Spaces:
Paused
Paused
File size: 97,340 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import os
import random
import textwrap
import warnings
from collections import defaultdict
from contextlib import contextmanager, nullcontext
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Callable, Literal, Optional, Union
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from accelerate import PartialState
from accelerate.utils import tqdm
from datasets import Dataset, IterableDataset
from torch import autocast
from torch.utils.data import DataLoader
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BaseImageProcessor,
DataCollator,
FeatureExtractionMixin,
PreTrainedModel,
PreTrainedTokenizerBase,
ProcessorMixin,
Trainer,
is_comet_available,
is_wandb_available,
)
from transformers.data.data_collator import DataCollatorMixin
from transformers.models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES
from transformers.trainer_callback import TrainerCallback
from transformers.trainer_utils import EvalLoopOutput
from transformers.utils import is_liger_kernel_available, is_peft_available
from ..data_utils import maybe_apply_chat_template, maybe_extract_prompt
from ..models import create_reference_model, prepare_deepspeed
from ..models.utils import prepare_fsdp
from .callbacks import SyncRefModelCallback
from .dpo_config import DPOConfig, FDivergenceConstants, FDivergenceType
from .utils import (
RunningMoments,
cap_exp,
disable_dropout_in_model,
empty_cache,
flush_left,
flush_right,
generate_model_card,
get_comet_experiment_url,
log_table_to_comet_experiment,
pad,
pad_to_length,
peft_module_casting_to_bf16,
selective_log_softmax,
)
if is_peft_available():
from peft import PeftConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training
if is_liger_kernel_available():
from liger_kernel.chunked_loss import LigerFusedLinearDPOLoss
if is_wandb_available():
import wandb
def shift_tokens_right(input_ids: torch.Tensor, decoder_start_token_id: int) -> torch.Tensor:
"""Shift input ids one token to the right, and pad with pad_token_id"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
@dataclass
class DataCollatorForPreference(DataCollatorMixin):
"""
Data collator used for preference data. Inputs are dynamically padded to the maximum length of a batch if they
are not all of the same length.
Args:
pad_token_id (`int`):
Token ID to use for padding.
return_tensors (`str`, *optional*, defaults to `"pt"`):
Type of Tensor to return. Only `"pt"` is currently supported.
Examples:
```python
>>> from trl import DataCollatorForPreference
>>> collator = DataCollatorForPreference(pad_token_id=0)
>>> examples = [
... {"prompt_input_ids": [1, 2, 3], "chosen_input_ids": [4, 5], "rejected_input_ids": [6]},
... {"prompt_input_ids": [7, 8], "chosen_input_ids": [9, 10], "rejected_input_ids": [11, 12, 13]}
... ]
>>> collator(examples)
{'prompt_input_ids': tensor([[1, 2, 3],
[0, 7, 8]]),
'prompt_attention_mask': tensor([[1, 1, 1],
[0, 1, 1]]),
'chosen_input_ids': tensor([[ 4, 5],
[ 9, 10]]),
'chosen_attention_mask': tensor([[1, 1],
[1, 1]]),
'rejected_input_ids': tensor([[ 6, 0, 0],
[11, 12, 13]]),
'rejected_attention_mask': tensor([[1, 0, 0],
[1, 1, 1]])
}
```
"""
pad_token_id: int
return_tensors: str = "pt"
def torch_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]:
# Convert to tensor
prompt_input_ids = [torch.tensor(example["prompt_input_ids"]) for example in examples]
prompt_attention_mask = [torch.ones_like(input_ids) for input_ids in prompt_input_ids]
chosen_input_ids = [torch.tensor(example["chosen_input_ids"]) for example in examples]
chosen_attention_mask = [torch.ones_like(input_ids) for input_ids in chosen_input_ids]
rejected_input_ids = [torch.tensor(example["rejected_input_ids"]) for example in examples]
rejected_attention_mask = [torch.ones_like(input_ids) for input_ids in rejected_input_ids]
if "pixel_values" in examples[0]:
pixel_values = [torch.tensor(example["pixel_values"]) for example in examples]
if "pixel_attention_mask" in examples[0]:
pixel_attention_mask = [torch.tensor(example["pixel_attention_mask"]) for example in examples]
if "ref_chosen_logps" in examples[0] and "ref_rejected_logps" in examples[0]:
ref_chosen_logps = torch.tensor([example["ref_chosen_logps"] for example in examples])
ref_rejected_logps = torch.tensor([example["ref_rejected_logps"] for example in examples])
# Pad
output = {}
output["prompt_input_ids"] = pad(prompt_input_ids, padding_value=self.pad_token_id, padding_side="left")
output["prompt_attention_mask"] = pad(prompt_attention_mask, padding_value=0, padding_side="left")
output["chosen_input_ids"] = pad(chosen_input_ids, padding_value=self.pad_token_id)
output["chosen_attention_mask"] = pad(chosen_attention_mask, padding_value=0)
output["rejected_input_ids"] = pad(rejected_input_ids, padding_value=self.pad_token_id)
output["rejected_attention_mask"] = pad(rejected_attention_mask, padding_value=0)
if "pixel_values" in examples[0]:
output["pixel_values"] = pad(pixel_values, padding_value=0.0)
if "pixel_attention_mask" in examples[0]:
output["pixel_attention_mask"] = pad(pixel_attention_mask, padding_value=0)
if "image_sizes" in examples[0]:
output["image_sizes"] = torch.tensor([example["image_sizes"] for example in examples])
if "ref_chosen_logps" in examples[0] and "ref_rejected_logps" in examples[0]:
output["ref_chosen_logps"] = ref_chosen_logps
output["ref_rejected_logps"] = ref_rejected_logps
return output
class DPOTrainer(Trainer):
"""
Trainer for Direct Preference Optimization (DPO) method.
This class is a wrapper around the [`transformers.Trainer`] class and inherits all of its attributes and methods.
Args:
model (`Union[str, PreTrainedModel]`):
Model to be trained. Can be either:
- A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or
a path to a *directory* containing model weights saved using
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is
loaded using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keywork arguments
in `args.model_init_kwargs`.
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported.
ref_model (`PreTrainedModelWrapper`):
Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation and loss. If no
reference model is provided, the trainer will create a reference model with the same architecture as the model to be optimized.
args ([`DPOConfig`], *optional*, defaults to `None`):
Configuration for this trainer. If `None`, a default configuration is used.
data_collator (`DataCollator`, *optional*):
Function to use to form a batch from a list of elements of the processed `train_dataset` or `eval_dataset`.
Will default to [`DataCollatorForPreference`].
train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]):
Dataset to use for training. DPO supports [preference](#preference) type and. The format of the samples can
be either:
- [Standard](dataset_formats#standard): Each sample contains plain text.
- [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role
and content).
eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`):
Dataset to use for evaluation. It must meet the same requirements as `train_dataset`.
processing_class ([`~transformers.PreTrainedTokenizerBase`], *optional*, defaults to `None`):
Processing class used to process the data. If `None`, the processing class is loaded from the model's name
with [`~transformers.AutoTokenizer.from_pretrained`].
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*):
The function that will be used to compute metrics at evaluation. Must take a [`EvalPrediction`] and return
a dictionary string to metric values. *Note* When passing TrainingArgs with `batch_eval_metrics` set to
`True`, your compute_metrics function must take a boolean `compute_result` argument. This will be triggered
after the last eval batch to signal that the function needs to calculate and return the global summary
statistics rather than accumulating the batch-level statistics.
callbacks (list of [`~transformers.TrainerCallback`], *optional*, defaults to `None`):
List of callbacks to customize the training loop. Will add those to the list of default callbacks
detailed in [here](https://huggingface.co/docs/transformers/main_classes/callback).
If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`]
method.
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`):
A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your
model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`.
optimizer_cls_and_kwargs (`Tuple[Type[torch.optim.Optimizer], Dict[str, Any]]`, *optional*, defaults to `None`):
A tuple containing the optimizer class and keyword arguments to use.
Overrides `optim` and `optim_args` in `args`. Incompatible with the `optimizers` argument.
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`, *optional*, defaults to `None`):
A function that preprocess the logits right before caching them at each evaluation step. Must take two
tensors, the logits and the labels, and return the logits once processed as desired. The modifications made
by this function will be reflected in the predictions received by `compute_metrics`.
Note that the labels (second parameter) will be `None` if the dataset does not have them.
peft_config ([`~peft.PeftConfig`], *optional*, defaults to `None`):
PEFT configuration used to wrap the model. If `None`, the model is not wrapped.
"""
_tag_names = ["trl", "dpo"]
def __init__(
self,
model: Union[str, nn.Module, PreTrainedModel],
ref_model: Optional[Union[PreTrainedModel, nn.Module, str]] = None,
args: Optional[DPOConfig] = None,
data_collator: Optional[DataCollator] = None, # type: ignore
train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
eval_dataset: Optional[Union[Dataset, IterableDataset, dict[str, Union[Dataset, IterableDataset]]]] = None,
processing_class: Optional[
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
] = None,
compute_metrics: Optional[Callable[[EvalLoopOutput], dict]] = None,
callbacks: Optional[list[TrainerCallback]] = None,
optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None),
optimizer_cls_and_kwargs: Optional[tuple[type[torch.optim.Optimizer], dict[str, Any]]] = None,
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
peft_config: Optional["PeftConfig"] = None,
):
# Args
model_id = model if isinstance(model, str) else model.config._name_or_path
if args is None:
model_name = model_id.split("/")[-1]
args = DPOConfig(f"{model_name}-DPO")
# Handle the tokenizer
if processing_class is None:
processing_class = AutoTokenizer.from_pretrained(model_id)
if args.padding_value is not None:
self.padding_value = args.padding_value
else:
if hasattr(processing_class, "pad_token_id") and processing_class.pad_token_id is not None:
self.padding_value = processing_class.pad_token_id
elif hasattr(processing_class, "tokenizer") and processing_class.tokenizer.pad_token_id is not None:
self.padding_value = processing_class.tokenizer.pad_token_id
else:
raise ValueError(
"`padding_value` is not specified in `DPOConfig`, and `pad_token_id` is missing in the "
"`processing_class`. Please either set the `padding_value` argument in `DPOConfig`, or set "
"`tokenizer.pad_token` (e.g., `tokenizer.pad_token = tokenizer.eos_token`) before instantiating "
"the trainer."
)
# Model
if not isinstance(model, str) and ref_model is model:
raise ValueError(
"`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the "
"same as `model`, you must mass a copy of it, or `None` if you use peft."
)
if args.model_init_kwargs is not None and not isinstance(model, str):
warnings.warn(
"You passed model_init_kwargs to the `DPOConfig`, but your model is already instantiated. "
"The `model_init_kwargs` will be ignored."
)
if isinstance(model, str):
model = self._create_model_from_path(model, args)
if args.ref_model_init_kwargs is not None and not isinstance(ref_model, str):
warnings.warn(
"You passed ref_model_init_kwargs to the `DPOConfig`, but your ref_model is already instantiated. "
"The `ref_model_init_kwargs` will be ignored."
)
if isinstance(ref_model, str):
ref_model = self._create_model_from_path(ref_model, args, is_ref=True)
# PEFT configuration and model wrapping
model = self._prepare_peft_model(model, ref_model, peft_config, args)
if args.generate_during_eval and not (is_wandb_available() or is_comet_available()):
raise ValueError(
"`generate_during_eval=True` requires Weights and Biases or Comet to be installed."
" Please install `wandb` or `comet-ml` to resolve."
)
self.is_encoder_decoder = model.config.is_encoder_decoder
self.is_vision_model = model.config.model_type in MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES.keys()
self.is_peft_model = is_peft_available() and isinstance(model, PeftModel)
self.model_adapter_name = args.model_adapter_name
self.ref_adapter_name = args.ref_adapter_name
self.reference_free = args.reference_free
if ref_model:
self.ref_model = ref_model
elif self.is_peft_model or args.precompute_ref_log_probs:
# The `model` with adapters turned off will be used as the reference model
self.ref_model = None
else:
self.ref_model = create_reference_model(model)
# Disable dropout in the model and reference model
if args.disable_dropout:
disable_dropout_in_model(model)
if self.ref_model is not None:
disable_dropout_in_model(self.ref_model)
# Liger kernel
if args.use_liger_loss:
if not is_liger_kernel_available():
raise ImportError(
"You set `use_liger_loss=True` but the liger kernel is not available. "
"Please install liger-kernel first: `pip install liger-kernel`"
)
if args.loss_type != "sigmoid":
raise ValueError(
"You set `use_liger_loss=True` but the loss type is not `sigmoid`. "
"Please set `loss_type='sigmoid'` to use the liger kernel."
)
self.dpo_loss_fn = LigerFusedLinearDPOLoss(
ignore_index=args.label_pad_token_id,
beta=args.beta,
use_ref_model=not args.reference_free,
average_log_prob=False,
)
# The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the
# input tensor associated with the key "input_ids". However, in DPO, the sampled data does not include the
# "input_ids" key. Instead, the available keys are "prompt_input_ids", "chosen_input_ids", and
# "rejected_input_ids". As a result, the trainer issues the warning: "Could not estimate the number of tokens
# of the input, floating-point operations will not be computed." To suppress this warning, we set the
# "estimate_tokens" key in the model's "warnings_issued" dictionary to True. This acts as a flag to indicate
# that the warning has already been issued.
model.warnings_issued["estimate_tokens"] = True
# Data collator
if data_collator is None:
data_collator = DataCollatorForPreference(pad_token_id=self.padding_value)
self.generate_during_eval = args.generate_during_eval
self.label_pad_token_id = args.label_pad_token_id
self.max_prompt_length = args.max_prompt_length
self.max_completion_length = args.max_completion_length
self.max_length = args.max_length
self.truncation_mode = args.truncation_mode
self.precompute_ref_log_probs = args.precompute_ref_log_probs
self.use_logits_to_keep = args.use_logits_to_keep
if args.padding_free:
if model.config._attn_implementation != "flash_attention_2":
warnings.warn(
"Padding-free training is enabled, but the attention implementation is not set to "
"'flash_attention_2'. Padding-free training flattens batches into a single sequence, and "
"'flash_attention_2' is the only known attention mechanism that reliably supports this. Using "
"other implementations may lead to unexpected behavior. To ensure compatibility, set "
"`attn_implementation='flash_attention_2'` in the model configuration, or verify that your "
"attention mechanism can handle flattened sequences."
)
if args.per_device_train_batch_size == 1:
warnings.warn(
"You are using a per_device_train_batch_size of 1 with padding-free training. Using a batch size "
"of 1 anihilate the benefits of padding-free training. Please consider increasing the batch size "
"to at least 2."
)
self.padding_free = args.padding_free
# Since ref_logs are precomputed on the first call to get_train/eval_dataloader
# keep track of first called to avoid computation of future calls
self._precomputed_train_ref_log_probs = False
self._precomputed_eval_ref_log_probs = False
if (
args.loss_type in ["hinge", "ipo", "bco_pair", "sppo_hard", "nca_pair", "apo_zero", "apo_down"]
and args.label_smoothing > 0
):
warnings.warn(
f"You are using the {args.loss_type} loss type that does not support label smoothing. The "
"`label_smoothing` parameter will be ignored. Set `label_smoothing` to `0.0` to remove this warning.",
UserWarning,
)
if args.loss_type == "kto_pair":
raise ValueError("Support for kto_pair has been removed in DPOTrainer. Please use KTOTrainer.")
self.beta = args.beta
self.label_smoothing = args.label_smoothing
self.loss_type = args.loss_type
self.aux_loss_enabled = getattr(model.config, "output_router_logits", False)
self.use_weighting = args.use_weighting
self.aux_loss_coef = getattr(model.config, "router_aux_loss_coef", 0.0)
if self.aux_loss_enabled and self.aux_loss_coef == 0.0:
warnings.warn(
"You set `output_router_logits` to `True` in the model config, but `router_aux_loss_coef` is set to "
"`0.0`, meaning the auxiliary loss will not be used. Either set `router_aux_loss_coef` to a value "
"greater than `0.0`, or set `output_router_logits` to `False` if you don't want to use the auxiliary "
"loss.",
UserWarning,
)
self._stored_metrics = defaultdict(lambda: defaultdict(list))
self.f_divergence_type = args.f_divergence_type
self.f_divergence_params = {FDivergenceConstants.ALPHA_DIVERGENCE_COEF_KEY: args.f_alpha_divergence_coef}
self.dataset_num_proc = args.dataset_num_proc
# Dataset preparation
train_dataset = self._prepare_dataset(train_dataset, processing_class, args, "train")
if eval_dataset is not None:
if isinstance(eval_dataset, dict):
eval_dataset = {
key: self._prepare_dataset(dataset, processing_class, args, key)
for key, dataset in eval_dataset.items()
}
else:
eval_dataset = self._prepare_dataset(eval_dataset, processing_class, args, "eval")
super().__init__(
model=model,
args=args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
processing_class=processing_class,
compute_metrics=compute_metrics,
callbacks=callbacks,
optimizers=optimizers,
optimizer_cls_and_kwargs=optimizer_cls_and_kwargs,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
)
# Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the
# model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set
# self.model_accepts_loss_kwargs to False to enable scaling.
self.model_accepts_loss_kwargs = False
# Add tags for models that have been loaded with the correct transformers version
if hasattr(self.model, "add_model_tags"):
self.model.add_model_tags(self._tag_names)
if not hasattr(self, "accelerator"):
raise AttributeError(
"Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`."
)
# Deepspeed Zero-3 does not support precompute_ref_log_probs
if self.is_deepspeed_enabled:
if self.accelerator.state.deepspeed_plugin.zero_stage == 3 and self.precompute_ref_log_probs:
raise ValueError(
"You cannot use `precompute_ref_log_probs=True` with Deepspeed ZeRO-3. Please set `precompute_ref_log_probs=False`."
)
if self.ref_model is None:
if not (self.is_peft_model or self.precompute_ref_log_probs):
raise ValueError(
"No reference model and model is not a Peft model. Try setting `precompute_ref_log_probs=True`"
)
if args.sync_ref_model:
raise ValueError(
"You currently cannot use `ref_model=None` with TR-DPO method. Please provide `ref_model`."
)
else:
if self.is_deepspeed_enabled:
self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator)
elif self.is_fsdp_enabled:
self.ref_model = prepare_fsdp(self.ref_model, self.accelerator)
else:
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
if args.sync_ref_model:
if self.precompute_ref_log_probs:
raise ValueError(
"You cannot use `precompute_ref_log_probs=True` with TR-DPO method. Please set `precompute_ref_log_probs=False`."
)
self.add_callback(SyncRefModelCallback(ref_model=self.ref_model, accelerator=self.accelerator))
if self.loss_type == "bco_pair":
self.running = RunningMoments(self.accelerator)
def _create_model_from_path(self, model_path: str, args: DPOConfig, is_ref: bool = False) -> PreTrainedModel:
"""Creates a model from a path or model identifier."""
if not is_ref:
model_init_kwargs = args.model_init_kwargs or {}
else:
model_init_kwargs = args.ref_model_init_kwargs or {}
# Handle torch dtype
torch_dtype = model_init_kwargs.get("torch_dtype")
if isinstance(torch_dtype, torch.dtype) or torch_dtype == "auto" or torch_dtype is None:
pass # torch_dtype is already a torch.dtype or "auto" or None
elif isinstance(torch_dtype, str): # it's a str, but not "auto"
torch_dtype = getattr(torch, torch_dtype)
model_init_kwargs["torch_dtype"] = torch_dtype
else:
raise ValueError(
"Invalid `torch_dtype` passed to `DPOConfig`. Expected either 'auto' or a string representing "
f"a `torch.dtype` (e.g., 'float32'), but got {torch_dtype}."
)
# Disable caching if gradient checkpointing is enabled (not supported)
# if args.gradient_checkpointing:
# model_init_kwargs["use_cache"] = False
# Create model
model = AutoModelForCausalLM.from_pretrained(model_path, **model_init_kwargs)
return model
def _prepare_peft_model(
self, model: PreTrainedModel, ref_model: PreTrainedModel, peft_config: Any, args: DPOConfig
) -> PreTrainedModel:
"""Prepares a model for PEFT training."""
# Initialize this variable to False. This helps tracking the case when `peft_module_casting_to_bf16`
# has been called in order to properly call autocast if needed.
self._peft_has_been_casted_to_bf16 = False
if not is_peft_available() and peft_config is not None:
raise ValueError(
"PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models"
)
elif is_peft_available() and peft_config is not None:
# if model is a peft model and we have a peft_config, we merge and unload it first
if isinstance(model, PeftModel):
model = model.merge_and_unload()
if ref_model is not None and not args.force_use_ref_model:
raise ValueError(
"You passed both a ref_model and a peft_config. For training PEFT adapters with DPO there is no need to pass a reference"
" model. Please pass `ref_model=None` in case you want to train PEFT adapters, or pass a ref_model with `force_use_ref_model=True` in DPOTrainer's init."
" if you want to use a different ref_model."
)
if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False):
_support_gc_kwargs = hasattr(
args, "gradient_checkpointing_kwargs"
) and "gradient_checkpointing_kwargs" in list(
inspect.signature(prepare_model_for_kbit_training).parameters
)
prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing}
if _support_gc_kwargs:
prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs
model = prepare_model_for_kbit_training(model, **prepare_model_kwargs)
else:
model = self._prepare_gradient_checkpointing(model, args)
# get peft model with the given config
model = get_peft_model(model, peft_config)
if args.bf16 and getattr(model, "is_loaded_in_4bit", False):
peft_module_casting_to_bf16(model)
# If args.bf16 we need to explicitly call `generate` with torch amp autocast context manager
self._peft_has_been_casted_to_bf16 = True
else:
model = self._prepare_gradient_checkpointing(model, args)
return model
def _prepare_gradient_checkpointing(self, model: PreTrainedModel, args: DPOConfig):
"""Prepare the gradienting checkpointing for the model."""
# For models that use gradient_checkpointing, we need to attach a hook that enables input
# to explicitly have `requires_grad=True`, otherwise training will either silently
# fail or completely fail.
if args.gradient_checkpointing:
# For backward compatibility with older versions of transformers
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
return model
def _prepare_dataset(
self,
dataset: Union[Dataset, IterableDataset],
processing_class: Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin],
args: DPOConfig,
dataset_name: str,
) -> Union[Dataset, IterableDataset]:
# Build the kwargs for the `map` function
map_kwargs = {}
if isinstance(dataset, Dataset): # IterableDataset does not support num_proc nor writer_batch_size
map_kwargs["num_proc"] = args.dataset_num_proc
map_kwargs["writer_batch_size"] = 10
with PartialState().main_process_first():
# Extract prompt if needed
if isinstance(dataset, Dataset): # `IterableDataset.map` does not support `desc`
map_kwargs["desc"] = f"Extracting prompt in {dataset_name} dataset"
dataset = dataset.map(maybe_extract_prompt, **map_kwargs)
# Apply the chat template if needed
if isinstance(dataset, Dataset): # `IterableDataset.map` does not support `desc`
map_kwargs["desc"] = f"Applying chat template to {dataset_name} dataset"
dataset = dataset.map(
maybe_apply_chat_template, fn_kwargs={"tokenizer": processing_class, "tools": args.tools}, **map_kwargs
)
# Tokenize the dataset
if isinstance(dataset, Dataset): # `IterableDataset.map` does not support `desc`
map_kwargs["desc"] = f"Tokenizing {dataset_name} dataset"
dataset = dataset.map(
self.tokenize_row if not self.is_vision_model else self.process_row,
remove_columns=["chosen", "rejected"],
fn_kwargs={
"processing_class": processing_class,
"max_prompt_length": args.max_prompt_length,
"max_completion_length": args.max_completion_length,
# for enc-dec, we add the special tokens ([bos_token] + prompt + [eos_token]; completion + [eos_token])
"add_special_tokens": False,
},
**map_kwargs,
)
return dataset
@staticmethod
def tokenize_row(features, processing_class, max_prompt_length, max_completion_length, add_special_tokens):
"""
Tokenize a row of the dataset.
Args:
features (`dict[str, str]`):
Row of the dataset, should contain the keys `"prompt"`, `"chosen"`, and `"rejected"`.
processing_class (`PreTrainedTokenizerBase`):
Processing class used to process the data.
max_prompt_length (`int` or `None`):
Maximum length of the prompt sequence. If `None`, the prompt sequence is not truncated.
max_completion_length (`int` or `None`):
Maximum length of the completion sequences. If `None`, the completion sequences are not truncated.
add_special_tokens (`bool`):
Whether to add special tokens to the sequences. Typically used for encoder-decoder models. If `True`,
the prompt sequence will have a bos token prepended and an eos token appended. In any case, the
completion sequences will have an eos token appended.
Returns:
`dict[str, list[int]]`:
Tokenized sequences with the keys `"prompt_input_ids"`, `"chosen_input_ids"`, and
`"rejected_input_ids".
Example:
```python
>>> from transformers import GPT2Tokenizer
>>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
>>> features = {"prompt": "The sky is", "chosen": " blue", "rejected": " green"}
>>> DPOTrainer.tokenize_row(
... features, tokenizer, max_prompt_length=3, max_completion_length=3, add_special_tokens=False
... )
{'prompt_input_ids': [464, 6766, 318], 'chosen_input_ids': [4171, 50256], 'rejected_input_ids': [4077, 50256]}
```
"""
tokenizer = processing_class # the processing class is a tokenizer
prompt_input_ids = tokenizer(features["prompt"], add_special_tokens=False)["input_ids"]
chosen_input_ids = tokenizer(features["chosen"], add_special_tokens=False)["input_ids"]
rejected_input_ids = tokenizer(features["rejected"], add_special_tokens=False)["input_ids"]
# Add special tokens (typically for encoder-decoder models)
if add_special_tokens:
if tokenizer.bos_token_id is not None:
prompt_input_ids = [tokenizer.bos_token_id] + prompt_input_ids
if tokenizer.eos_token_id is not None:
prompt_input_ids = prompt_input_ids + [tokenizer.eos_token_id]
chosen_input_ids = chosen_input_ids + [tokenizer.eos_token_id]
rejected_input_ids = rejected_input_ids + [tokenizer.eos_token_id]
# Truncate prompt and completion sequences
if max_prompt_length is not None:
prompt_input_ids = prompt_input_ids[-max_prompt_length:]
if max_completion_length is not None:
chosen_input_ids = chosen_input_ids[:max_completion_length]
rejected_input_ids = rejected_input_ids[:max_completion_length]
return {
"prompt_input_ids": prompt_input_ids,
"chosen_input_ids": chosen_input_ids,
"rejected_input_ids": rejected_input_ids,
}
@staticmethod
def process_row(features, processing_class, max_prompt_length, max_completion_length, add_special_tokens):
"""
Same as `tokenize_row` but for vision models. Please refer to `tokenize_row` for more information.
"""
processor, tokenizer = processing_class, processing_class.tokenizer # the processing class is a processor
processed_features = processor(images=features["images"], text=features["prompt"], add_special_tokens=False)
prompt_input_ids = processed_features["input_ids"][0]
pixel_values = processed_features["pixel_values"][0]
chosen_input_ids = tokenizer(features["chosen"], add_special_tokens=False)["input_ids"]
rejected_input_ids = tokenizer(features["rejected"], add_special_tokens=False)["input_ids"]
# Add special tokens (typically for encoder-decoder models)
if add_special_tokens:
if tokenizer.bos_token_id is not None:
prompt_input_ids = [tokenizer.bos_token_id] + prompt_input_ids
if tokenizer.eos_token_id is not None:
prompt_input_ids = prompt_input_ids + [tokenizer.eos_token_id]
chosen_input_ids = chosen_input_ids + [tokenizer.eos_token_id]
rejected_input_ids = rejected_input_ids + [tokenizer.eos_token_id]
# Truncate prompt and completion sequences
if max_prompt_length is not None:
prompt_input_ids = prompt_input_ids[-max_prompt_length:]
if max_completion_length is not None:
chosen_input_ids = chosen_input_ids[:max_completion_length]
rejected_input_ids = rejected_input_ids[:max_completion_length]
output = {
"prompt_input_ids": prompt_input_ids,
"pixel_values": pixel_values,
"chosen_input_ids": chosen_input_ids,
"rejected_input_ids": rejected_input_ids,
}
if "pixel_attention_mask" in processed_features:
output["pixel_attention_mask"] = processed_features["pixel_attention_mask"][0]
if "image_sizes" in processed_features:
output["image_sizes"] = processed_features["image_sizes"][0]
return output
def _set_signature_columns_if_needed(self):
# If `self.args.remove_unused_columns` is True, non-signature columns are removed.
# By default, this method sets `self._signature_columns` to the model's expected inputs.
# In DPOTrainer, we preprocess data, so using the model's signature columns doesn't work.
# Instead, we set them to the columns expected by `DataCollatorForPreference`, hence the override.
if self._signature_columns is None:
self._signature_columns = [
"prompt_input_ids",
"chosen_input_ids",
"rejected_input_ids",
"image_sizes",
"ref_chosen_logps",
"ref_rejected_logps",
]
def get_train_dataloader(self) -> DataLoader:
"""
Returns the training [`~torch.utils.data.DataLoader`].
Subclass of transformers.src.transformers.trainer.get_train_dataloader to precompute `ref_log_probs`.
"""
if self.precompute_ref_log_probs and not self._precomputed_train_ref_log_probs:
batch_size = self.args.precompute_ref_batch_size or self.args.per_device_train_batch_size
dataloader_params = {
"batch_size": batch_size,
"collate_fn": self.data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
"shuffle": False,
}
# prepare dataloader
data_loader = self.accelerator.prepare(DataLoader(self.train_dataset, **dataloader_params))
ref_chosen_logps = []
ref_rejected_logps = []
for padded_batch in tqdm(iterable=data_loader, desc="Train dataset reference log probs"):
ref_chosen_logp, ref_rejected_logp = self.compute_ref_log_probs(padded_batch)
ref_chosen_logp, ref_rejected_logp = self.accelerator.gather_for_metrics(
(ref_chosen_logp, ref_rejected_logp)
)
ref_chosen_logps.append(ref_chosen_logp.cpu())
ref_rejected_logps.append(ref_rejected_logp.cpu())
# Unnecessary cache clearing to avoid OOM
empty_cache()
self.accelerator.free_memory()
all_ref_chosen_logps = torch.cat(ref_chosen_logps).float().numpy()
all_ref_rejected_logps = torch.cat(ref_rejected_logps).float().numpy()
self.train_dataset = self.train_dataset.add_column(name="ref_chosen_logps", column=all_ref_chosen_logps)
self.train_dataset = self.train_dataset.add_column(
name="ref_rejected_logps", column=all_ref_rejected_logps
)
self._precomputed_train_ref_log_probs = True
return super().get_train_dataloader()
def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
"""
Returns the evaluation [`~torch.utils.data.DataLoader`].
Subclass of transformers.src.transformers.trainer.get_eval_dataloader to precompute `ref_log_probs`.
Args:
eval_dataset (`torch.utils.data.Dataset`, *optional*):
If provided, will override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns not accepted
by the `model.forward()` method are automatically removed. It must implement `__len__`.
"""
if eval_dataset is None and self.eval_dataset is None:
raise ValueError("Trainer: evaluation requires an eval_dataset.")
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
if self.precompute_ref_log_probs and not self._precomputed_eval_ref_log_probs:
batch_size = self.args.precompute_ref_batch_size or self.args.per_device_eval_batch_size
dataloader_params = {
"batch_size": batch_size,
"collate_fn": self.data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
"shuffle": False,
}
# prepare dataloader
data_loader = self.accelerator.prepare(DataLoader(eval_dataset, **dataloader_params))
ref_chosen_logps = []
ref_rejected_logps = []
for padded_batch in tqdm(iterable=data_loader, desc="Eval dataset reference log probs"):
ref_chosen_logp, ref_rejected_logp = self.compute_ref_log_probs(padded_batch)
ref_chosen_logp, ref_rejected_logp = self.accelerator.gather_for_metrics(
(ref_chosen_logp, ref_rejected_logp)
)
ref_chosen_logps.append(ref_chosen_logp.cpu())
ref_rejected_logps.append(ref_rejected_logp.cpu())
all_ref_chosen_logps = torch.cat(ref_chosen_logps).float().numpy()
all_ref_rejected_logps = torch.cat(ref_rejected_logps).float().numpy()
eval_dataset = eval_dataset.add_column(name="ref_chosen_logps", column=all_ref_chosen_logps)
eval_dataset = eval_dataset.add_column(name="ref_rejected_logps", column=all_ref_rejected_logps)
# Save calculated ref_chosen_logps and ref_rejected_logps to the eval_dataset for subsequent runs
if self.eval_dataset is not None:
self.eval_dataset = eval_dataset
self._precomputed_eval_ref_log_probs = True
return super().get_eval_dataloader(eval_dataset=eval_dataset)
@contextmanager
def null_ref_context(self):
"""Context manager for handling null reference model (that is, peft adapter manipulation)."""
with (
self.accelerator.unwrap_model(self.model).disable_adapter()
if self.is_peft_model and not self.ref_adapter_name
else nullcontext()
):
if self.ref_adapter_name:
self.model.set_adapter(self.ref_adapter_name)
yield
if self.ref_adapter_name:
self.model.set_adapter(self.model_adapter_name or "default")
def compute_ref_log_probs(self, batch: dict[str, torch.LongTensor]) -> dict:
"""Computes log probabilities of the reference model for a single padded batch of a DPO specific dataset."""
compte_ref_context_manager = (
autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext()
)
with torch.no_grad(), compte_ref_context_manager:
if self.ref_model is None:
with self.null_ref_context():
ref_model_output = self.concatenated_forward(self.model, batch, is_ref_model=True)
else:
ref_model_output = self.concatenated_forward(self.ref_model, batch, is_ref_model=True)
return ref_model_output["chosen_logps"], ref_model_output["rejected_logps"]
@staticmethod
def concatenated_inputs(
batch: dict[str, Union[list, torch.LongTensor]], padding_value: int
) -> dict[str, torch.LongTensor]:
"""
Concatenate the `chosen` and `rejected` inputs from the batch into a single tensor for both the prompt
and completion sequences.
Args:
batch (`dict[str, Union[list, torch.LongTensor]]`):
A batch of input data. The batch must contain the following keys:
- `"prompt_input_ids"`: Tensor of shape `(batch_size, prompt_length)` representing the prompt input IDs.
- `"chosen_input_ids"`: Tensor of shape `(batch_size, chosen_length)` representing the chosen completion input IDs.
- `"rejected_input_ids"`: Tensor of shape `(batch_size, rejected_length)` representing the rejected completion input IDs.
- `"prompt_pixel_values"` (optional): Tensor for pixel values, if available.
- `"prompt_pixel_attention_mask"` (optional): Tensor for pixel attention masks, if available.
padding_value (`int`):
The padding value to use for the concatenated completion sequences (`chosen_input_ids` and
`rejected_input_ids`).
Returns:
`dict[str, torch.LongTensor]`: A dictionary containing:
- `"prompt_input_ids"`: Concatenated prompt input IDs of shape `(2 * batch_size, prompt_length)`.
- `"completion_input_ids"`: Concatenated chosen and rejected completion input IDs of shape `(2 * batch_size, max_completion_length)`.
- `"prompt_attention_mask"`: Concatenated prompt attention masks of shape `(2 * batch_size, prompt_length)`.
- `"completion_attention_mask"`: Concatenated chosen and rejected attention masks of shape `(2 * batch_size, max_completion_length)`.
- `"pixel_values"` (optional): Concatenated pixel values if `"prompt_pixel_values"` are present.
- `"pixel_attention_mask"` (optional): Concatenated pixel attention masks if `"prompt_pixel_attention_mask"` are present.
Notes:
The completion input IDs and attention masks are padded to the maximum completion length of the chosen
or rejected sequences.
"""
output = {}
# For the prompt, the input_ids are the same for both the chosen and rejected responses
output["prompt_input_ids"] = torch.cat([batch["prompt_input_ids"], batch["prompt_input_ids"]], dim=0)
output["prompt_attention_mask"] = torch.cat(
[batch["prompt_attention_mask"], batch["prompt_attention_mask"]], dim=0
)
if "pixel_values" in batch:
output["pixel_values"] = torch.cat([batch["pixel_values"], batch["pixel_values"]], dim=0)
if "pixel_attention_mask" in batch:
output["pixel_attention_mask"] = torch.cat(
[batch["pixel_attention_mask"], batch["pixel_attention_mask"]], dim=0
)
if "image_sizes" in batch:
output["image_sizes"] = torch.cat([batch["image_sizes"], batch["image_sizes"]], dim=0)
# Concatenate the chosen and rejected completions
max_completion_length = max(batch["chosen_input_ids"].shape[1], batch["rejected_input_ids"].shape[1])
output["completion_input_ids"] = torch.cat(
(
pad_to_length(batch["chosen_input_ids"], max_completion_length, pad_value=padding_value),
pad_to_length(batch["rejected_input_ids"], max_completion_length, pad_value=padding_value),
),
)
output["completion_attention_mask"] = torch.cat(
(
pad_to_length(batch["chosen_attention_mask"], max_completion_length, pad_value=0),
pad_to_length(batch["rejected_attention_mask"], max_completion_length, pad_value=0),
),
)
return output
def dpo_loss(
self,
chosen_logps: torch.FloatTensor,
rejected_logps: torch.FloatTensor,
ref_chosen_logps: torch.FloatTensor,
ref_rejected_logps: torch.FloatTensor,
) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
"""
Compute the DPO loss for a batch of policy and reference model log probabilities.
Args:
chosen_logps (`torch.FloatTensor`):
Log probabilities of the model for the chosen responses. Shape: `(batch_size,)`.
rejected_logps (`torch.FloatTensor`):
Log probabilities of the model for the rejected responses. Shape: `(batch_size,)`.
ref_chosen_logps (`torch.FloatTensor`):
Log probabilities of the reference model for the chosen responses. Shape: `(batch_size,)`.
ref_rejected_logps (`torch.FloatTensor`):
Log probabilities of the reference model for the rejected responses. Shape: `(batch_size,)`.
Returns:
A tuple of three tensors: `(losses, chosen_rewards, rejected_rewards)`.
The losses tensor contains the DPO loss for each example in the batch.
The `chosen_rewards` and `rejected_rewards` tensors contain the rewards for the chosen and rejected
responses, respectively.
"""
device = self.accelerator.device
# Get the log ratios for the chosen and rejected responses
chosen_logratios = chosen_logps.to(device) - (not self.reference_free) * ref_chosen_logps.to(device)
rejected_logratios = rejected_logps.to(device) - (not self.reference_free) * ref_rejected_logps.to(device)
if self.f_divergence_type == FDivergenceType.ALPHA_DIVERGENCE.value:
# The alpha-divergence formula: (1 - u^-alpha) / alpha
# The divergence difference between the chosen and rejected sample is:
# (1 - u[w]^-alpha) / alpha - (1 - u[l]^-alpha) / alpha
# = (u[l]^-alpha - u[w]^-alpha) / alpha
# where u[w] and u[l] are the policy/reference probability ratios
# for the chosen and rejected samples, respectively.
alpha_coef = FDivergenceConstants.ALPHA_DIVERGENCE_COEF_DEFAULT
if self.f_divergence_params and FDivergenceConstants.ALPHA_DIVERGENCE_COEF_KEY in self.f_divergence_params:
alpha_coef = float(self.f_divergence_params[FDivergenceConstants.ALPHA_DIVERGENCE_COEF_KEY])
logits = (cap_exp(rejected_logratios * -alpha_coef) - cap_exp(chosen_logratios * -alpha_coef)) / alpha_coef
else:
logratios = chosen_logps - rejected_logps
if self.reference_free:
ref_logratios = torch.tensor([0], dtype=logratios.dtype, device=logratios.device)
else:
ref_logratios = ref_chosen_logps - ref_rejected_logps
logratios = logratios.to(self.accelerator.device)
ref_logratios = ref_logratios.to(self.accelerator.device)
logits = logratios - ref_logratios
if self.f_divergence_type == FDivergenceType.JS_DIVERGENCE.value:
# The js-divergence formula: log(2 * u / (1 + u))
# The divergence difference between the chosen and rejected sample is:
# log(2 * u[w] / (1 + u[w])) - log(2 * u[l] / (1 + u[l]))
# = log(u[w]) - log(u[l]) - (log(1 + u[w]) - log(1 + u[l]))
# where u[w] and u[l] are the policy/reference probability ratios
# for the chosen and rejected samples, respectively.
logits -= F.softplus(chosen_logratios) - F.softplus(rejected_logratios)
# The beta is a temperature parameter for the DPO loss, typically something in the range of 0.1 to 0.5.
# We ignore the reference model as beta -> 0. The label_smoothing parameter encodes our uncertainty about the
# labels and calculates a conservative DPO loss.
if self.loss_type == "sigmoid":
losses = (
-F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing)
- F.logsigmoid(-self.beta * logits) * self.label_smoothing
)
elif self.loss_type == "robust":
losses = (
-F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing)
+ F.logsigmoid(-self.beta * logits) * self.label_smoothing
) / (1 - 2 * self.label_smoothing)
elif self.loss_type == "exo_pair":
# eqn (16) of the EXO paper: https://huggingface.co/papers/2402.00856
import math
if self.label_smoothing == 0:
self.label_smoothing = 1e-3
losses = (self.beta * logits).sigmoid() * (
F.logsigmoid(self.beta * logits) - math.log(1 - self.label_smoothing)
) + (-self.beta * logits).sigmoid() * (F.logsigmoid(-self.beta * logits) - math.log(self.label_smoothing))
elif self.loss_type == "hinge":
losses = torch.relu(1 - self.beta * logits)
elif self.loss_type == "ipo":
# eqn (17) of the paper where beta is the regularization parameter for the IPO loss, denoted by tau in the paper.
losses = (logits - 1 / (2 * self.beta)) ** 2
elif self.loss_type == "bco_pair":
chosen_logratios = chosen_logps - ref_chosen_logps
rejected_logratios = rejected_logps - ref_rejected_logps
chosen_rewards = self.beta * chosen_logratios
rejected_rewards = self.beta * rejected_logratios
rewards = torch.cat((chosen_rewards, rejected_rewards), 0).mean().detach()
self.running.update(rewards)
delta = self.running.mean
losses = -F.logsigmoid((self.beta * chosen_logratios) - delta) - F.logsigmoid(
-(self.beta * rejected_logratios - delta)
)
elif self.loss_type == "sppo_hard":
# In the paper (https://huggingface.co/papers/2405.00675), SPPO employs a soft probability approach,
# estimated using the PairRM score. The probability calculation is conducted outside of the trainer class.
# The version described here is the hard probability version, where P in Equation (4.7) of Algorithm 1 is
# set to 1 for the winner and 0 for the loser.
a = chosen_logps - ref_chosen_logps
b = rejected_logps - ref_rejected_logps
losses = (a - 0.5 / self.beta) ** 2 + (b + 0.5 / self.beta) ** 2
elif self.loss_type == "nca_pair":
chosen_rewards = (chosen_logps - ref_chosen_logps) * self.beta
rejected_rewards = (rejected_logps - ref_rejected_logps) * self.beta
losses = (
-F.logsigmoid(chosen_rewards)
- 0.5 * F.logsigmoid(-chosen_rewards)
- 0.5 * F.logsigmoid(-rejected_rewards)
)
elif self.loss_type == "aot_pair":
chosen_logratios = chosen_logps - ref_chosen_logps
rejected_logratios = rejected_logps - ref_rejected_logps
chosen_logratios_sorted, _ = torch.sort(chosen_logratios, dim=0)
rejected_logratios_sorted, _ = torch.sort(rejected_logratios, dim=0)
delta = chosen_logratios_sorted - rejected_logratios_sorted
losses = (
-F.logsigmoid(self.beta * delta) * (1 - self.label_smoothing)
- F.logsigmoid(-self.beta * delta) * self.label_smoothing
)
elif self.loss_type == "aot":
logratios = chosen_logps - rejected_logps
ref_logratios = ref_chosen_logps - ref_rejected_logps
logratios_sorted, _ = torch.sort(logratios, dim=0)
ref_logratios_sorted, _ = torch.sort(ref_logratios, dim=0)
delta = logratios_sorted - ref_logratios_sorted
losses = (
-F.logsigmoid(self.beta * delta) * (1 - self.label_smoothing)
- F.logsigmoid(-self.beta * delta) * self.label_smoothing
)
elif self.loss_type == "apo_zero":
# Eqn (7) of the APO paper (https://huggingface.co/papers/2408.06266)
# Use this loss when you believe the chosen outputs are better than your model's default output
losses_chosen = 1 - F.sigmoid(self.beta * chosen_logratios) # Increase chosen likelihood
losses_rejected = F.sigmoid(self.beta * rejected_logratios) # Decrease rejected likelihood
losses = losses_chosen + losses_rejected
elif self.loss_type == "apo_down":
# Eqn (8) of the APO paper (https://huggingface.co/papers/2408.06266)
# Use this loss when you believe the chosen outputs are worse than your model's default output.
# Decrease chosen likelihood and decrease rejected likelihood more
losses_chosen = F.sigmoid(self.beta * chosen_logratios)
losses_rejected = 1 - F.sigmoid(self.beta * (chosen_logratios - rejected_logratios))
losses = losses_chosen + losses_rejected
elif self.loss_type == "discopop":
# Eqn (5) of the DiscoPOP paper (https://huggingface.co/papers/2406.08414)
# This loss was discovered with LLM discovery
logratios = chosen_logps - rejected_logps
ref_logratios = ref_chosen_logps - ref_rejected_logps
logits = logratios - ref_logratios
logits = logits * self.beta
# Modulate the mixing coefficient based on the log ratio magnitudes
log_ratio_modulation = torch.sigmoid(logits / self.args.discopop_tau)
logistic_component = -F.logsigmoid(logits)
exp_component = torch.exp(-logits)
# Blend between logistic and exponential component based on log ratio modulation
losses = logistic_component * (1 - log_ratio_modulation) + exp_component * log_ratio_modulation
else:
raise ValueError(
f"Unknown loss type: {self.loss_type}. Should be one of ['sigmoid', 'hinge', 'ipo', 'exo_pair', "
"'nca_pair', 'robust', 'bco_pair', 'sppo_hard', 'aot', 'aot_pair', 'discopop', 'apo_zero', 'apo_down']"
)
chosen_rewards = self.beta * (chosen_logps.to(device) - ref_chosen_logps.to(device)).detach()
rejected_rewards = self.beta * (rejected_logps.to(device) - ref_rejected_logps.to(device)).detach()
return losses, chosen_rewards, rejected_rewards
def _compute_loss_liger(self, model: nn.Module, batch: dict[str, Union[list, torch.LongTensor]]):
unwrapped_model = self.accelerator.unwrap_model(model)
concatenated_batch = self.concatenated_inputs(batch, padding_value=self.padding_value)
model_kwargs = {}
if self.aux_loss_enabled:
model_kwargs["output_router_logits"] = True
# Add the pixel values and attention masks for vision models
if "pixel_values" in concatenated_batch:
model_kwargs["pixel_values"] = concatenated_batch["pixel_values"]
if "pixel_attention_mask" in concatenated_batch:
model_kwargs["pixel_attention_mask"] = concatenated_batch["pixel_attention_mask"]
if "image_sizes" in concatenated_batch:
model_kwargs["image_sizes"] = concatenated_batch["image_sizes"]
prompt_attention_mask = concatenated_batch["prompt_attention_mask"]
completion_attention_mask = concatenated_batch["completion_attention_mask"]
if self.is_encoder_decoder:
# 1. Get encoder outputs
encoder_outputs = unwrapped_model.get_encoder()(
concatenated_batch["prompt_input_ids"],
attention_mask=concatenated_batch["prompt_attention_mask"],
return_dict=True,
)
# 2. Prepare decoder inputs
decoder_input_ids = shift_tokens_right(
concatenated_batch["completion_input_ids"],
unwrapped_model.config.decoder_start_token_id,
)
# 3. Get decoder outputs
decoder_outputs = unwrapped_model.get_decoder()(
input_ids=decoder_input_ids,
attention_mask=concatenated_batch["completion_attention_mask"],
encoder_hidden_states=encoder_outputs.last_hidden_state,
encoder_attention_mask=concatenated_batch["prompt_attention_mask"],
use_cache=False,
)
hidden_states = decoder_outputs.last_hidden_state
ref_hidden_states = None
if not self.reference_free and self.ref_model is not None:
unwrapped_ref_model = self.accelerator.unwrap_model(self.ref_model)
ref_encoder_outputs = unwrapped_ref_model.get_encoder()(
concatenated_batch["prompt_input_ids"],
attention_mask=concatenated_batch["prompt_attention_mask"],
return_dict=True,
)
ref_decoder_outputs = unwrapped_ref_model.get_decoder()(
input_ids=decoder_input_ids,
attention_mask=concatenated_batch["completion_attention_mask"],
encoder_hidden_states=ref_encoder_outputs.last_hidden_state,
encoder_attention_mask=concatenated_batch["prompt_attention_mask"],
use_cache=False,
)
ref_hidden_states = ref_decoder_outputs.last_hidden_state
elif not self.reference_free:
with self.null_ref_context():
ref_encoder_outputs = unwrapped_model.get_encoder()(
concatenated_batch["prompt_input_ids"],
attention_mask=concatenated_batch["prompt_attention_mask"],
return_dict=True,
)
ref_decoder_outputs = unwrapped_model.get_decoder()(
input_ids=decoder_input_ids,
attention_mask=concatenated_batch["completion_attention_mask"],
encoder_hidden_states=ref_encoder_outputs.last_hidden_state,
encoder_attention_mask=concatenated_batch["prompt_attention_mask"],
use_cache=False,
)
ref_hidden_states = ref_decoder_outputs.last_hidden_state
labels = concatenated_batch["completion_input_ids"]
loss_mask = completion_attention_mask.bool()
else:
# For decoder-only models
input_ids = torch.cat(
(concatenated_batch["prompt_input_ids"], concatenated_batch["completion_input_ids"]), dim=1
)
attention_mask = torch.cat(
(concatenated_batch["prompt_attention_mask"], concatenated_batch["completion_attention_mask"]),
dim=1,
)
# Mask the prompt but not the completion for the loss
loss_mask = torch.cat(
(torch.zeros_like(prompt_attention_mask), completion_attention_mask),
dim=1,
)
# Flush and truncate
if self.max_length is not None and self.max_length < attention_mask.size(1):
if self.truncation_mode == "keep_start":
# Flush left to reduce the memory usage
# [[0, 0, x, x, x, x], -> [[x, x, x, x],
# [0, x, x, x, 0, 0]] [x, x, x, 0]]
attention_mask, input_ids, loss_mask = flush_left(attention_mask, input_ids, loss_mask)
attention_mask = attention_mask[:, : self.max_length]
input_ids = input_ids[:, : self.max_length]
loss_mask = loss_mask[:, : self.max_length]
elif self.truncation_mode == "keep_end":
# Flush right before truncating left, then flush left
# [[0, 0, x, x, x, x], -> [[0, 0, x, x],
# [0, x, x, x, 0, 0]] [0, x, x, x]]
attention_mask, input_ids, loss_mask = flush_right(attention_mask, input_ids, loss_mask)
input_ids = input_ids[:, -self.max_length :]
attention_mask = attention_mask[:, -self.max_length :]
loss_mask = loss_mask[:, -self.max_length :]
attention_mask, input_ids, loss_mask = flush_left(attention_mask, input_ids, loss_mask)
else:
raise ValueError(
f"Unknown truncation mode: '{self.truncation_mode}'. Should be one of ['keep_end', "
"'keep_start']."
)
else:
# Flush left to reduce the memory usage
# [[0, 0, x, x, x, x], -> [[x, x, x, x],
# [0, x, x, x, 0, 0]] [x, x, x, 0]]
attention_mask, input_ids, loss_mask = flush_left(attention_mask, input_ids, loss_mask)
# Add logits_to_keep optimization
if self.use_logits_to_keep:
first_compute_index = loss_mask.nonzero(as_tuple=True)[1].min()
logits_to_keep = (loss_mask.shape[1] - first_compute_index).item() + 1
model_kwargs["logits_to_keep"] = logits_to_keep
model_kwargs["output_hidden_states"] = True
# Add padding-free training support
if self.padding_free:
input_ids = input_ids[attention_mask.bool()].unsqueeze(0)
loss_mask = loss_mask[attention_mask.bool()].unsqueeze(0)
position_ids = attention_mask.cumsum(1)[attention_mask.bool()].unsqueeze(0) - 1
model_kwargs["position_ids"] = position_ids
else:
model_kwargs["attention_mask"] = attention_mask
# Get the base model outputs (before LM head)
if hasattr(unwrapped_model, "get_decoder"):
base_model = unwrapped_model.get_decoder()
else:
base_model = getattr(unwrapped_model, self.args.base_model_attribute_name, unwrapped_model)
outputs = base_model(
input_ids,
use_cache=False,
**model_kwargs,
)
hidden_states = outputs.last_hidden_state[:, :-1]
# Get reference hidden states if needed
ref_hidden_states = None
if not self.reference_free and self.ref_model is not None:
unwrapped_ref_model = self.accelerator.unwrap_model(self.ref_model)
if hasattr(unwrapped_ref_model, "get_decoder"):
ref_base_model = unwrapped_ref_model.get_decoder()
else:
ref_base_model = getattr(
unwrapped_ref_model, self.args.base_model_attribute_name, unwrapped_ref_model
)
ref_outputs = ref_base_model(
input_ids,
use_cache=False,
**model_kwargs,
)
ref_hidden_states = ref_outputs.last_hidden_state[:, :-1]
elif not self.reference_free:
if hasattr(unwrapped_model, "get_decoder"):
ref_base_model = unwrapped_model.get_decoder()
else:
ref_base_model = getattr(unwrapped_model, self.args.base_model_attribute_name, unwrapped_model)
with self.null_ref_context():
ref_outputs = ref_base_model(
input_ids,
attention_mask=attention_mask,
use_cache=False,
**model_kwargs,
)
ref_hidden_states = ref_outputs.last_hidden_state[:, :-1]
masked_input_ids = torch.where(loss_mask != 0, input_ids, self.label_pad_token_id)
labels = masked_input_ids[:, 1:] # Shift right for casual LM
# Get the LM head
lm_head = unwrapped_model.get_output_embeddings()
# Get reference model weights if needed
ref_weight = None
ref_bias = None
if not self.reference_free:
if self.ref_model is not None:
unwrapped_ref_model = self.accelerator.unwrap_model(self.ref_model)
ref_lm_head = unwrapped_ref_model.get_output_embeddings()
else:
with self.null_ref_context():
ref_lm_head = unwrapped_model.get_output_embeddings()
ref_weight = ref_lm_head.weight
ref_bias = ref_lm_head.bias if hasattr(ref_lm_head, "bias") else None
# Compute loss using Liger kernel
loss_output = self.dpo_loss_fn(
lm_head.weight,
hidden_states,
labels,
bias=lm_head.bias if hasattr(lm_head, "bias") else None,
ref_input=ref_hidden_states if not self.reference_free else None,
ref_weight=ref_weight if not self.reference_free else None,
ref_bias=ref_bias if not self.reference_free else None,
)
(
loss,
(chosen_logps, rejected_logps, chosen_logits_mean, rejected_logits_mean, nll_loss, *aux_outputs),
) = loss_output
output = {
"loss": loss,
"chosen_logps": chosen_logps,
"rejected_logps": rejected_logps,
"mean_chosen_logits": chosen_logits_mean,
"mean_rejected_logits": rejected_logits_mean,
"nll_loss": nll_loss,
"chosen_rewards": aux_outputs[0],
"rejected_rewards": aux_outputs[1],
}
if self.aux_loss_enabled:
output["aux_loss"] = outputs.aux_loss
return output
def concatenated_forward(
self, model: nn.Module, batch: dict[str, Union[list, torch.LongTensor]], is_ref_model: bool = False
):
"""
Runs the given model on the given batch of inputs, concatenating the chosen and rejected inputs together.
We do this to avoid doing two forward passes, because it's faster for FSDP.
Args:
model:
Model to run the forward pass on.
batch:
Batch of input data.
is_ref_model:
Whether this method is being called for the reference model. If `True`, length desensitization is not
applied.
"""
num_examples = batch["prompt_input_ids"].shape[0]
concatenated_batch = self.concatenated_inputs(batch, padding_value=self.padding_value)
model_kwargs = {"use_cache": False}
if self.aux_loss_enabled:
model_kwargs["output_router_logits"] = True
# Add the pixel values and attention masks for vision models
if "pixel_values" in concatenated_batch:
model_kwargs["pixel_values"] = concatenated_batch["pixel_values"]
if "pixel_attention_mask" in concatenated_batch:
model_kwargs["pixel_attention_mask"] = concatenated_batch["pixel_attention_mask"]
if "image_sizes" in concatenated_batch:
model_kwargs["image_sizes"] = concatenated_batch["image_sizes"]
prompt_input_ids = concatenated_batch["prompt_input_ids"]
prompt_attention_mask = concatenated_batch["prompt_attention_mask"]
completion_input_ids = concatenated_batch["completion_input_ids"]
completion_attention_mask = concatenated_batch["completion_attention_mask"]
if self.is_encoder_decoder:
labels = completion_input_ids
labels[completion_attention_mask == 0] = self.label_pad_token_id
outputs = model(
input_ids=prompt_input_ids,
attention_mask=prompt_attention_mask,
labels=labels, # we need the labels for the logits to be returned
**model_kwargs,
)
logits = outputs.logits
loss_mask = completion_attention_mask.bool()
else:
# Concatenate the prompt and completion inputs
input_ids = torch.cat((prompt_input_ids, completion_input_ids), dim=1)
attention_mask = torch.cat((prompt_attention_mask, completion_attention_mask), dim=1)
# Mask the prompt but not the completion for the loss
loss_mask = torch.cat(
(torch.zeros_like(prompt_attention_mask), completion_attention_mask),
dim=1,
)
# Flush and truncate
if self.max_length is not None and self.max_length < attention_mask.size(1):
if self.truncation_mode == "keep_start":
# Flush left to reduce the memory usage
# [[0, 0, x, x, x, x], -> [[x, x, x, x],
# [0, x, x, x, 0, 0]] [x, x, x, 0]]
attention_mask, input_ids, loss_mask = flush_left(attention_mask, input_ids, loss_mask)
attention_mask = attention_mask[:, : self.max_length]
input_ids = input_ids[:, : self.max_length]
loss_mask = loss_mask[:, : self.max_length]
elif self.truncation_mode == "keep_end":
# Flush right before truncating left, then flush left
# [[0, 0, x, x, x, x], -> [[0, 0, x, x],
# [0, x, x, x, 0, 0]] [0, x, x, x]]
attention_mask, input_ids, loss_mask = flush_right(attention_mask, input_ids, loss_mask)
input_ids = input_ids[:, -self.max_length :]
attention_mask = attention_mask[:, -self.max_length :]
loss_mask = loss_mask[:, -self.max_length :]
attention_mask, input_ids, loss_mask = flush_left(attention_mask, input_ids, loss_mask)
else:
raise ValueError(
f"Unknown truncation mode: '{self.truncation_mode}'. Should be one of ['keep_end', "
"'keep_start']."
)
else:
# Flush left to reduce the memory usage
# [[0, 0, x, x, x, x], -> [[x, x, x, x],
# [0, x, x, x, 0, 0]] [x, x, x, 0]]
attention_mask, input_ids, loss_mask = flush_left(attention_mask, input_ids, loss_mask)
if self.use_logits_to_keep:
# Compute logits_to_keep based on loss_mask pattern:
# [[0, 0, 0, x, x, x, x],
# [0, 0, 0, x, x, x, 0]]
# ^ start computing logits from here ([:, -(7-3+1):])
first_compute_index = loss_mask.nonzero(as_tuple=True)[1].min()
logits_to_keep = (loss_mask.shape[1] - first_compute_index).item() + 1 # +1 for the first label
model_kwargs["logits_to_keep"] = logits_to_keep
model_kwargs["output_hidden_states"] = True
if self.padding_free:
# Flatten the input_ids, position_ids, and loss_mask
# input_ids = [[a, b, c, 0], -> input_ids = [[a, b, c, d, e, f, g]]
# [d, e, f, g]] position_ids = [[0, 1, 2, 0, 1, 2, 3]]
input_ids = input_ids[attention_mask.bool()].unsqueeze(0)
loss_mask = loss_mask[attention_mask.bool()].unsqueeze(0)
position_ids = attention_mask.cumsum(1)[attention_mask.bool()].unsqueeze(0) - 1
model_kwargs["position_ids"] = position_ids
else:
model_kwargs["attention_mask"] = attention_mask
outputs = model(input_ids, **model_kwargs)
logits = outputs.logits
# Offset the logits by one to align with the labels
labels = torch.roll(input_ids, shifts=-1, dims=1)
loss_mask = torch.roll(loss_mask, shifts=-1, dims=1).bool()
if self.use_logits_to_keep:
# Align labels with logits
# logits: -, -, [x2, x3, x4, x5, x6]
# ^ --------- ^ after logits[:, :-1, :]
# labels: [y0, y1, y2, y3, y4, y5, y6]
# ^ --------- ^ with logits_to_keep=4, [:, -4:]
# loss_mask: [0, 0, 0, 1, 1, 1, 1]
labels = labels[:, -logits_to_keep:]
loss_mask = loss_mask[:, -logits_to_keep:]
if logits.shape[:2] != labels.shape[:2]:
# for llava, the returned logits include the image tokens (placed before the text tokens)
seq_len = labels.shape[1]
logits = logits[:, -seq_len:]
# Compute the log probabilities of the labels
labels[~loss_mask] = 0 # dummy token; we'll ignore the losses on these tokens later
per_token_logps = selective_log_softmax(logits, labels)
per_token_logps[~loss_mask] = 0
per_token_logps = torch.roll(per_token_logps, shifts=1, dims=1)
if self.padding_free:
# Unflatten the per_token_logps (shape: [1, sum_seq_len] -> [batch_size, seq_len])
batch_size, seq_len = attention_mask.shape
per_token_logps_ = torch.zeros(
batch_size, seq_len, device=outputs.logits.device, dtype=outputs.logits.dtype
)
per_token_logps_[attention_mask.bool()] = per_token_logps
per_token_logps = per_token_logps_
all_logps = per_token_logps[:, 1:].sum(-1)
output = {}
if self.use_weighting:
with torch.no_grad():
# Eq (2) of the WPO paper: https://huggingface.co/papers/2406.11827
logprobs = F.log_softmax(logits, dim=-1)
weights_adjustment_factor = torch.logsumexp(2 * logprobs, dim=-1) # same as sum(probs**2) in log space
per_token_logps_adjusted = per_token_logps - weights_adjustment_factor
all_weights = (per_token_logps_adjusted * loss_mask).sum(-1) / loss_mask.sum(-1)
chosen_weights = all_weights[:num_examples]
rejected_weights = all_weights[num_examples:]
output["policy_weights"] = torch.clamp(torch.exp(chosen_weights + rejected_weights), max=1)
if self.args.rpo_alpha is not None:
# Only use the chosen logits for the RPO loss
chosen_logits = logits[:num_examples, :-1] if not self.is_encoder_decoder else logits[:num_examples]
chosen_labels = labels[:num_examples, :-1] if not self.is_encoder_decoder else labels[:num_examples]
# Compute the log probabilities of the labels
output["nll_loss"] = F.cross_entropy(
torch.flatten(chosen_logits, end_dim=1), torch.flatten(chosen_labels, end_dim=1), ignore_index=0
)
if self.loss_type == "ipo":
all_logps = all_logps / loss_mask.sum(-1)
if self.args.ld_alpha is not None and not is_ref_model:
# Compute response lengths based on loss_mask
completion_lengths = loss_mask.sum(dim=1)
chosen_lengths = completion_lengths[:num_examples]
rejected_lengths = completion_lengths[num_examples:]
public_lengths = torch.min(chosen_lengths, rejected_lengths) # l_p in the paper
public_lengths = torch.cat([public_lengths, public_lengths], dim=0)
seq_len = per_token_logps.size(1)
position_ids = torch.arange(seq_len, device=per_token_logps.device).expand_as(per_token_logps)
ld_mask = position_ids < public_lengths.unsqueeze(1)
mask = position_ids < completion_lengths.unsqueeze(1)
front_mask = (ld_mask & mask).float()
rear_mask = (~ld_mask & mask).float()
front_logps = (per_token_logps * front_mask).sum(dim=1)
rear_logps = (per_token_logps * rear_mask).sum(dim=1)
all_logps = front_logps + self.args.ld_alpha * rear_logps
output["chosen_logps"] = all_logps[:num_examples]
output["rejected_logps"] = all_logps[num_examples:]
# Compute the mean logits
if self.padding_free:
# position_ids contains a sequence of range identifiers (e.g., [[0, 1, 2, 0, 1, 2, 3, ...]]).
# There are 2*num_examples ranges in total: the first half corresponds to the chosen tokens,
# and the second half to the rejected tokens.
# To find the start of the rejected tokens, we look for the num_examples+1-th zero in pos_id.
split_idx = (position_ids == 0).nonzero(as_tuple=True)[1][num_examples]
mean_chosen_logits = logits[0, :split_idx][loss_mask[0, :split_idx]].mean()
mean_rejected_logits = logits[0, split_idx:][loss_mask[0, split_idx:]].mean()
else:
mean_chosen_logits = logits[:num_examples][loss_mask[:num_examples]].mean()
mean_rejected_logits = logits[num_examples:][loss_mask[num_examples:]].mean()
output["mean_chosen_logits"] = mean_chosen_logits
output["mean_rejected_logits"] = mean_rejected_logits
if self.aux_loss_enabled:
output["aux_loss"] = outputs.aux_loss
return output
def get_batch_loss_metrics(
self,
model,
batch: dict[str, Union[list, torch.LongTensor]],
train_eval: Literal["train", "eval"] = "train",
):
"""Compute the DPO loss and other metrics for the given batch of inputs for train or test."""
metrics = {}
if self.args.use_liger_loss:
model_output = self._compute_loss_liger(model, batch)
losses = model_output["loss"]
chosen_rewards = model_output["chosen_rewards"]
rejected_rewards = model_output["rejected_rewards"]
else:
model_output = self.concatenated_forward(model, batch)
# if ref_chosen_logps and ref_rejected_logps in batch use them, otherwise use the reference model
if "ref_chosen_logps" in batch and "ref_rejected_logps" in batch:
ref_chosen_logps = batch["ref_chosen_logps"]
ref_rejected_logps = batch["ref_rejected_logps"]
else:
ref_chosen_logps, ref_rejected_logps = self.compute_ref_log_probs(batch)
losses, chosen_rewards, rejected_rewards = self.dpo_loss(
model_output["chosen_logps"], model_output["rejected_logps"], ref_chosen_logps, ref_rejected_logps
)
reward_accuracies = (chosen_rewards > rejected_rewards).float()
if self.args.rpo_alpha is not None:
losses = losses + self.args.rpo_alpha * model_output["nll_loss"] # RPO loss from V3 of the paper
if self.use_weighting:
losses = losses * model_output["policy_weights"]
if self.aux_loss_enabled:
losses = losses + self.aux_loss_coef * model_output["aux_loss"]
prefix = "eval_" if train_eval == "eval" else ""
metrics[f"{prefix}rewards/chosen"] = self.accelerator.gather_for_metrics(chosen_rewards).mean().item()
metrics[f"{prefix}rewards/rejected"] = self.accelerator.gather_for_metrics(rejected_rewards).mean().item()
metrics[f"{prefix}rewards/accuracies"] = self.accelerator.gather_for_metrics(reward_accuracies).mean().item()
metrics[f"{prefix}rewards/margins"] = (
self.accelerator.gather_for_metrics(chosen_rewards - rejected_rewards).mean().item()
)
metrics[f"{prefix}logps/chosen"] = (
self.accelerator.gather_for_metrics(model_output["chosen_logps"]).detach().mean().item()
)
metrics[f"{prefix}logps/rejected"] = (
self.accelerator.gather_for_metrics(model_output["rejected_logps"]).detach().mean().item()
)
metrics[f"{prefix}logits/chosen"] = (
self.accelerator.gather_for_metrics(model_output["mean_chosen_logits"]).detach().mean().item()
)
metrics[f"{prefix}logits/rejected"] = (
self.accelerator.gather_for_metrics(model_output["mean_rejected_logits"]).detach().mean().item()
)
if self.args.rpo_alpha is not None:
metrics[f"{prefix}nll_loss"] = (
self.accelerator.gather_for_metrics(model_output["nll_loss"]).detach().mean().item()
)
if self.aux_loss_enabled:
metrics[f"{prefix}aux_loss"] = (
self.accelerator.gather_for_metrics(model_output["aux_loss"]).detach().mean().item()
)
return losses.mean(), metrics
def compute_loss(
self,
model: Union[PreTrainedModel, nn.Module],
inputs: dict[str, Union[torch.Tensor, Any]],
return_outputs=False,
num_items_in_batch=None,
) -> Union[torch.Tensor, tuple[torch.Tensor, dict[str, torch.Tensor]]]:
compute_loss_context_manager = (
autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext()
)
with compute_loss_context_manager:
loss, metrics = self.get_batch_loss_metrics(model, inputs, train_eval="train")
# Make sure to move the loss to the device the original accumulating loss is at back in the `Trainer` class:
loss = loss.to(self.args.device)
# force log the metrics
self.store_metrics(metrics, train_eval="train")
if return_outputs:
return loss, metrics
return loss
def generate_from_model_and_ref(self, model, batch: dict[str, torch.LongTensor]) -> tuple[str, str]:
"""Generate samples from the model and reference model for the given batch of inputs."""
# If one uses `generate_during_eval` with peft + bf16, we need to explicitly call generate with
# the torch amp context manager as some hidden states are silently casted to full precision.
generate_context_manager = (
autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext()
)
with generate_context_manager:
policy_output = model.generate(
input_ids=batch["prompt_input_ids"],
attention_mask=batch["prompt_attention_mask"],
max_length=self.max_length,
do_sample=True,
pad_token_id=self.padding_value,
)
# if ref_output in batch use that otherwise use the reference model
if "ref_output" in batch:
ref_output = batch["ref_output"]
else:
if self.ref_model is None:
with self.null_ref_context():
ref_output = self.model.generate(
input_ids=batch["prompt_input_ids"],
attention_mask=batch["prompt_attention_mask"],
max_length=self.max_length,
do_sample=True,
pad_token_id=self.padding_value,
)
else:
ref_output = self.ref_model.generate(
input_ids=batch["prompt_input_ids"],
attention_mask=batch["prompt_attention_mask"],
max_length=self.max_length,
do_sample=True,
pad_token_id=self.padding_value,
)
policy_output = pad_to_length(policy_output, self.max_length, self.padding_value)
policy_output_decoded = self.processing_class.batch_decode(policy_output, skip_special_tokens=True)
ref_output = pad_to_length(ref_output, self.max_length, self.padding_value)
ref_output_decoded = self.processing_class.batch_decode(ref_output, skip_special_tokens=True)
return policy_output_decoded, ref_output_decoded
def prediction_step(
self,
model: Union[PreTrainedModel, nn.Module],
inputs: dict[str, Union[torch.Tensor, Any]],
prediction_loss_only: bool,
ignore_keys: Optional[list[str]] = None,
):
if ignore_keys is None:
if hasattr(model, "config"):
ignore_keys = getattr(model.config, "keys_to_ignore_at_inference", [])
else:
ignore_keys = []
prediction_context_manager = (
autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext()
)
with torch.no_grad(), prediction_context_manager:
loss, metrics = self.get_batch_loss_metrics(model, inputs, train_eval="eval")
# force log the metrics
self.store_metrics(metrics, train_eval="eval")
if prediction_loss_only:
return loss.detach(), None, None
# logits for the chosen and rejected samples from model
logits_dict = {
"eval_logits/chosen": metrics["eval_logits/chosen"],
"eval_logits/rejected": metrics["eval_logits/rejected"],
}
logits = [v for k, v in logits_dict.items() if k not in ignore_keys]
logits = torch.tensor(logits, device=self.accelerator.device)
labels = torch.zeros(logits.shape[0], device=self.accelerator.device)
return (loss.detach(), logits, labels)
def store_metrics(self, metrics: dict[str, float], train_eval: Literal["train", "eval"] = "train") -> None:
for key, value in metrics.items():
self._stored_metrics[train_eval][key].append(value)
def evaluation_loop(
self,
dataloader: DataLoader,
description: str,
prediction_loss_only: Optional[bool] = None,
ignore_keys: Optional[list[str]] = None,
metric_key_prefix: str = "eval",
) -> EvalLoopOutput:
"""
Overriding built-in evaluation loop to store metrics for each batch.
Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`.
Works both with or without labels.
"""
# Sample and save to game log if requested (for one batch to save time)
if self.generate_during_eval:
# Generate random indices within the range of the total number of samples
num_samples = len(dataloader.dataset)
random_indices = random.sample(range(num_samples), k=self.args.eval_batch_size)
# Use dataloader.dataset.select to get the random batch without iterating over the DataLoader
random_batch_dataset = dataloader.dataset.select(random_indices)
random_batch = self.data_collator(random_batch_dataset)
random_batch = self._prepare_inputs(random_batch)
policy_output_decoded, ref_output_decoded = self.generate_from_model_and_ref(self.model, random_batch)
table = pd.DataFrame(
columns=["Prompt", "Policy", "Ref Model"],
data=[
[prompt, pol[len(prompt) :], ref[len(prompt) :]]
for prompt, pol, ref in zip(
random_batch_dataset["prompt"], policy_output_decoded, ref_output_decoded
)
],
)
if "wandb" in self.args.report_to and self.accelerator.is_main_process:
wandb.log({"game_log": wandb.Table(data=table)})
if "comet_ml" in self.args.report_to:
log_table_to_comet_experiment(
name="game_log.csv",
table=table,
)
# Base evaluation
initial_output = super().evaluation_loop(
dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix
)
return initial_output
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None:
"""
Log `logs` on the various objects watching training, including stored metrics.
Args:
logs (`dict[str, float]`):
The values to log.
start_time (`float` or `None`, *optional*, defaults to `None`):
Start time of the training.
"""
# logs either has 'loss' or 'eval_loss'
train_eval = "train" if "loss" in logs else "eval"
# Add averaged stored metrics to logs
for key, metrics in self._stored_metrics[train_eval].items():
logs[key] = torch.tensor(metrics).mean().item()
del self._stored_metrics[train_eval]
return super().log(logs, start_time)
# Ensure the model card is saved along with the checkpoint
def _save_checkpoint(self, model, trial):
if self.args.hub_model_id is None:
model_name = Path(self.args.output_dir).name
else:
model_name = self.args.hub_model_id.split("/")[-1]
self.create_model_card(model_name=model_name)
super()._save_checkpoint(model, trial)
def create_model_card(
self,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None,
tags: Union[str, list[str], None] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
model_name (`str` or `None`, *optional*, defaults to `None`):
Name of the model.
dataset_name (`str` or `None`, *optional*, defaults to `None`):
Name of the dataset used for training.
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
Tags to be associated with the model card.
"""
if not self.is_world_process_zero():
return
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
base_model = self.model.config._name_or_path
else:
base_model = None
tags = tags or set()
if isinstance(tags, str):
tags = {tags}
if hasattr(self.model.config, "unsloth_version"):
tags.add("unsloth")
tags.update(self._tag_names)
citation = textwrap.dedent(
"""\
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}"""
)
model_card = generate_model_card(
base_model=base_model,
model_name=model_name,
hub_model_id=self.hub_model_id,
dataset_name=dataset_name,
tags=tags,
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
comet_url=get_comet_experiment_url(),
trainer_name="DPO",
trainer_citation=citation,
paper_title="Direct Preference Optimization: Your Language Model is Secretly a Reward Model",
paper_id="2305.18290",
)
model_card.save(os.path.join(self.args.output_dir, "README.md"))
|