"type": "fire_and_forget", "method": "collective_rpc", "kwargs": kwargs})
return {"message": "Request received, closing communicator"}
# Start the server
uvicorn.run(app, host=script_args.host, port=script_args.port, log_level=script_args.log_level)
def make_parser(subparsers: argparse._SubParsersAction = None):
if subparsers is not None:
parser = subparsers.add_parser("vllm-serve", help="Run the vLLM serve script", dataclass_types=ScriptArguments)
else:
parser = TrlParser(ScriptArguments)
return parser
if __name__ == "__main__":
parser = make_parser()
(script_args,) = parser.parse_args_and_config()
main(script_args)
|