Spaces:
Paused
Paused
File size: 15,044 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import textwrap
from typing import Any, Callable, Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from datasets import Dataset
from transformers import (
AutoModelForCausalLM,
BaseImageProcessor,
DataCollator,
FeatureExtractionMixin,
GenerationConfig,
PreTrainedModel,
PreTrainedTokenizerBase,
ProcessorMixin,
is_wandb_available,
)
from transformers.trainer_callback import TrainerCallback
from transformers.trainer_utils import EvalPrediction
from transformers.utils import is_peft_available
from ..models import prepare_deepspeed
from ..models.utils import unwrap_model_for_generation
from .gkd_config import GKDConfig
from .sft_trainer import SFTTrainer
from .utils import (
DataCollatorForChatML,
disable_dropout_in_model,
empty_cache,
generate_model_card,
get_comet_experiment_url,
)
if is_peft_available():
from peft import PeftConfig
if is_wandb_available():
import wandb
class GKDTrainer(SFTTrainer):
_tag_names = ["trl", "gkd"]
def __init__(
self,
model: Optional[Union[PreTrainedModel, nn.Module, str]] = None,
teacher_model: Union[PreTrainedModel, nn.Module, str] = None,
args: Optional[GKDConfig] = None,
data_collator: Optional[DataCollator] = None, # type: ignore
train_dataset: Optional[Dataset] = None,
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
processing_class: Optional[
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
] = None,
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
callbacks: Optional[list[TrainerCallback]] = None,
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
peft_config: Optional["PeftConfig"] = None,
formatting_func: Optional[Callable] = None,
):
# add remove_unused_columns=False to the dataclass args
args.remove_unused_columns = False
data_collator = DataCollatorForChatML(tokenizer=processing_class, max_length=args.max_length)
super().__init__(
model,
args=args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
processing_class=processing_class,
compute_metrics=compute_metrics,
callbacks=callbacks,
optimizers=optimizers,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
peft_config=peft_config,
formatting_func=formatting_func,
)
if args.teacher_model_init_kwargs is None:
teacher_model_init_kwargs = {}
elif not isinstance(teacher_model, str):
raise ValueError(
"You passed teacher_model_init_kwargs to the GKDConfig, but your teacher_model is already instantiated."
)
else:
teacher_model_init_kwargs = args.teacher_model_init_kwargs
teacher_model_init_kwargs["torch_dtype"] = (
teacher_model_init_kwargs["torch_dtype"]
if teacher_model_init_kwargs["torch_dtype"] in ["auto", None]
else getattr(torch, teacher_model_init_kwargs["torch_dtype"])
)
if isinstance(teacher_model, str):
teacher_model = AutoModelForCausalLM.from_pretrained(teacher_model, **teacher_model_init_kwargs)
# Disable dropout in the model
if args.disable_dropout:
disable_dropout_in_model(self.model)
if self.is_deepspeed_enabled:
self.teacher_model = prepare_deepspeed(teacher_model, self.accelerator)
else:
self.teacher_model = self.accelerator.prepare_model(teacher_model, evaluation_mode=True)
self.lmbda = args.lmbda
self.beta = args.beta
self.temperature = args.temperature
self.seq_kd = args.seq_kd
self.generation_config = GenerationConfig(
max_new_tokens=args.max_new_tokens,
temperature=args.temperature,
do_sample=True,
top_k=0,
use_cache=False if args.gradient_checkpointing else True,
pad_token_id=self.processing_class.pad_token_id,
)
# Set custom EOS tokens if they are specified by the model's generation
# config. This is important for models with the Llama 3 chat template,
# which use special tokens <|eot_id|> and <|eom_id|> to mark the end of
# turns or messages.
if (
hasattr(self.model.generation_config, "eos_token_id")
and self.model.generation_config.eos_token_id is not None
):
self.generation_config.eos_token_id = self.model.generation_config.eos_token_id
@staticmethod
def generalized_jsd_loss(
student_logits, teacher_logits, labels=None, beta=0.5, temperature=1.0, reduction="batchmean"
):
"""
Compute the generalized Jensen-Shannon Divergence loss for knowledge distillation using F.kl_div. See Eq. (1)
of https://huggingface.co/papers/2306.13649 for the definition.
Args:
student_logits: Tensor of shape (batch_size, sequence_length, vocab_size)
teacher_logits: Tensor of shape (batch_size, sequence_length, vocab_size)
labels: Tensor of shape (batch_size, sequence_length) with -100 for padding tokens to ignore when computing loss
beta: Interpolation coefficient between 0 and 1 (default: 0.5)
temperature: Softmax temperature (default: 1.0)
reduction: Specifies the reduction to apply to the output (default: 'batchmean')
Returns:
loss: Scalar tensor with the generalized JSD loss
"""
# Apply temperature scaling
student_logits = student_logits / temperature
teacher_logits = teacher_logits / temperature
# Compute log probabilities for student and probabilities for teacher
student_log_probs = F.log_softmax(student_logits, dim=-1)
teacher_log_probs = F.log_softmax(teacher_logits, dim=-1)
if beta == 0:
jsd = F.kl_div(student_log_probs, teacher_log_probs, reduction="none", log_target=True)
elif beta == 1:
jsd = F.kl_div(teacher_log_probs, student_log_probs, reduction="none", log_target=True)
else:
# Compute the log of the mixture distribution
# log(a + b) = log(exp(log(a)) + exp(log(b))) -> for mixture
beta = torch.tensor(beta, dtype=student_log_probs.dtype)
mixture_log_probs = torch.logsumexp(
torch.stack([student_log_probs + torch.log(1 - beta), teacher_log_probs + torch.log(beta)]),
dim=0,
)
# Compute KL divergences using F.kl_div
# PyTorch differs from the standard mathematical definition, so the order of the probability distributions is swapped compared to that defined in the paper.
kl_teacher = F.kl_div(mixture_log_probs, teacher_log_probs, reduction="none", log_target=True)
kl_student = F.kl_div(mixture_log_probs, student_log_probs, reduction="none", log_target=True)
# Compute the Generalized Jensen-Shannon Divergence
jsd = beta * kl_teacher + (1 - beta) * kl_student
# Masking
if labels is not None:
mask = labels != -100
jsd = jsd[mask]
# Apply reduction
if reduction == "batchmean":
return jsd.sum() / mask.sum() if labels is not None else jsd.sum() / (jsd.size(0) * jsd.size(1))
elif reduction == "sum":
return jsd.sum()
elif reduction == "mean":
return jsd.mean()
else:
return jsd
def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
# compute student output
outputs_student = model(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
)
# compute teacher output in eval mode
self.teacher_model.eval()
with torch.no_grad():
outputs_teacher = self.teacher_model(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
)
# slice the logits for the generated tokens using the inputs["prompts"] lengths
prompt_lengths = inputs["prompts"].shape[1]
shifted_student_logits = outputs_student.logits[:, prompt_lengths - 1 : -1, :]
shifted_teacher_logits = outputs_teacher.logits[:, prompt_lengths - 1 : -1, :]
shifted_labels = inputs["labels"][:, prompt_lengths:]
# compute loss
loss = self.generalized_jsd_loss(
student_logits=shifted_student_logits,
teacher_logits=shifted_teacher_logits,
labels=shifted_labels,
beta=self.beta,
)
# empty cache
empty_cache()
# Return loss
return (loss, outputs_student) if return_outputs else loss
@staticmethod
def generate_on_policy_outputs(model, inputs, generation_config, pad_token_id=None):
# Generate output with respect to the prompt only
generated_outputs = model.generate(
input_ids=inputs["prompts"],
attention_mask=inputs.get("prompt_attention_mask", None),
generation_config=generation_config,
return_dict_in_generate=True,
)
# Get the generated token IDs
generated_tokens = generated_outputs.sequences
# Calculate new attention mask
new_attention_mask = torch.ones_like(generated_tokens)
new_labels = generated_tokens.clone()
# If there's pad_token_id, set attention mask to 0 for padding tokens
if pad_token_id is not None:
new_labels[new_labels == pad_token_id] = -100
new_attention_mask[generated_tokens == pad_token_id] = 0
return generated_tokens, new_attention_mask, new_labels
def training_step(
self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None
) -> torch.Tensor:
"""
Perform a training step for the Generalized Knowledge Distillation (GKD) model.
This method implements the on-policy learning approach described in the GKD paper.
With probability `self.lmbda`, it generates new responses using the student model,
which are then used for training instead of the original inputs.
"""
if self.seq_kd:
with unwrap_model_for_generation(self.teacher_model, self.accelerator) as unwrapped_model:
new_input_ids, new_attention_mask, new_labels = self.generate_on_policy_outputs(
unwrapped_model, inputs, self.generation_config, self.processing_class.pad_token_id
)
inputs["input_ids"] = new_input_ids
inputs["attention_mask"] = new_attention_mask
inputs["labels"] = new_labels
if random.random() <= self.lmbda:
with unwrap_model_for_generation(model, self.accelerator) as unwrapped_model:
new_input_ids, new_attention_mask, new_labels = self.generate_on_policy_outputs(
unwrapped_model, inputs, self.generation_config, self.processing_class.pad_token_id
)
inputs["input_ids"] = new_input_ids
inputs["attention_mask"] = new_attention_mask
inputs["labels"] = new_labels
loss = super().training_step(model, inputs, num_items_in_batch)
return loss
def create_model_card(
self,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None,
tags: Union[str, list[str], None] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
model_name (`str` or `None`, *optional*, defaults to `None`):
Name of the model.
dataset_name (`str` or `None`, *optional*, defaults to `None`):
Name of the dataset used for training.
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
Tags to be associated with the model card.
"""
if not self.is_world_process_zero():
return
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
base_model = self.model.config._name_or_path
else:
base_model = None
tags = tags or set()
if isinstance(tags, str):
tags = {tags}
if hasattr(self.model.config, "unsloth_version"):
tags.add("unsloth")
tags.update(self._tag_names)
citation = textwrap.dedent("""\
@inproceedings{agarwal2024on-policy,
title = {{On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes}},
author = {Rishabh Agarwal and Nino Vieillard and Yongchao Zhou and Piotr Stanczyk and Sabela Ramos Garea and Matthieu Geist and Olivier Bachem},
year = 2024,
booktitle = {The Twelfth International Conference on Learning Representations, {ICLR} 2024, Vienna, Austria, May 7-11, 2024},
publisher = {OpenReview.net},
url = {https://openreview.net/forum?id=3zKtaqxLhW},
}""")
model_card = generate_model_card(
base_model=base_model,
model_name=model_name,
hub_model_id=self.hub_model_id,
dataset_name=dataset_name,
tags=tags,
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
comet_url=get_comet_experiment_url(),
trainer_name="GKD",
trainer_citation=citation,
paper_title="On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes",
paper_id="2306.13649",
)
model_card.save(os.path.join(self.args.output_dir, "README.md"))
|