File size: 24,554 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from typing import Optional, Union

import pandas as pd
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.utils import gather_object, is_wandb_available
from transformers import (
    GenerationConfig,
    PreTrainedModel,
    PreTrainedTokenizerBase,
    Trainer,
    TrainerCallback,
    TrainerControl,
    TrainerState,
    TrainingArguments,
)
from transformers.trainer_utils import has_length
from transformers.utils import is_rich_available

from ..data_utils import maybe_apply_chat_template
from ..import_utils import is_mergekit_available
from ..mergekit_utils import MergeConfig, merge_models, upload_model_to_hf
from ..models.utils import unwrap_model_for_generation
from .judges import BasePairwiseJudge
from .utils import log_table_to_comet_experiment


if is_rich_available():
    from rich.console import Console, Group
    from rich.live import Live
    from rich.panel import Panel
    from rich.progress import Progress

if is_wandb_available():
    import wandb


def _generate_completions(
    prompts: list[str],
    model: PreTrainedModel,
    tokenizer: PreTrainedTokenizerBase,
    accelerator: Accelerator,
    generation_config: Optional[GenerationConfig],
    batch_size: int = 1,
) -> list[str]:
    """
    Generates completions for a list of pre-formatted prompts from the given model.

    Args:
        prompts (list[str]): A list of input prompts for which completions are to be generated.
        model (PreTrainedModel): The pre-trained model to be used for generation.
        tokenizer (PreTrainedTokenizerBase): The tokenizer to be used for encoding and decoding.
        accelerator (Accelerator): The accelerator to be used for model execution.
        generation_config (GenerationConfig): Configuration for text generation.
        batch_size (int, optional): The number of prompts to process in each batch. Default is 1.

    Returns:
        list[str]: A list of generated text completions corresponding to the input prompts.
    """
    completions = []
    with unwrap_model_for_generation(model, accelerator) as unwrapped_model:
        for idx in range(0, len(prompts), batch_size):
            batch = prompts[idx : idx + batch_size]
            tokenized_batch = tokenizer(batch, return_tensors="pt", padding=True, truncation=True).to(model.device)
            generations = unwrapped_model.generate(
                **tokenized_batch,
                generation_config=generation_config,
            )
            for prompt, generation in zip(tokenized_batch.input_ids, generations):
                # Remove prompt from generation
                generation = generation[len(prompt) :]
                completion = tokenizer.decode(generation, skip_special_tokens=True)
                completions.append(completion)
    return completions


class SyncRefModelCallback(TrainerCallback):
    """
    Callback to synchronize the model with a reference model.
    """

    def __init__(
        self,
        ref_model: Union[PreTrainedModel, torch.nn.Module],
        accelerator: Optional[Accelerator],
    ):
        self.accelerator = accelerator
        self.ref_model = ref_model

    @staticmethod
    def _sync_target_model(model, target_model, alpha):
        for target_param, copy_param in zip(target_model.parameters(), model.parameters()):
            target_param.data.mul_(1.0 - alpha).add_(copy_param.data, alpha=alpha)

    @staticmethod
    def sync_target_model(model, target_model, alpha):
        deepspeed_plugin = AcceleratorState().deepspeed_plugin
        if deepspeed_plugin is not None and deepspeed_plugin.zero_stage == 3:
            import deepspeed

            with deepspeed.zero.GatheredParameters(
                list(model.parameters()) + list(target_model.parameters()), modifier_rank=0
            ):
                if deepspeed.comm.get_rank() == 0:
                    SyncRefModelCallback._sync_target_model(model, target_model, alpha)
        else:
            SyncRefModelCallback._sync_target_model(model, target_model, alpha)

    def on_step_end(self, args, state, control, **kwargs):
        model: PreTrainedModel = kwargs["model"]

        if self.ref_model is not None and state.global_step % args.ref_model_sync_steps == 0:
            if self.accelerator:
                model = self.accelerator.unwrap_model(model)
            self.sync_target_model(model, self.ref_model, args.ref_model_mixup_alpha)


class RichProgressCallback(TrainerCallback):
    """
    A [`TrainerCallback`] that displays the progress of training or evaluation using Rich.
    """

    def __init__(self):
        if not is_rich_available():
            raise ImportError("RichProgressCallback requires the `rich` extra. To install, run `pip install rich`.")

        self.training_bar = None
        self.prediction_bar = None

        self.training_task_id = None
        self.prediction_task_id = None

        self.rich_group = None
        self.rich_console = None

        self.training_status = None
        self.current_step = None

    def on_train_begin(self, args, state, control, **kwargs):
        if state.is_world_process_zero:
            self.training_bar = Progress()
            self.prediction_bar = Progress()

            self.rich_console = Console()

            self.training_status = self.rich_console.status("Nothing to log yet ...")

            self.rich_group = Live(Panel(Group(self.training_bar, self.prediction_bar, self.training_status)))
            self.rich_group.start()

            self.training_task_id = self.training_bar.add_task("[blue]Training the model", total=state.max_steps)
            self.current_step = 0

    def on_step_end(self, args, state, control, **kwargs):
        if state.is_world_process_zero:
            self.training_bar.update(self.training_task_id, advance=state.global_step - self.current_step, update=True)
            self.current_step = state.global_step

    def on_prediction_step(self, args, state, control, eval_dataloader=None, **kwargs):
        if state.is_world_process_zero and has_length(eval_dataloader):
            if self.prediction_task_id is None:
                self.prediction_task_id = self.prediction_bar.add_task(
                    "[blue]Predicting on the evaluation dataset", total=len(eval_dataloader)
                )
            self.prediction_bar.update(self.prediction_task_id, advance=1, update=True)

    def on_evaluate(self, args, state, control, **kwargs):
        if state.is_world_process_zero:
            if self.prediction_task_id is not None:
                self.prediction_bar.remove_task(self.prediction_task_id)
                self.prediction_task_id = None

    def on_predict(self, args, state, control, **kwargs):
        if state.is_world_process_zero:
            if self.prediction_task_id is not None:
                self.prediction_bar.remove_task(self.prediction_task_id)
                self.prediction_task_id = None

    def on_log(self, args, state, control, logs=None, **kwargs):
        if state.is_world_process_zero and self.training_bar is not None:
            _ = logs.pop("total_flos", None)
            self.training_status.update(f"[bold green]Status = {str(logs)}")

    def on_train_end(self, args, state, control, **kwargs):
        if state.is_world_process_zero:
            self.rich_group.stop()

            self.training_bar = None
            self.prediction_bar = None
            self.training_task_id = None
            self.prediction_task_id = None
            self.rich_group = None
            self.rich_console = None
            self.training_status = None
            self.current_step = None


def _win_rate_completions_df(
    state: TrainerState, prompts: list[str], completions: list[str], winner_indices: list[str]
) -> pd.DataFrame:
    global_step = [str(state.global_step)] * len(prompts)
    data = list(zip(global_step, prompts, completions, winner_indices))
    # Split completions from reference model and policy
    split_data = [(item[0], item[1], item[2][0], item[2][1], item[3]) for item in data]
    return pd.DataFrame(split_data, columns=["step", "prompt", "reference_model", "policy", "winner_index"])


class WinRateCallback(TrainerCallback):
    """
    A [`~transformers.TrainerCallback`] that computes the win rate of a model based on a reference.

    It generates completions using prompts from the evaluation dataset and compares the trained model's outputs against
    a reference. The reference is either the initial version of the model (before training) or the reference model, if
    available in the trainer. During each evaluation step, a judge determines how often the trained model's completions
    win against the reference using a judge. The win rate is then logged in the trainer's logs under the key
    `"eval_win_rate"`.

    Usage:
    ```python
    trainer = DPOTrainer(...)
    judge = PairRMJudge()
    win_rate_callback = WinRateCallback(judge=judge, trainer=trainer)
    trainer.add_callback(win_rate_callback)
    ```

    Args:
        judge (`BasePairwiseJudge`):
            The judge to use for comparing completions.
        trainer (`Trainer`):
            Trainer to which the callback will be attached. The trainer's evaluation dataset must include a `"prompt"`
            column containing the prompts for generating completions. If the `Trainer` has a reference model (via the
            `ref_model` attribute), it will use this reference model for generating the reference completions;
            otherwise, it defaults to using the initial model.
        generation_config (`GenerationConfig`, *optional*):
            The generation config to use for generating completions.
        num_prompts (`int` or `None`, *optional*, defaults to `None`):
            The number of prompts to generate completions for. If not provided, defaults to the number of examples
            in the evaluation dataset.
        shuffle_order (`bool`, *optional*, defaults to `True`):
            Whether to shuffle the order of the completions before judging.
        use_soft_judge (`bool`, *optional*, defaults to `False`):
            Whether to use a soft judge that returns a win probability between 0 and 1 for the first completion vs the
            second.
    """

    def __init__(
        self,
        judge: BasePairwiseJudge,
        trainer: Trainer,
        generation_config: Optional[GenerationConfig] = None,
        num_prompts: Optional[int] = None,
        shuffle_order: bool = True,
        use_soft_judge: bool = False,
    ):
        self.judge = judge
        self.trainer = trainer
        self.shuffle_order = shuffle_order
        self.generation_config = generation_config
        self.ref_completions = []
        self.use_soft_judge = use_soft_judge

        if self.trainer.eval_dataset is None:
            raise ValueError("Trainer must have an evaluation dataset to use the WinRateCallback.")
        else:
            self.eval_dataset = self.trainer.eval_dataset

        if num_prompts is not None:
            self.eval_dataset = self.eval_dataset.select(range(num_prompts))

    def on_train_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
        # When the trainer is initialized, we generate completions for the reference model.
        tokenizer = kwargs["processing_class"]
        tokenizer.padding_side = "left"
        accelerator = self.trainer.accelerator
        # Use the reference model if available, otherwise use the initial model
        model = getattr(self.trainer, "ref_model", None)
        # At this point, there are two cases where `ref_model` is None:
        # 1. The method doesn't require a reference model.
        # 2. The method uses a reference model, but `ref_model` is set to None.
        #    This occurs when using PEFT, where the reference model can be obtained by simply disabling the model's adapter.
        #    In theory, we should disable the adapter here, but since it's zero-initialized at the start of training,
        #    the model behaves identically with or without the adapter.
        #    Therefore, there's no need to explicitly disable it at this point.
        if model is None:
            model = self.trainer.model_wrapped
        with accelerator.split_between_processes(self.eval_dataset["prompt"]) as prompts:
            self.ref_completions = _generate_completions(
                prompts,
                model=model,
                tokenizer=tokenizer,
                accelerator=accelerator,
                generation_config=self.generation_config,
                batch_size=args.per_device_eval_batch_size,
            )
            # Compute initial win rate as a reference point
            completions = list(zip(self.ref_completions, self.ref_completions))
            if self.use_soft_judge:
                ref_win_probs = self.judge.judge(prompts, completions, self.shuffle_order, return_scores=True)
                winner_indices = [0 if score > 0.5 else 1 for score in ref_win_probs]
                ref_win_probs = gather_object(ref_win_probs)
            else:
                winner_indices = self.judge.judge(prompts, completions, self.shuffle_order)
            prompts = gather_object(prompts)
            completions = gather_object(completions)
            winner_indices = gather_object(winner_indices)

        # Logging
        if self.trainer.accelerator.is_main_process:
            win_rate = sum(winner_idx == 1 for winner_idx in winner_indices) / len(winner_indices)
            if self.use_soft_judge:
                avg_win_prob = 1.0 - sum(ref_win_probs) / len(ref_win_probs)
                self.trainer.log({"eval_avg_win_prob": avg_win_prob, "eval_win_rate": win_rate})
            else:
                self.trainer.log({"eval_win_rate": win_rate})

            if "wandb" in args.report_to:
                import wandb

                if wandb.run is not None:
                    df = _win_rate_completions_df(
                        state=state,
                        prompts=prompts,
                        completions=completions,
                        winner_indices=winner_indices,
                    )
                    wandb.log({"win_rate_completions": wandb.Table(dataframe=df)})

            if "comet_ml" in args.report_to:
                df = _win_rate_completions_df(
                    state=state,
                    prompts=prompts,
                    completions=completions,
                    winner_indices=winner_indices,
                )
                log_table_to_comet_experiment(
                    name="win_rate_completions.csv",
                    table=df,
                )

    def on_evaluate(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
        # At every evaluation step, we generate completions for the model and compare them with the reference
        # completions that have been generated at the beginning of training. We then compute the win rate and log it to
        # the trainer.
        tokenizer = kwargs["processing_class"]
        tokenizer.padding_side = "left"
        accelerator = self.trainer.accelerator
        model = self.trainer.model_wrapped
        with accelerator.split_between_processes(self.eval_dataset["prompt"]) as prompts:
            completions = _generate_completions(
                prompts,
                model=model,
                tokenizer=tokenizer,
                accelerator=accelerator,
                generation_config=self.generation_config,
                batch_size=args.per_device_eval_batch_size,
            )

            completions = list(zip(self.ref_completions, completions))

            if self.use_soft_judge:
                ref_win_probs = self.judge.judge(prompts, completions, self.shuffle_order, return_scores=True)
                winner_indices = [0 if score > 0.5 else 1 for score in ref_win_probs]
                ref_win_probs = gather_object(ref_win_probs)
            else:
                winner_indices = self.judge.judge(prompts, completions, self.shuffle_order)
            prompts = gather_object(prompts)
            completions = gather_object(completions)
            winner_indices = gather_object(winner_indices)

        # Logging
        if self.trainer.accelerator.is_main_process:
            win_rate = sum(winner_idx == 1 for winner_idx in winner_indices) / len(winner_indices)
            if self.use_soft_judge:
                avg_win_prob = 1.0 - sum(ref_win_probs) / len(ref_win_probs)
                self.trainer.log({"eval_avg_win_prob": avg_win_prob, "eval_win_rate": win_rate})
            else:
                self.trainer.log({"eval_win_rate": win_rate})

            if "wandb" in args.report_to:
                import wandb

                if wandb.run is not None:
                    df = _win_rate_completions_df(
                        state=state,
                        prompts=prompts,
                        completions=completions,
                        winner_indices=winner_indices,
                    )
                    wandb.log({"win_rate_completions": wandb.Table(dataframe=df)})

            if "comet_ml" in args.report_to:
                df = _win_rate_completions_df(
                    state=state,
                    prompts=prompts,
                    completions=completions,
                    winner_indices=winner_indices,
                )
                log_table_to_comet_experiment(
                    name="win_rate_completions.csv",
                    table=df,
                )


class LogCompletionsCallback(TrainerCallback):
    r"""
    A [`~transformers.TrainerCallback`] that logs completions to Weights & Biases and/or Comet.

    Usage:
    ```python
    trainer = DPOTrainer(...)
    completions_callback = LogCompletionsCallback(trainer=trainer)
    trainer.add_callback(completions_callback)
    ```

    Args:
        trainer (`Trainer`):
            Trainer to which the callback will be attached. The trainer's evaluation dataset must include a `"prompt"`
            column containing the prompts for generating completions.
        generation_config (`GenerationConfig`, *optional*):
            The generation config to use for generating completions.
        num_prompts (`int` or `None`, *optional*):
            The number of prompts to generate completions for. If not provided, defaults to the number of examples in the evaluation dataset.
        freq (`int` or `None`, *optional*):
            The frequency at which to log completions. If not provided, defaults to the trainer's `eval_steps`.
    """

    def __init__(
        self,
        trainer: Trainer,
        generation_config: Optional[GenerationConfig] = None,
        num_prompts: Optional[int] = None,
        freq: Optional[int] = None,
    ):
        self.trainer = trainer
        self.generation_config = generation_config
        self.freq = freq
        self.table = []
        self._last_logged_step = -1

        if self.trainer.eval_dataset is None:
            raise ValueError("Trainer must have an evaluation dataset to use the LogCompletionsCallback.")
        else:
            self.eval_dataset = self.trainer.eval_dataset

        if num_prompts is not None:
            self.eval_dataset = self.eval_dataset.select(range(num_prompts))

    def on_step_end(self, args, state, control, **kwargs):
        # Only log once per step (this method may be called multiple times)
        if state.global_step == self._last_logged_step:
            return

        # Only log every `freq` steps (if no `freq` is provided, log every `eval_steps` steps)
        freq = self.freq or state.eval_steps
        if state.global_step % freq != 0:
            return

        tokenizer = kwargs["processing_class"]
        tokenizer.padding_side = "left"
        accelerator = self.trainer.accelerator
        model = self.trainer.model_wrapped
        with accelerator.split_between_processes(self.eval_dataset["prompt"]) as prompts:
            prompts = [maybe_apply_chat_template({"prompt": prompt}, tokenizer)["prompt"] for prompt in prompts]
            completions = _generate_completions(
                prompts,
                model=model,
                tokenizer=tokenizer,
                accelerator=accelerator,
                generation_config=self.generation_config,
                batch_size=args.per_device_eval_batch_size,
            )
            completions = gather_object(completions)
            prompts = gather_object(prompts)

        # Build the data to log
        if self.trainer.accelerator.is_main_process:
            global_step = [str(state.global_step)] * len(prompts)
            data = list(zip(global_step, prompts, completions))
            self.table.extend(data)
            table = pd.DataFrame(columns=["step", "prompt", "completion"], data=self.table)

            if "wandb" in args.report_to:
                wandb.log({"completions": table})

            if "comet_ml" in args.report_to:
                log_table_to_comet_experiment(
                    name="completions.csv",
                    table=table,
                )

        # Save the last logged step, so we don't log the same completions multiple times
        self._last_logged_step = state.global_step


class MergeModelCallback(TrainerCallback):
    r"""
    A [`~transformers.TrainerCallback`] that merges the policy model (the model being trained) with another model based on a merge configuration.

    Args:
        merge_config ([`MergeConfig`], *optional*, defaults to `None`):
            Configuration used for the merging process. If not provided, the default [`MergeConfig`] is used.
        merge_at_every_checkpoint (`bool`, *optional*, defaults to `False`):
            Whether to merge the model at every checkpoint.
        push_to_hub (`bool`, *optional*, defaults to `False`):
            Whether to push the merged model to the Hub after merging.

    Example:

    ```python
    !pip install mergekit

    from trl.mergekit_utils import MergeConfig
    from trl import MergeModelCallback

    config = MergeConfig()
    merge_callback = MergeModelCallback(config)
    trainer = DPOTrainer(..., callbacks=[merge_callback])
    ```
    """

    def __init__(
        self,
        merge_config: Optional["MergeConfig"] = None,
        merge_at_every_checkpoint: bool = False,
        push_to_hub: bool = False,
    ):
        if not is_mergekit_available():
            raise ImportError(
                "MergeModelCallback requires the `mergekit` extra. To install, run `pip install mergekit`."
            )
        self.merge_config = merge_config or MergeConfig()
        self.merge_at_every_checkpoint = merge_at_every_checkpoint
        self.push_to_hub = push_to_hub

    def _merge_and_maybe_push(self, output_dir, global_step, model):
        checkpoint_path = os.path.join(output_dir, f"checkpoint-{global_step}")
        self.merge_config.policy_model_path = checkpoint_path
        if self.merge_config.target_model_path is None:
            self.merge_config.target_model_path = model.config._name_or_path
        merge_path = os.path.join(checkpoint_path, "merged")

        merge_models(self.merge_config.create(), merge_path)

        if self.push_to_hub:
            repo_name = f"{output_dir}_checkpoint-{global_step}_merged"
            upload_model_to_hf(merge_path, repo_name)

    def on_save(self, args, state, control, model=None, **kwargs):
        if self.merge_at_every_checkpoint:
            self._merge_and_maybe_push(args.output_dir, state.global_step, model)

    def on_train_end(self, args, state, control, model=None, **kwargs):
        if not self.merge_at_every_checkpoint:
            self._merge_and_maybe_push(args.output_dir, state.global_step, model)