File size: 12,241 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
from dataclasses import dataclass, field
from typing import Optional

from transformers import is_bitsandbytes_available

from ..core import flatten_dict


@dataclass
class DDPOConfig:
    r"""
    Configuration class for the [`DDPOTrainer`].

    Using [`~transformers.HfArgumentParser`] we can turn this class into
    [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
    command line.

    Parameters:
        exp_name (`str`, *optional*, defaults to `os.path.basename(sys.argv[0])[: -len(".py")]`):
            Name of this experiment (by default is the file name without the extension name).
        run_name (`str`, *optional*, defaults to `""`):
            Name of this run.
        seed (`int`, *optional*, defaults to `0`):
            Random seed.
        log_with (`Literal["wandb", "tensorboard"]]` or `None`, *optional*, defaults to `None`):
            Log with either 'wandb' or 'tensorboard', check
            https://huggingface.co/docs/accelerate/usage_guides/tracking for more details.
        tracker_kwargs (`Dict`, *optional*, defaults to `{}`):
            Keyword arguments for the tracker (e.g. wandb_project).
        accelerator_kwargs (`Dict`, *optional*, defaults to `{}`):
            Keyword arguments for the accelerator.
        project_kwargs (`Dict`, *optional*, defaults to `{}`):
            Keyword arguments for the accelerator project config (e.g. `logging_dir`).
        tracker_project_name (`str`, *optional*, defaults to `"trl"`):
            Name of project to use for tracking.
        logdir (`str`, *optional*, defaults to `"logs"`):
            Top-level logging directory for checkpoint saving.
        num_epochs (`int`, *optional*, defaults to `100`):
            Number of epochs to train.
        save_freq (`int`, *optional*, defaults to `1`):
            Number of epochs between saving model checkpoints.
        num_checkpoint_limit (`int`, *optional*, defaults to `5`):
            Number of checkpoints to keep before overwriting old ones.
        mixed_precision (`str`, *optional*, defaults to `"fp16"`):
            Mixed precision training.
        allow_tf32 (`bool`, *optional*, defaults to `True`):
            Allow `tf32` on Ampere GPUs.
        resume_from (`str`, *optional*, defaults to `""`):
            Resume training from a checkpoint.
        sample_num_steps (`int`, *optional*, defaults to `50`):
            Number of sampler inference steps.
        sample_eta (`float`, *optional*, defaults to `1.0`):
            Eta parameter for the DDIM sampler.
        sample_guidance_scale (`float`, *optional*, defaults to `5.0`):
            Classifier-free guidance weight.
        sample_batch_size (`int`, *optional*, defaults to `1`):
            Batch size (per GPU) to use for sampling.
        sample_num_batches_per_epoch (`int`, *optional*, defaults to `2`):
            Number of batches to sample per epoch.
        train_batch_size (`int`, *optional*, defaults to `1`):
            Batch size (per GPU) to use for training.
        train_use_8bit_adam (`bool`, *optional*, defaults to `False`):
            Use 8bit Adam optimizer from bitsandbytes.
        train_learning_rate (`float`, *optional*, defaults to `3e-4`):
            Learning rate.
        train_adam_beta1 (`float`, *optional*, defaults to `0.9`):
            Adam beta1.
        train_adam_beta2 (`float`, *optional*, defaults to `0.999`):
            Adam beta2.
        train_adam_weight_decay (`float`, *optional*, defaults to `1e-4`):
            Adam weight decay.
        train_adam_epsilon (`float`, *optional*, defaults to `1e-8`):
            Adam epsilon.
        train_gradient_accumulation_steps (`int`, *optional*, defaults to `1`):
            Number of gradient accumulation steps.
        train_max_grad_norm (`float`, *optional*, defaults to `1.0`):
            Maximum gradient norm for gradient clipping.
        train_num_inner_epochs (`int`, *optional*, defaults to `1`):
            Number of inner epochs per outer epoch.
        train_cfg (`bool`, *optional*, defaults to `True`):
            Whether to use classifier-free guidance during training.
        train_adv_clip_max (`float`, *optional*, defaults to `5.0`):
            Clip advantages to the range.
        train_clip_range (`float`, *optional*, defaults to `1e-4`):
            PPO clip range.
        train_timestep_fraction (`float`, *optional*, defaults to `1.0`):
            Fraction of timesteps to train on.
        per_prompt_stat_tracking (`bool`, *optional*, defaults to `False`):
            Whether to track statistics for each prompt separately.
        per_prompt_stat_tracking_buffer_size (`int`, *optional*, defaults to `16`):
            Number of reward values to store in the buffer for each prompt.
        per_prompt_stat_tracking_min_count (`int`, *optional*, defaults to `16`):
            Minimum number of reward values to store in the buffer.
        async_reward_computation (`bool`, *optional*, defaults to `False`):
            Whether to compute rewards asynchronously.
        max_workers (`int`, *optional*, defaults to `2`):
            Maximum number of workers to use for async reward computation.
        negative_prompts (`str`, *optional*, defaults to `""`):
            Comma-separated list of prompts to use as negative examples.
        push_to_hub (`bool`, *optional*, defaults to `False`):
            Whether to push the final model checkpoint to the Hub.
    """

    exp_name: str = field(
        default=os.path.basename(sys.argv[0])[: -len(".py")],
        metadata={"help": "Name of this experiment (by default is the file name without the extension name)."},
    )
    run_name: str = field(
        default="",
        metadata={"help": "Name of this run."},
    )
    seed: int = field(
        default=0,
        metadata={"help": "Random seed."},
    )
    log_with: Optional[str] = field(
        default=None,
        metadata={
            "help": "Log with either 'wandb' or 'tensorboard'.",
            "choices": ["wandb", "tensorboard"],
        },
    )
    tracker_kwargs: dict = field(
        default_factory=dict,
        metadata={"help": "Keyword arguments for the tracker (e.g. wandb_project)."},
    )
    accelerator_kwargs: dict = field(
        default_factory=dict,
        metadata={"help": "Keyword arguments for the accelerator."},
    )
    project_kwargs: dict = field(
        default_factory=dict,
        metadata={"help": "Keyword arguments for the accelerator project config (e.g. `logging_dir`)."},
    )
    tracker_project_name: str = field(
        default="trl",
        metadata={"help": "Name of project to use for tracking."},
    )
    logdir: str = field(
        default="logs",
        metadata={"help": "Top-level logging directory for checkpoint saving."},
    )
    num_epochs: int = field(
        default=100,
        metadata={"help": "Number of epochs to train."},
    )
    save_freq: int = field(
        default=1,
        metadata={"help": "Number of epochs between saving model checkpoints."},
    )
    num_checkpoint_limit: int = field(
        default=5,
        metadata={"help": "Number of checkpoints to keep before overwriting old ones."},
    )
    mixed_precision: str = field(
        default="fp16",
        metadata={"help": "Mixed precision training."},
    )
    allow_tf32: bool = field(
        default=True,
        metadata={"help": "Allow `tf32` on Ampere GPUs."},
    )
    resume_from: str = field(
        default="",
        metadata={"help": "Resume training from a checkpoint."},
    )
    sample_num_steps: int = field(
        default=50,
        metadata={"help": "Number of sampler inference steps."},
    )
    sample_eta: float = field(
        default=1.0,
        metadata={"help": "Eta parameter for the DDIM sampler."},
    )
    sample_guidance_scale: float = field(
        default=5.0,
        metadata={"help": "Classifier-free guidance weight."},
    )
    sample_batch_size: int = field(
        default=1,
        metadata={"help": "Batch size (per GPU) to use for sampling."},
    )
    sample_num_batches_per_epoch: int = field(
        default=2,
        metadata={"help": "Number of batches to sample per epoch."},
    )
    train_batch_size: int = field(
        default=1,
        metadata={"help": "Batch size (per GPU) to use for training."},
    )
    train_use_8bit_adam: bool = field(
        default=False,
        metadata={"help": "Use 8bit Adam optimizer from bitsandbytes."},
    )
    train_learning_rate: float = field(
        default=3e-4,
        metadata={"help": "Learning rate."},
    )
    train_adam_beta1: float = field(
        default=0.9,
        metadata={"help": "Adam beta1."},
    )
    train_adam_beta2: float = field(
        default=0.999,
        metadata={"help": "Adam beta2."},
    )
    train_adam_weight_decay: float = field(
        default=1e-4,
        metadata={"help": "Adam weight decay."},
    )
    train_adam_epsilon: float = field(
        default=1e-8,
        metadata={"help": "Adam epsilon."},
    )
    train_gradient_accumulation_steps: int = field(
        default=1,
        metadata={"help": "Number of gradient accumulation steps."},
    )
    train_max_grad_norm: float = field(
        default=1.0,
        metadata={"help": "Maximum gradient norm for gradient clipping."},
    )
    train_num_inner_epochs: int = field(
        default=1,
        metadata={"help": "Number of inner epochs per outer epoch."},
    )
    train_cfg: bool = field(
        default=True,
        metadata={"help": "Whether to use classifier-free guidance during training."},
    )
    train_adv_clip_max: float = field(
        default=5.0,
        metadata={"help": "Clip advantages to the range."},
    )
    train_clip_range: float = field(
        default=1e-4,
        metadata={"help": "PPO clip range."},
    )
    train_timestep_fraction: float = field(
        default=1.0,
        metadata={"help": "Fraction of timesteps to train on."},
    )
    per_prompt_stat_tracking: bool = field(
        default=False,
        metadata={"help": "Whether to track statistics for each prompt separately."},
    )
    per_prompt_stat_tracking_buffer_size: int = field(
        default=16,
        metadata={"help": "Number of reward values to store in the buffer for each prompt."},
    )
    per_prompt_stat_tracking_min_count: int = field(
        default=16,
        metadata={"help": "Minimum number of reward values to store in the buffer."},
    )
    async_reward_computation: bool = field(
        default=False,
        metadata={"help": "Whether to compute rewards asynchronously."},
    )
    max_workers: int = field(
        default=2,
        metadata={"help": "Maximum number of workers to use for async reward computation."},
    )
    negative_prompts: str = field(
        default="",
        metadata={"help": "Comma-separated list of prompts to use as negative examples."},
    )
    push_to_hub: bool = field(
        default=False,
        metadata={"help": "Whether to push the final model checkpoint to the Hub."},
    )

    def to_dict(self):
        output_dict = {}
        for key, value in self.__dict__.items():
            output_dict[key] = value
        return flatten_dict(output_dict)

    def __post_init__(self):
        if self.train_use_8bit_adam and not is_bitsandbytes_available():
            raise ImportError(
                "You need to install bitsandbytes to use 8bit Adam. "
                "You can install it with `pip install bitsandbytes`."
            )