File size: 15,044 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import random
import textwrap
from typing import Any, Callable, Optional, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from datasets import Dataset
from transformers import (
    AutoModelForCausalLM,
    BaseImageProcessor,
    DataCollator,
    FeatureExtractionMixin,
    GenerationConfig,
    PreTrainedModel,
    PreTrainedTokenizerBase,
    ProcessorMixin,
    is_wandb_available,
)
from transformers.trainer_callback import TrainerCallback
from transformers.trainer_utils import EvalPrediction
from transformers.utils import is_peft_available

from ..models import prepare_deepspeed
from ..models.utils import unwrap_model_for_generation
from .gkd_config import GKDConfig
from .sft_trainer import SFTTrainer
from .utils import (
    DataCollatorForChatML,
    disable_dropout_in_model,
    empty_cache,
    generate_model_card,
    get_comet_experiment_url,
)


if is_peft_available():
    from peft import PeftConfig

if is_wandb_available():
    import wandb


class GKDTrainer(SFTTrainer):
    _tag_names = ["trl", "gkd"]

    def __init__(
        self,
        model: Optional[Union[PreTrainedModel, nn.Module, str]] = None,
        teacher_model: Union[PreTrainedModel, nn.Module, str] = None,
        args: Optional[GKDConfig] = None,
        data_collator: Optional[DataCollator] = None,  # type: ignore
        train_dataset: Optional[Dataset] = None,
        eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
        processing_class: Optional[
            Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
        ] = None,
        compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
        callbacks: Optional[list[TrainerCallback]] = None,
        optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
        preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
        peft_config: Optional["PeftConfig"] = None,
        formatting_func: Optional[Callable] = None,
    ):
        # add remove_unused_columns=False to the dataclass args
        args.remove_unused_columns = False
        data_collator = DataCollatorForChatML(tokenizer=processing_class, max_length=args.max_length)

        super().__init__(
            model,
            args=args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            processing_class=processing_class,
            compute_metrics=compute_metrics,
            callbacks=callbacks,
            optimizers=optimizers,
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
            peft_config=peft_config,
            formatting_func=formatting_func,
        )

        if args.teacher_model_init_kwargs is None:
            teacher_model_init_kwargs = {}
        elif not isinstance(teacher_model, str):
            raise ValueError(
                "You passed teacher_model_init_kwargs to the GKDConfig, but your teacher_model is already instantiated."
            )
        else:
            teacher_model_init_kwargs = args.teacher_model_init_kwargs
            teacher_model_init_kwargs["torch_dtype"] = (
                teacher_model_init_kwargs["torch_dtype"]
                if teacher_model_init_kwargs["torch_dtype"] in ["auto", None]
                else getattr(torch, teacher_model_init_kwargs["torch_dtype"])
            )

        if isinstance(teacher_model, str):
            teacher_model = AutoModelForCausalLM.from_pretrained(teacher_model, **teacher_model_init_kwargs)

        # Disable dropout in the model
        if args.disable_dropout:
            disable_dropout_in_model(self.model)

        if self.is_deepspeed_enabled:
            self.teacher_model = prepare_deepspeed(teacher_model, self.accelerator)
        else:
            self.teacher_model = self.accelerator.prepare_model(teacher_model, evaluation_mode=True)

        self.lmbda = args.lmbda
        self.beta = args.beta
        self.temperature = args.temperature
        self.seq_kd = args.seq_kd

        self.generation_config = GenerationConfig(
            max_new_tokens=args.max_new_tokens,
            temperature=args.temperature,
            do_sample=True,
            top_k=0,
            use_cache=False if args.gradient_checkpointing else True,
            pad_token_id=self.processing_class.pad_token_id,
        )
        # Set custom EOS tokens if they are specified by the model's generation
        # config. This is important for models with the Llama 3 chat template,
        # which use special tokens <|eot_id|> and <|eom_id|> to mark the end of
        # turns or messages.
        if (
            hasattr(self.model.generation_config, "eos_token_id")
            and self.model.generation_config.eos_token_id is not None
        ):
            self.generation_config.eos_token_id = self.model.generation_config.eos_token_id

    @staticmethod
    def generalized_jsd_loss(
        student_logits, teacher_logits, labels=None, beta=0.5, temperature=1.0, reduction="batchmean"
    ):
        """
        Compute the generalized Jensen-Shannon Divergence loss for knowledge distillation using F.kl_div. See Eq. (1)
        of https://huggingface.co/papers/2306.13649 for the definition.

        Args:
            student_logits: Tensor of shape (batch_size, sequence_length, vocab_size)
            teacher_logits: Tensor of shape (batch_size, sequence_length, vocab_size)
            labels: Tensor of shape (batch_size, sequence_length) with -100 for padding tokens to ignore when computing loss
            beta: Interpolation coefficient between 0 and 1 (default: 0.5)
            temperature: Softmax temperature (default: 1.0)
            reduction: Specifies the reduction to apply to the output (default: 'batchmean')

        Returns:
            loss: Scalar tensor with the generalized JSD loss
        """

        # Apply temperature scaling
        student_logits = student_logits / temperature
        teacher_logits = teacher_logits / temperature

        # Compute log probabilities for student and probabilities for teacher
        student_log_probs = F.log_softmax(student_logits, dim=-1)
        teacher_log_probs = F.log_softmax(teacher_logits, dim=-1)

        if beta == 0:
            jsd = F.kl_div(student_log_probs, teacher_log_probs, reduction="none", log_target=True)
        elif beta == 1:
            jsd = F.kl_div(teacher_log_probs, student_log_probs, reduction="none", log_target=True)
        else:
            # Compute the log of the mixture distribution
            # log(a + b) = log(exp(log(a)) + exp(log(b))) -> for mixture
            beta = torch.tensor(beta, dtype=student_log_probs.dtype)
            mixture_log_probs = torch.logsumexp(
                torch.stack([student_log_probs + torch.log(1 - beta), teacher_log_probs + torch.log(beta)]),
                dim=0,
            )

            # Compute KL divergences using F.kl_div
            # PyTorch differs from the standard mathematical definition, so the order of the probability distributions is swapped compared to that defined in the paper.
            kl_teacher = F.kl_div(mixture_log_probs, teacher_log_probs, reduction="none", log_target=True)
            kl_student = F.kl_div(mixture_log_probs, student_log_probs, reduction="none", log_target=True)

            # Compute the Generalized Jensen-Shannon Divergence
            jsd = beta * kl_teacher + (1 - beta) * kl_student

        # Masking
        if labels is not None:
            mask = labels != -100
            jsd = jsd[mask]

        # Apply reduction
        if reduction == "batchmean":
            return jsd.sum() / mask.sum() if labels is not None else jsd.sum() / (jsd.size(0) * jsd.size(1))
        elif reduction == "sum":
            return jsd.sum()
        elif reduction == "mean":
            return jsd.mean()
        else:
            return jsd

    def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
        # compute student output
        outputs_student = model(
            input_ids=inputs["input_ids"],
            attention_mask=inputs["attention_mask"],
        )

        # compute teacher output in eval mode
        self.teacher_model.eval()
        with torch.no_grad():
            outputs_teacher = self.teacher_model(
                input_ids=inputs["input_ids"],
                attention_mask=inputs["attention_mask"],
            )

        # slice the logits for the generated tokens using the inputs["prompts"] lengths
        prompt_lengths = inputs["prompts"].shape[1]
        shifted_student_logits = outputs_student.logits[:, prompt_lengths - 1 : -1, :]
        shifted_teacher_logits = outputs_teacher.logits[:, prompt_lengths - 1 : -1, :]
        shifted_labels = inputs["labels"][:, prompt_lengths:]

        # compute loss
        loss = self.generalized_jsd_loss(
            student_logits=shifted_student_logits,
            teacher_logits=shifted_teacher_logits,
            labels=shifted_labels,
            beta=self.beta,
        )

        # empty cache
        empty_cache()

        # Return loss
        return (loss, outputs_student) if return_outputs else loss

    @staticmethod
    def generate_on_policy_outputs(model, inputs, generation_config, pad_token_id=None):
        # Generate output with respect to the prompt only
        generated_outputs = model.generate(
            input_ids=inputs["prompts"],
            attention_mask=inputs.get("prompt_attention_mask", None),
            generation_config=generation_config,
            return_dict_in_generate=True,
        )

        # Get the generated token IDs
        generated_tokens = generated_outputs.sequences
        # Calculate new attention mask
        new_attention_mask = torch.ones_like(generated_tokens)
        new_labels = generated_tokens.clone()

        # If there's pad_token_id, set attention mask to 0 for padding tokens
        if pad_token_id is not None:
            new_labels[new_labels == pad_token_id] = -100
            new_attention_mask[generated_tokens == pad_token_id] = 0

        return generated_tokens, new_attention_mask, new_labels

    def training_step(
        self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None
    ) -> torch.Tensor:
        """
        Perform a training step for the Generalized Knowledge Distillation (GKD) model.

        This method implements the on-policy learning approach described in the GKD paper.
        With probability `self.lmbda`, it generates new responses using the student model,
        which are then used for training instead of the original inputs.
        """
        if self.seq_kd:
            with unwrap_model_for_generation(self.teacher_model, self.accelerator) as unwrapped_model:
                new_input_ids, new_attention_mask, new_labels = self.generate_on_policy_outputs(
                    unwrapped_model, inputs, self.generation_config, self.processing_class.pad_token_id
                )
            inputs["input_ids"] = new_input_ids
            inputs["attention_mask"] = new_attention_mask
            inputs["labels"] = new_labels
        if random.random() <= self.lmbda:
            with unwrap_model_for_generation(model, self.accelerator) as unwrapped_model:
                new_input_ids, new_attention_mask, new_labels = self.generate_on_policy_outputs(
                    unwrapped_model, inputs, self.generation_config, self.processing_class.pad_token_id
                )
            inputs["input_ids"] = new_input_ids
            inputs["attention_mask"] = new_attention_mask
            inputs["labels"] = new_labels

        loss = super().training_step(model, inputs, num_items_in_batch)
        return loss

    def create_model_card(
        self,
        model_name: Optional[str] = None,
        dataset_name: Optional[str] = None,
        tags: Union[str, list[str], None] = None,
    ):
        """
        Creates a draft of a model card using the information available to the `Trainer`.

        Args:
            model_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the model.
            dataset_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the dataset used for training.
            tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
                Tags to be associated with the model card.
        """
        if not self.is_world_process_zero():
            return

        if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
            base_model = self.model.config._name_or_path
        else:
            base_model = None

        tags = tags or set()
        if isinstance(tags, str):
            tags = {tags}

        if hasattr(self.model.config, "unsloth_version"):
            tags.add("unsloth")

        tags.update(self._tag_names)

        citation = textwrap.dedent("""\
        @inproceedings{agarwal2024on-policy,
            title        = {{On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes}},
            author       = {Rishabh Agarwal and Nino Vieillard and Yongchao Zhou and Piotr Stanczyk and Sabela Ramos Garea and Matthieu Geist and Olivier Bachem},
            year         = 2024,
            booktitle    = {The Twelfth International Conference on Learning Representations, {ICLR} 2024, Vienna, Austria, May 7-11, 2024},
            publisher    = {OpenReview.net},
            url          = {https://openreview.net/forum?id=3zKtaqxLhW},
        }""")

        model_card = generate_model_card(
            base_model=base_model,
            model_name=model_name,
            hub_model_id=self.hub_model_id,
            dataset_name=dataset_name,
            tags=tags,
            wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
            comet_url=get_comet_experiment_url(),
            trainer_name="GKD",
            trainer_citation=citation,
            paper_title="On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes",
            paper_id="2306.13649",
        )

        model_card.save(os.path.join(self.args.output_dir, "README.md"))