Spaces:
Paused
Paused
File size: 9,790 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Any, Optional
from transformers import TrainingArguments
@dataclass
class BCOConfig(TrainingArguments):
r"""
Configuration class for the [`BCOTrainer`].
This class includes only the parameters that are specific to BCO training. For a full list of training arguments,
please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this class may
differ from those in [`~transformers.TrainingArguments`].
Using [`~transformers.HfArgumentParser`] we can turn this class into
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
command line.
Parameters:
max_length (`int` or `None`, *optional*, defaults to `1024`):
Maximum length of the sequences (prompt + completion) in the batch. This argument is required if you want
to use the default data collator.
max_prompt_length (`int` or `None`, *optional*, defaults to `512`):
Maximum length of the prompt. This argument is required if you want to use the default data collator.
max_completion_length (`int` or `None`, *optional*, defaults to `None`):
Maximum length of the completion. This argument is required if you want to use the default data collator
and your model is an encoder-decoder.
beta (`float`, *optional*, defaults to `0.1`):
Parameter controlling the deviation from the reference model. Higher β means less deviation from the
reference model.
label_pad_token_id (`int`, *optional*, defaults to `-100`):
Label pad token id. This argument is required if you want to use the default data collator.
padding_value (`int` or `None`, *optional*, defaults to `None`):
Padding value to use. If `None`, the padding value of the tokenizer is used.
truncation_mode (`str`, *optional*, defaults to `"keep_end"`):
Truncation mode to use when the prompt is too long. Possible values are `"keep_end"` or `"keep_start"`.
This argument is required if you want to use the default data collator.
disable_dropout (`bool`, *optional*, defaults to `True`):
Whether to disable dropout in the model and reference model.
generate_during_eval (`bool`, *optional*, defaults to `False`):
If `True`, generates and logs completions from both the model and the reference model to W&B or Comet during
evaluation.
is_encoder_decoder (`bool` or `None`, *optional*, defaults to `None`):
When using the `model_init` argument (callable) to instantiate the model instead of the `model` argument,
you need to specify if the model returned by the callable is an encoder-decoder model.
precompute_ref_log_probs (`bool`, *optional*, defaults to `False`):
Whether to precompute reference model log probabilities for training and evaluation datasets. This is
useful when training without the reference model to reduce the total GPU memory needed.
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model from a
string.
ref_model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the reference model
from a string.
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
Number of processes to use for processing the dataset.
prompt_sample_size (`int`, *optional*, defaults to `1024`):
Number of prompts that are fed to density ratio classifier.
min_density_ratio (`float`, *optional*, defaults to `0.5`):
Minimum value of the density ratio. The estimated density ratio is clamped to this value.
max_density_ratio (`float`, *optional*, defaults to `10.0`):
Maximum value of the density ratio. The estimated density ratio is clamped to this value.
"""
_VALID_DICT_FIELDS = TrainingArguments._VALID_DICT_FIELDS + ["model_init_kwargs", "ref_model_init_kwargs"]
# Parameters whose default values are overridden from TrainingArguments
logging_steps: float = field(
default=10,
metadata={
"help": (
"Log every X updates steps. Should be an integer or a float in range `[0,1)`. "
"If smaller than 1, will be interpreted as ratio of total training steps."
)
},
)
bf16: bool = field(
default=True,
metadata={
"help": (
"Whether to use bf16 (mixed) precision instead of 32-bit. Requires Ampere or higher NVIDIA "
"architecture or using CPU (use_cpu) or Ascend NPU. This is an experimental API and it may change."
)
},
)
max_length: Optional[int] = field(
default=1024,
metadata={
"help": "Maximum length of the sequences (prompt + completion) in the batch. "
"This argument is required if you want to use the default data collator."
},
)
max_prompt_length: Optional[int] = field(
default=512,
metadata={
"help": "Maximum length of the prompt. "
"This argument is required if you want to use the default data collator."
},
)
max_completion_length: Optional[int] = field(
default=None,
metadata={
"help": "Maximum length of the completion. This argument is required if you want to use the "
"default data collator and your model is an encoder-decoder."
},
)
beta: float = field(
default=0.1,
metadata={
"help": "Parameter controlling the deviation from the reference model. "
"Higher β means less deviation from the reference model."
},
)
label_pad_token_id: int = field(
default=-100,
metadata={
"help": "Label pad token id. This argument is required if you want to use the default data collator."
},
)
padding_value: Optional[int] = field(
default=None,
metadata={"help": "Padding value to use. If `None`, the padding value of the tokenizer is used."},
)
truncation_mode: str = field(
default="keep_end",
metadata={
"help": "Truncation mode to use when the prompt is too long. Possible values are "
"`keep_end` or `keep_start`. This argument is required if you want to use the "
"default data collator."
},
)
disable_dropout: bool = field(
default=True,
metadata={"help": "Whether to disable dropout in the model and reference model."},
)
generate_during_eval: bool = field(
default=False,
metadata={
"help": "If `True`, generates and logs completions from both the model and the reference model "
"to W&B during evaluation."
},
)
is_encoder_decoder: Optional[bool] = field(
default=None,
metadata={
"help": "When using the `model_init` argument (callable) to instantiate the model instead of the "
"`model` argument, you need to specify if the model returned by the callable is an "
"encoder-decoder model."
},
)
precompute_ref_log_probs: bool = field(
default=False,
metadata={
"help": "Whether to precompute reference model log probabilities for training and evaluation datasets. "
"This is useful when training without the reference model to reduce the total GPU memory "
"needed."
},
)
model_init_kwargs: Optional[dict[str, Any]] = field(
default=None,
metadata={
"help": "Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the "
"model from a string."
},
)
ref_model_init_kwargs: Optional[dict[str, Any]] = field(
default=None,
metadata={
"help": "Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the "
"reference model from a string."
},
)
dataset_num_proc: Optional[int] = field(
default=None,
metadata={"help": "Number of processes to use for processing the dataset."},
)
prompt_sample_size: int = field(
default=1024,
metadata={"help": "Number of prompts that are fed to density ratio classifier."},
)
min_density_ratio: float = field(
default=0.5,
metadata={"help": "Minimum value of the density ratio. The estimated density ratio is clamped to this value."},
)
max_density_ratio: float = field(
default=10.0,
metadata={"help": "Maximum value of the density ratio. The estimated density ratio is clamped to this value."},
)
|