Spaces:
Paused
Paused
File size: 80,913 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import textwrap
import warnings
from collections import defaultdict, deque
from collections.abc import Sized
from contextlib import nullcontext
from functools import partial
from pathlib import Path
from typing import Any, Callable, Optional, Union
import datasets
import torch
import torch.utils.data
import transformers
from accelerate.utils import broadcast_object_list, gather, gather_object, is_peft_model, set_seed
from datasets import Dataset, IterableDataset
from packaging import version
from torch import nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.utils.data import DataLoader, Sampler
from transformers import (
AutoModelForCausalLM,
AutoModelForSequenceClassification,
AutoTokenizer,
GenerationConfig,
PreTrainedModel,
PreTrainedTokenizerBase,
Trainer,
TrainerCallback,
is_wandb_available,
)
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
from transformers.trainer_utils import seed_worker
from transformers.utils import is_datasets_available, is_peft_available, is_rich_available
from ..data_utils import apply_chat_template, is_conversational, maybe_apply_chat_template
from ..extras.profiling import profiling_context, profiling_decorator
from ..extras.vllm_client import VLLMClient
from ..import_utils import is_liger_kernel_available, is_vllm_available
from ..models import create_reference_model, prepare_deepspeed, prepare_fsdp, unwrap_model_for_generation
from ..models.utils import _ForwardRedirection
from .callbacks import SyncRefModelCallback
from .grpo_config import GRPOConfig
from .utils import (
disable_dropout_in_model,
generate_model_card,
get_comet_experiment_url,
pad,
print_prompt_completions_sample,
selective_log_softmax,
)
if is_peft_available():
from peft import PeftConfig, get_peft_model
if is_liger_kernel_available():
from liger_kernel.chunked_loss import LigerFusedLinearGRPOLoss
if is_vllm_available():
from vllm import LLM, SamplingParams
from vllm.sampling_params import GuidedDecodingParams
if is_wandb_available():
import wandb
# What we call a reward function is a callable that takes a list of prompts and completions and returns a list of
# rewards. When it's a string, it's a model ID, so it's loaded as a pretrained model.
RewardFunc = Union[str, PreTrainedModel, Callable[[list, list], list[float]]]
class RepeatSampler(Sampler):
"""
Sampler that repeats the indices of a dataset in a structured manner.
Args:
data_source (`Sized`):
Dataset to sample from.
mini_repeat_count (`int`):
Number of times to repeat each index per batch.
batch_size (`int`, *optional*, defaults to `1`):
Number of unique indices per batch.
repeat_count (`int`, *optional*, defaults to `1`):
Number of times to repeat the full sampling process.
shuffle (`bool`, *optional*, defaults to `True`):
Whether to shuffle the dataset.
seed (`int` or `None`, *optional*, defaults to `None`):
Random seed for reproducibility (only affects this sampler).
Example:
```python
>>> sampler = RepeatRandomSampler(["a", "b", "c", "d", "e", "f", "g"], mini_repeat_count=2, batch_size=3, repeat_count=4)
>>> list(sampler)
[4, 4, 3, 3, 0, 0,
4, 4, 3, 3, 0, 0,
4, 4, 3, 3, 0, 0,
4, 4, 3, 3, 0, 0,
1, 1, 2, 2, 6, 6,
1, 1, 2, 2, 6, 6,
1, 1, 2, 2, 6, 6,
1, 1, 2, 2, 6, 6]
```
```txt
mini_repeat_count = 3
- - -
[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, |
4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, |
8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, |
repeat_count = 2
0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, |
4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, |
8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, ...] |
--------- --------- --------- ---------
--------- --------- --------- ---------
--------- --------- --------- ---------
batch_size = 12
```
"""
def __init__(
self,
data_source: Sized,
mini_repeat_count: int,
batch_size: int = 1,
repeat_count: int = 1,
shuffle: bool = True,
seed: Optional[int] = None,
):
self.data_source = data_source
self.mini_repeat_count = mini_repeat_count
self.batch_size = batch_size
self.repeat_count = repeat_count
self.num_samples = len(data_source)
self.shuffle = shuffle
self.seed = seed
if shuffle:
self.generator = torch.Generator() # Create a local random generator
if seed is not None:
self.generator.manual_seed(seed)
def __iter__(self):
if self.shuffle:
# E.g., [2, 4, 3, 1, 0, 6, 5] (num_samples = 7)
indexes = torch.randperm(self.num_samples, generator=self.generator).tolist()
else:
indexes = list(range(self.num_samples))
# [2, 4, 3, 1, 0, 6, 5]
# -> [[2, 4, 3], [1, 0, 6], [5]] (batch_size = 3)
indexes = [indexes[i : i + self.batch_size] for i in range(0, len(indexes), self.batch_size)]
# [[2, 4, 3], [1, 0, 6], [5]]
# -> [[2, 4, 3], [1, 0, 6]]
indexes = [chunk for chunk in indexes if len(chunk) == self.batch_size]
for chunk in indexes:
for _ in range(self.repeat_count):
for index in chunk:
for _ in range(self.mini_repeat_count):
yield index
def __len__(self) -> int:
return self.num_samples * self.mini_repeat_count * self.repeat_count
# torch.nanstd doesn't exist, so we define it here
def nanstd(tensor: torch.Tensor) -> torch.Tensor:
"""
Compute the standard deviation of a tensor, ignoring NaNs. This function only supports 1D tensors.
Args:
tensor (`torch.Tensor`):
Input tensor of shape `(N,)`.
Returns:
`torch.Tensor`:
Standard deviation of the tensor, ignoring NaNs.
"""
variance = torch.nanmean((tensor - torch.nanmean(tensor, keepdim=True)) ** 2) # Compute variance ignoring NaNs
count = torch.sum(~torch.isnan(tensor)) # Count of non-NaN values
variance *= count / (count - 1) # Bessel's correction
return torch.sqrt(variance)
def split_tensor_dict(
tensor_dict: dict[str, Optional[torch.Tensor]], num_chunks: int
) -> list[dict[str, Optional[torch.Tensor]]]:
"""
Splits a dictionary of tensors along the first dimension into `num_chunks` equal parts.
Example:
>>> x = torch.arange(12).reshape(6, 2)
>>> y = torch.arange(6).reshape(6, 1)
>>> tensor_dict = {"x": x, "y": y}
>>> split_tensor_dict(tensor_dict, 3)
[
{"x": tensor([[0, 1], [2, 3]]), "y": tensor([[0], [1]])},
{"x": tensor([[4, 5], [6, 7]]), "y": tensor([[2], [3]])},
{"x": tensor([[ 8, 9], [10, 11]]), "y": tensor([[4], [5]])}
]
"""
first_tensor = next(tensor for tensor in tensor_dict.values() if tensor is not None)
chunk_size = first_tensor.shape[0] // num_chunks
return [
{
key: tensor[i * chunk_size : (i + 1) * chunk_size] if tensor is not None else None
for key, tensor in tensor_dict.items()
}
for i in range(num_chunks)
]
def shuffle_tensor_dict(tensor_dict: dict[str, Optional[torch.Tensor]]) -> dict[str, Optional[torch.Tensor]]:
"""
Shuffles a dictionary of tensors along the first dimension in unison.
Example:
>>> x = torch.arange(6).reshape(3, 2)
>>> y = torch.arange(3).reshape(3, 1)
>>> tensor_dict = {"x": x, "y": y}
>>> shuffle_tensor_dict(tensor_dict)
{'x': tensor([[2, 3],
[0, 1],
[4, 5]]),
'y': tensor([[1],
[0],
[2]])}
"""
first_tensor = next(tensor for tensor in tensor_dict.values() if tensor is not None)
batch_size = first_tensor.shape[0]
permutation = torch.randperm(batch_size)
return {key: tensor[permutation] if tensor is not None else None for key, tensor in tensor_dict.items()}
def nanmin(tensor: torch.Tensor) -> torch.Tensor:
"""
Compute the minimum value of a tensor, ignoring NaNs. This function only supports 1D tensors.
Args:
tensor (`torch.Tensor`): Input tensor of shape `(N,)`.
Returns:
`torch.Tensor`: Minimum value of the tensor, ignoring NaNs. Returns NaN if all values are NaN.
"""
if torch.isnan(tensor).all():
return torch.tensor(float("nan"), dtype=tensor.dtype, device=tensor.device)
return torch.min(tensor[~torch.isnan(tensor)])
def nanmax(tensor: torch.Tensor) -> torch.Tensor:
"""
Compute the maximum value of a tensor, ignoring NaNs. This function only supports 1D tensors.
Args:
tensor (`torch.Tensor`): Input tensor of shape `(N,)`.
Returns:
`torch.Tensor`: Maximum value of the tensor, ignoring NaNs. Returns NaN if all values are NaN.
"""
if torch.isnan(tensor).all():
return torch.tensor(float("nan"), dtype=tensor.dtype, device=tensor.device)
return torch.max(tensor[~torch.isnan(tensor)])
def identity(x):
"""Do we really need docs for this?"""
return x
class GRPOTrainer(Trainer):
"""
Trainer for the Group Relative Policy Optimization (GRPO) method. This algorithm was initially proposed in the
paper [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
Example:
```python
from datasets import load_dataset
from trl import GRPOTrainer
dataset = load_dataset("trl-lib/tldr", split="train")
def reward_func(completions, **kwargs):
# Dummy reward function that rewards completions with more unique letters.
return [float(len(set(completion))) for completion in completions]
trainer = GRPOTrainer(
model="Qwen/Qwen2-0.5B-Instruct",
reward_funcs=reward_func,
train_dataset=dataset,
)
trainer.train()
```
Args:
model (`Union[str, PreTrainedModel]`):
Model to be trained. Can be either:
- A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or
a path to a *directory* containing model weights saved using
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is
loaded using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keywork arguments
in `args.model_init_kwargs`.
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported.
reward_funcs (`Union[RewardFunc, list[RewardFunc]]`):
Reward functions to be used for computing the rewards. To compute the rewards, we call all the reward
functions with the prompts and completions and sum the rewards. Can be either:
- A single reward function, such as:
- A string: The *model ID* of a pretrained model hosted inside a model repo on huggingface.co, or a
path to a *directory* containing model weights saved using
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded
using [`~transformers.AutoModelForSequenceClassification.from_pretrained`] with `num_labels=1` and the
keyword arguments in `args.model_init_kwargs`.
- A [`~transformers.PreTrainedModel`] object: Only sequence classification models are supported.
- A custom reward function: The function is provided with the prompts and the generated completions,
plus any additional columns in the dataset. It should return a list of rewards. Custom reward
functions can also return None when the reward is not applicable to those samples. This is useful for
multi-task training where different reward functions apply to different types of samples. When a
reward function returns None for a sample, that reward function is excluded from the reward
calculation for that sample. For more details, see
[Using a custom reward function](#using-a-custom-reward-function).
- A list of reward functions, where each item can independently be any of the above types. Mixing different
types within the list (e.g., a string model ID and a custom reward function) is allowed.
args ([`GRPOConfig`], *optional*, defaults to `None`):
Configuration for this trainer. If `None`, a default configuration is used.
train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]):
Dataset to use for training. It must include a column `"prompt"`. Any additional columns in the dataset is
ignored. The format of the samples can be either:
- [Standard](dataset_formats#standard): Each sample contains plain text.
- [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role
and content).
eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`):
Dataset to use for evaluation. It must meet the same requirements as `train_dataset`.
processing_class ([`~transformers.PreTrainedTokenizerBase`], *optional*, defaults to `None`):
Processing class used to process the data. The padding side must be set to "left". If `None`, the
processing class is loaded from the model's name with [`~transformers.AutoTokenizer.from_pretrained`]. A
padding token, `processing_class.pad_token`, must be set. If the processing class has not set a padding
token, `processing_class.eos_token` will be used as the default.
reward_processing_classes (`Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]`, *optional*, defaults to `None`):
Processing classes corresponding to the reward functions specified in `reward_funcs`. Can be either:
- A single processing class: Used when `reward_funcs` contains only one reward function.
- A list of processing classes: Must match the order and length of the reward functions in `reward_funcs`.
If set to `None`, or if an element of the list corresponding to a [`~transformers.PreTrainedModel`] is
`None`, the tokenizer for the model is automatically loaded using [`~transformers.AutoTokenizer.from_pretrained`].
For elements in `reward_funcs` that are custom reward functions (not [`~transformers.PreTrainedModel`]),
the corresponding entries in `reward_processing_classes` are ignored.
callbacks (list of [`~transformers.TrainerCallback`], *optional*, defaults to `None`):
List of callbacks to customize the training loop. Will add those to the list of default callbacks
detailed in [here](https://huggingface.co/docs/transformers/main_classes/callback).
If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`]
method.
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`):
A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your
model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`.
peft_config ([`~peft.PeftConfig`], *optional*, defaults to `None`):
PEFT configuration used to wrap the model. If `None`, the model is not wrapped.
"""
_tag_names = ["trl", "grpo"]
def __init__(
self,
model: Union[str, PreTrainedModel],
reward_funcs: Union[RewardFunc, list[RewardFunc]],
args: Optional[GRPOConfig] = None,
train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
eval_dataset: Optional[Union[Dataset, IterableDataset, dict[str, Union[Dataset, IterableDataset]]]] = None,
processing_class: Optional[PreTrainedTokenizerBase] = None,
reward_processing_classes: Optional[Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]] = None,
callbacks: Optional[list[TrainerCallback]] = None,
optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None),
peft_config: Optional["PeftConfig"] = None,
):
# Args
if args is None:
model_name = model if isinstance(model, str) else model.config._name_or_path
model_name = model_name.split("/")[-1]
args = GRPOConfig(f"{model_name}-GRPO")
# Models
# Trained model
model_init_kwargs = args.model_init_kwargs or {}
if isinstance(model, str):
model_id = model
torch_dtype = model_init_kwargs.get("torch_dtype")
if isinstance(torch_dtype, torch.dtype) or torch_dtype == "auto" or torch_dtype is None:
pass # torch_dtype is already a torch.dtype or "auto" or None
elif isinstance(torch_dtype, str): # it's a str, but not "auto"
torch_dtype = getattr(torch, torch_dtype)
model_init_kwargs["torch_dtype"] = torch_dtype
else:
raise ValueError(
"Invalid `torch_dtype` passed to `GRPOConfig`. Expected either 'auto' or a string representing "
f"a `torch.dtype` (e.g., 'float32'), but got {torch_dtype}."
)
# Disable caching if gradient checkpointing is enabled (not supported)
model_init_kwargs["use_cache"] = (
False if args.gradient_checkpointing else model_init_kwargs.get("use_cache")
)
model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs)
else:
model_id = model.config._name_or_path
if args.model_init_kwargs is not None:
raise ValueError(
"You passed `model_init_kwargs` to the `GRPOConfig`, but your model is already instantiated. "
"This argument can only be used when the `model` argument is a string."
)
if peft_config is not None:
if not is_peft_available():
raise ImportError("PEFT is required to use `peft_config`. Run `pip install peft`.")
model = get_peft_model(model, peft_config)
# Enable gradient checkpointing if requested
if args.gradient_checkpointing:
model = self._enable_gradient_checkpointing(model, args)
# Processing class
if processing_class is None:
processing_class = AutoTokenizer.from_pretrained(model.config._name_or_path, padding_side="left")
if processing_class.pad_token is None:
processing_class.pad_token = processing_class.eos_token
# Reward functions
if not isinstance(reward_funcs, list):
reward_funcs = [reward_funcs]
self.reward_func_names = []
for i, reward_func in enumerate(reward_funcs):
if isinstance(reward_func, str):
reward_funcs[i] = AutoModelForSequenceClassification.from_pretrained(
reward_func, num_labels=1, **model_init_kwargs
)
if isinstance(reward_funcs[i], nn.Module): # Use Module over PretrainedModel for compat w/ compiled models
self.reward_func_names.append(reward_funcs[i].config._name_or_path.split("/")[-1])
else:
self.reward_func_names.append(reward_funcs[i].__name__)
self.reward_funcs = reward_funcs
# Reward weights
if args.reward_weights is not None:
if len(args.reward_weights) != len(reward_funcs):
raise ValueError(
f"Number of reward weights ({len(args.reward_weights)}) must match number of reward "
f"functions ({len(reward_funcs)})"
)
self.reward_weights = torch.tensor(args.reward_weights, dtype=torch.float32)
else:
self.reward_weights = torch.ones(len(reward_funcs), dtype=torch.float32)
# Reward processing class
if reward_processing_classes is None:
reward_processing_classes = [None] * len(reward_funcs)
elif not isinstance(reward_processing_classes, list):
reward_processing_classes = [reward_processing_classes]
else:
if len(reward_processing_classes) != len(reward_funcs):
raise ValueError("The number of reward processing classes must match the number of reward functions.")
for i, (reward_processing_class, reward_func) in enumerate(zip(reward_processing_classes, reward_funcs)):
if isinstance(reward_func, PreTrainedModel):
if reward_processing_class is None:
reward_processing_class = AutoTokenizer.from_pretrained(reward_func.config._name_or_path)
if reward_processing_class.pad_token_id is None:
reward_processing_class.pad_token = reward_processing_class.eos_token
# The reward model computes the reward for the latest non-padded token in the input sequence.
# So it's important to set the pad token ID to the padding token ID of the processing class.
reward_func.config.pad_token_id = reward_processing_class.pad_token_id
reward_processing_classes[i] = reward_processing_class
self.reward_processing_classes = reward_processing_classes
# Training arguments
self.max_prompt_length = args.max_prompt_length
self.max_completion_length = args.max_completion_length # = |o_i| in the GRPO paper
self.num_generations = args.num_generations # = G in the GRPO paper
self.temperature = args.temperature
self.top_p = args.top_p
self.top_k = args.top_k
self.min_p = args.min_p
self.repetition_penalty = args.repetition_penalty
self.use_vllm = args.use_vllm
self.vllm_mode = args.vllm_mode
self.vllm_gpu_memory_utilization = args.vllm_gpu_memory_utilization # only applies to colocation mode
self.vllm_tensor_parallel_size = args.vllm_tensor_parallel_size # only applies to colocation mode
self.use_liger_loss = args.use_liger_loss
self.loss_type = args.loss_type
self.scale_rewards = args.scale_rewards
self.mask_truncated_completions = args.mask_truncated_completions
# Datasets
self.shuffle_dataset = args.shuffle_dataset
if (
isinstance(train_dataset, IterableDataset)
or isinstance(eval_dataset, IterableDataset)
or (
isinstance(eval_dataset, dict) and any(isinstance(ds, IterableDataset) for ds in eval_dataset.values())
)
):
# See https://github.com/huggingface/trl/issues/3213
raise NotImplementedError(
"Iterable datasets are not yet supported in GRPOTrainer. Please use a standard dataset instead."
)
# Multi-step
self.num_iterations = args.num_iterations # = 𝜇 in the GRPO paper
self.epsilon_low = args.epsilon
self.epsilon_high = args.epsilon_high if args.epsilon_high is not None else args.epsilon
# Tracks the number of iterations (forward + backward passes), including those within a grad accum cycle
self._step = 0
# Buffer the batch to reuse generated outputs across multiple updates. For more details, see
# `_get_train_sampler` and `_prepare_inputs`.
self._buffered_inputs = None
# The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the
# input tensor associated with the key "input_ids". However, in GRPO, the sampled data does not include the
# "input_ids" key. Instead, the available keys is "prompt". As a result, the trainer issues the warning:
# "Could not estimate the number of tokens of the input, floating-point operations will not be computed." To
# suppress this warning, we set the "estimate_tokens" key in the model's "warnings_issued" dictionary to True.
# This acts as a flag to indicate that the warning has already been issued.
model.warnings_issued["estimate_tokens"] = True
super().__init__(
model=model,
args=args,
data_collator=identity, # No data collation is needed in GRPO
train_dataset=train_dataset,
eval_dataset=eval_dataset,
processing_class=processing_class,
callbacks=callbacks,
optimizers=optimizers,
)
# Reference model
self.beta = args.beta
if self.beta == 0.0:
# If beta is 0.0, the reference model is not needed
self.ref_model = None
elif is_deepspeed_zero3_enabled() or self.is_fsdp_enabled:
self.ref_model = AutoModelForCausalLM.from_pretrained(model_id, **model_init_kwargs)
elif is_peft_model(model):
# If PEFT is used, the reference model is not needed since the adapter can be disabled
# to revert to the initial model.
self.ref_model = None
else:
# If PEFT configuration is not provided, create a reference model based on the initial model.
self.ref_model = create_reference_model(model)
# Disable dropout in the models
if args.disable_dropout:
disable_dropout_in_model(model)
if self.ref_model is not None:
disable_dropout_in_model(self.ref_model)
# Liger loss
if self.use_liger_loss:
if not is_liger_kernel_available():
raise ImportError(
"Liger is required to use `liger_loss` as the GRPO loss. Run `pip install liger-kernel`."
)
# redirect the model.module forward to the model forward to ensure pre-forward hooks are called
self._forward_redirection = _ForwardRedirection()
self.liger_grpo_loss = LigerFusedLinearGRPOLoss(
beta=self.beta,
epsilon_low=self.epsilon_low,
epsilon_high=self.epsilon_high,
temperature=self.temperature,
use_ref_model=self.beta != 0.0,
loss_type=self.loss_type,
max_completion_length=self.max_completion_length,
)
# Initialize the metrics
self._metrics = {"train": defaultdict(list), "eval": defaultdict(list)}
self._total_train_tokens = 0
self.log_completions = args.log_completions
self.wandb_log_unique_prompts = args.wandb_log_unique_prompts
self.num_completions_to_print = args.num_completions_to_print
# maxlen is set to the total number of forward passes per step. This value of `maxlen` ensures we log only the
# final optimization step.
maxlen = self.accelerator.num_processes * args.per_device_train_batch_size * args.steps_per_generation
self._textual_logs = {
"prompt": deque(maxlen=maxlen),
"completion": deque(maxlen=maxlen),
"rewards": defaultdict(lambda: deque(maxlen=maxlen)),
"advantages": deque(maxlen=maxlen),
}
# Ensure each process receives a unique seed to prevent duplicate completions when generating with
# transformers if num_generations exceeds per_device_train_batch_size. We could skip it if we use vLLM, but
# it's safer to set it in all cases.
set_seed(args.seed, device_specific=True)
if self.use_vllm:
if not is_vllm_available():
raise ImportError(
"vLLM is not available and `use_vllm` is set to True. Please install vLLM with "
"`pip install vllm` to use it."
)
if self.vllm_mode == "server" and self.accelerator.is_main_process:
if args.vllm_server_base_url is not None:
base_url = args.vllm_server_base_url
else:
base_url = f"http://{args.vllm_server_host}:{args.vllm_server_port}"
self.vllm_client = VLLMClient(base_url=base_url, connection_timeout=args.vllm_server_timeout)
self.vllm_client.init_communicator()
elif self.vllm_mode == "colocate":
# Make sure vllm_tensor_parallel_size group size evenly divides the world size - each group should have
# the same number of ranks
if not self.accelerator.num_processes % self.vllm_tensor_parallel_size == 0:
raise ValueError(
f"vllm_tensor_parallel_size ({self.vllm_tensor_parallel_size}) must divide world size "
f"({self.accelerator.num_processes}) evenly."
)
if self.vllm_tensor_parallel_size > 1:
# Create subgroups of ranks for TP, each group with `vllm_tensor_parallel_size` ranks.
# For example, if world_size=8 and vllm_tensor_parallel_size=2 → groups: [0,1], [2,3], [4,5], [6,7]
self.tp_group, _ = torch.distributed.new_subgroups_by_enumeration(
[
list(range(i * self.vllm_tensor_parallel_size, (i + 1) * self.vllm_tensor_parallel_size))
for i in range(self.accelerator.num_processes // self.vllm_tensor_parallel_size)
]
)
self.llm = LLM(
model=model.name_or_path,
tensor_parallel_size=args.vllm_tensor_parallel_size,
gpu_memory_utilization=self.vllm_gpu_memory_utilization,
max_num_seqs=self.args.per_device_train_batch_size
* self.vllm_tensor_parallel_size
* self.args.gradient_accumulation_steps,
max_model_len=self.max_prompt_length + self.max_completion_length,
distributed_executor_backend="external_launcher",
# Feed identical seed for tp groups to ensure sampling results are the same across workers
seed=self.accelerator.process_index // self.vllm_tensor_parallel_size,
# Latest vLLM v1 memory profiler is misled by the high default value (i.e., 32768) - thinking there's not enough memory
max_num_batched_tokens=4096,
)
# vLLM specific sampling arguments
self.guided_decoding_regex = args.vllm_guided_decoding_regex
self._last_loaded_step = -1 # tag to avoid useless loading during grad accumulation
# When using vLLM, the main process is responsible for loading the model weights. This can cause process
# desynchronization and seems to lead to DeepSpeed hanging during initialization. To prevent this, we
# synchronize all processes after vLLM has been fully initialized.
self.accelerator.wait_for_everyone()
else:
self.generation_config = GenerationConfig(
max_new_tokens=self.max_completion_length,
do_sample=True,
pad_token_id=processing_class.pad_token_id,
bos_token_id=processing_class.bos_token_id,
eos_token_id=processing_class.eos_token_id,
temperature=self.temperature,
top_p=self.top_p,
top_k=self.top_k,
min_p=self.min_p,
repetition_penalty=self.repetition_penalty,
cache_implementation=args.cache_implementation,
)
# Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the
# model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set
# self.model_accepts_loss_kwargs to False to enable scaling.
self.model_accepts_loss_kwargs = False
# Add tags to the model
self.model.add_model_tags(self._tag_names)
if self.ref_model is not None:
if self.is_deepspeed_enabled:
self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator)
elif self.is_fsdp_enabled:
self.ref_model = prepare_fsdp(self.ref_model, self.accelerator)
else:
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
if args.sync_ref_model:
self.add_callback(SyncRefModelCallback(ref_model=self.ref_model, accelerator=self.accelerator))
for i, reward_func in enumerate(self.reward_funcs):
if isinstance(reward_func, PreTrainedModel):
if self.is_deepspeed_enabled:
self.reward_funcs[i] = prepare_deepspeed(reward_func, self.accelerator)
else:
# set device placement to True to make `prepare_model` move `reward_func` to device when using fsdp
self.reward_funcs[i] = self.accelerator.prepare_model(
reward_func, evaluation_mode=True, device_placement=True
)
def _set_signature_columns_if_needed(self):
# If `self.args.remove_unused_columns` is True, non-signature columns are removed.
# By default, this method sets `self._signature_columns` to the model's expected inputs.
# In GRPOTrainer, we preprocess data, so using the model's signature columns doesn't work.
# Instead, we set them to the columns expected by the `training_step` method, hence the override.
if self._signature_columns is None:
self._signature_columns = ["prompt"]
# This method overrides `Trainer.get_train_dataloader` to support our custom batching strategy.
# Instead of returning a standard per-step batch (i.e., `per_device_batch_size), our dataloader loads an
# *generation* batch (i.e., `per_device_batch_size × steps_per_generation`). This allows us to generate completions
# once every steps_per_generation step—rather than once per accumulation step—which is significantly more
# efficient. The only change from the original implementation is multiplying the batch size by
# `steps_per_generation`. Thus, `_prepare_inputs` is called with this *generation* batch, and it handles the
# splitting internally.
# Maintenance note: This method is a copy-paste of the original `Trainer.get_train_dataloader` with only one line
# modification. As a result, some parts of the method aren't relevant to GRPO, but we keep them to stay one line
# apart from the super method, ensuring easier maintenance in the future.
def get_train_dataloader(self):
if self.train_dataset is None:
raise ValueError("Trainer: training requires a train_dataset.")
train_dataset = self.train_dataset
data_collator = self.data_collator
if is_datasets_available() and isinstance(train_dataset, datasets.Dataset):
train_dataset = self._remove_unused_columns(train_dataset, description="training")
else:
data_collator = self._get_collator_with_removed_columns(data_collator, description="training")
dataloader_params = {
"batch_size": self._train_batch_size * self.args.steps_per_generation, # < this is the change
"collate_fn": data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
"persistent_workers": self.args.dataloader_persistent_workers,
}
if not isinstance(train_dataset, torch.utils.data.IterableDataset):
dataloader_params["sampler"] = self._get_train_sampler()
dataloader_params["drop_last"] = self.args.dataloader_drop_last
if version.parse(transformers.__version__) >= version.parse("4.52.0"):
# from transformers 4.52.0, the `seed_worker` requires the `num_workers` and `rank` arguments
dataloader_params["worker_init_fn"] = partial(
seed_worker, num_workers=self.args.dataloader_num_workers, rank=self.args.process_index
)
else:
dataloader_params["worker_init_fn"] = seed_worker
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor
return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params))
def _get_train_sampler(self, dataset: Optional[Dataset] = None) -> Sampler:
# Returns a sampler that
# 1. ensures each prompt is repeated across multiple processes. This guarantees that identical prompts are
# distributed to different GPUs, allowing rewards to be computed and normalized correctly within each prompt
# group. Using the same seed across processes ensures consistent prompt assignment, preventing discrepancies
# in group formation.
# 2. repeats the batch multiple times to allow reusing generations across multiple updates. Refer to
# _prepare_inputs to see how the generations are stored and reused.
# In the following figure, the values are the prompt indices. The first row shows the first sampled batch, the
# second row shows the second sampled batch, and so on.
#
# | GPU 0 | GPU 1 |
#
# global_step step <-───> num_generations=2
# <-───────> per_device_train_batch_size=3
# grad_accum ▲ ▲ 0 0 0 0 1 1 2 2 <- Generate for the first `steps_per_generation` (prompts 0 to 11); store the completions; use the first slice to compute the loss
# =2 ▼ | 0 1 3 3 4 4 5 5 <- Take the stored generations and use the second slice to compute the loss
# |
# | 1 2 6 6 7 7 8 8 <- Take the stored generations and use the third slice to compute the loss
# steps_per_gen=4 ▼ 1 3 9 9 10 10 11 11 <- Take the stored generations and use the fourth slice to compute the loss
#
# 2 4 12 12 13 13 14 14 <- Generate for the second `steps_per_generation` (prompts 12 to 23); store the completions; use the first slice to compute the loss
# 2 5 15 15 16 16 17 17 <- Take the stored generations and use the second slice to compute the loss
# ...
if dataset is None:
dataset = self.train_dataset
return RepeatSampler(
data_source=dataset,
mini_repeat_count=self.num_generations,
batch_size=self.args.generation_batch_size // self.num_generations,
repeat_count=self.num_iterations * self.args.steps_per_generation,
shuffle=self.shuffle_dataset,
seed=self.args.seed,
)
def _get_eval_sampler(self, eval_dataset) -> Sampler:
# See _get_train_sampler for an explanation of the sampler.
return RepeatSampler(
data_source=eval_dataset,
mini_repeat_count=self.num_generations,
seed=self.args.seed,
)
def _enable_gradient_checkpointing(self, model: PreTrainedModel, args: GRPOConfig) -> PreTrainedModel:
"""Enables gradient checkpointing for the model."""
# Ensure use_cache is disabled
model.config.use_cache = False
# Enable gradient checkpointing on the base model for PEFT
if is_peft_model(model):
model.base_model.gradient_checkpointing_enable()
# Enable gradient checkpointing for non-PEFT models
else:
model.gradient_checkpointing_enable()
gradient_checkpointing_kwargs = args.gradient_checkpointing_kwargs or {}
use_reentrant = (
"use_reentrant" not in gradient_checkpointing_kwargs or gradient_checkpointing_kwargs["use_reentrant"]
)
if use_reentrant:
model.enable_input_require_grads()
return model
@profiling_decorator
def _get_last_hidden_state(self, unwrapped_model, input_ids, attention_mask, logits_to_keep=None):
if is_peft_model(unwrapped_model):
unwrapped_model = unwrapped_model.base_model.model
last_hidden_state = unwrapped_model.model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state
last_hidden_state = last_hidden_state[:, :-1, :] # (B, L-1, H)
if logits_to_keep is not None:
last_hidden_state = last_hidden_state[:, -logits_to_keep:, :] # (B, logits_to_keep, H)
return last_hidden_state
# Get the per-token log probabilities for the completions for the model and the reference model
@profiling_decorator
def _get_per_token_logps(self, model, input_ids, attention_mask, logits_to_keep, batch_size=None) -> torch.Tensor:
batch_size = batch_size or input_ids.size(0) # Chunk inputs into smaller batches to reduce memory peak
all_logps = []
for i in range(0, input_ids.size(0), batch_size):
input_ids_batch = input_ids[i : i + batch_size]
attention_mask_batch = attention_mask[i : i + batch_size]
# We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
logits = model(
input_ids=input_ids_batch, attention_mask=attention_mask_batch, logits_to_keep=logits_to_keep + 1
).logits
logits = logits[:, :-1, :] # (B, L-1, V), exclude the last logit: it corresponds to the next token pred
input_ids_batch = input_ids_batch[:, -logits_to_keep:]
# Divide logits by sampling temperature.
# See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
logits = logits / self.temperature
logps = selective_log_softmax(logits, input_ids_batch) # compute logprobs for the input tokens
all_logps.append(logps)
return torch.cat(all_logps, dim=0)
def _sync_fsdp_params_to_vllm(self, module: nn.Module, prefix: str = "", visited=None):
"""Memory-efficient post-order traversal of FSDP modules to extract full parameters and sync with vLLM."""
if visited is None:
visited = set()
for child_name, child_module in module.named_children():
child_prefix = f"{prefix}.{child_name}" if prefix else child_name
self._sync_fsdp_params_to_vllm(
child_module, prefix=child_prefix, visited=visited
) # recurse into the child
if isinstance(module, FSDP):
with FSDP.summon_full_params(module, recurse=False, writeback=False):
for param_name, param in module.named_parameters():
full_name = f"{prefix}.{param_name}" if prefix else param_name
for extra in ("_fsdp_wrapped_module.", "_checkpoint_wrapped_module."):
full_name = full_name.replace(extra, "")
if full_name in visited:
continue # skip FSDP subtrees already traversed
visited.add(full_name)
if self.vllm_mode == "server" and self.accelerator.is_main_process:
self.vllm_client.update_named_param(full_name, param.data)
elif self.vllm_mode == "colocate":
llm_model = self.llm.llm_engine.model_executor.driver_worker.model_runner.model
llm_model.load_weights([(full_name, param.data)])
@profiling_decorator
def _move_model_to_vllm(self):
# For DeepSpeed ZeRO-3 and FSDP, we need to gather all parameters before operations
deepspeed_plugin = self.accelerator.state.deepspeed_plugin
zero_stage_3 = deepspeed_plugin is not None and deepspeed_plugin.zero_stage == 3
if zero_stage_3:
import deepspeed
gather_if_zero3 = deepspeed.zero.GatheredParameters
else:
gather_if_zero3 = nullcontext
if is_peft_model(self.model):
# With PEFT and FSDP/DeepSpeed ZeRO Stage 3, we must gather the full model at once before merging, as
# merging adapters in a sharded manner is not supported.
# TODO: does this work with FSDP?
with gather_if_zero3(list(self.model.parameters())):
self.model.merge_adapter()
# Update vLLM weights while parameters are gathered
if self.is_fsdp_enabled: # note if using FSDP, gather_if_zero3 is nullcontext
# Update vLLM weights while parameters are gathered
# For PEFT with FSDP we need to use the memory efficient post-order traversal
self._sync_fsdp_params_to_vllm(self.model)
else:
# DeepSpeed ZeRO-3 with PEFT
for name, param in self.model.named_parameters():
# When using PEFT, we need to recover the original parameter name and discard some parameters
name = name.removeprefix("base_model.model.").replace(".base_layer", "")
if self.model.prefix in name:
continue
# When module to save, remove its prefix and discard the original module
if "original_module" in name:
continue
name = name.replace("modules_to_save.default.", "")
if self.vllm_mode == "server" and self.accelerator.is_main_process:
self.vllm_client.update_named_param(name, param.data)
elif self.vllm_mode == "colocate":
llm_model = self.llm.llm_engine.model_executor.driver_worker.model_runner.model
llm_model.load_weights([(name, param.data)])
# Unmerge adapters while parameters are still gathered
self.model.unmerge_adapter()
# Parameters will automatically be repartitioned when exiting the context
else:
# For non-PEFT models, simply gather (if needed) and update each parameter individually.
if self.is_fsdp_enabled:
self._sync_fsdp_params_to_vllm(self.model) # use memory-efficient post-order traversal for FSDP
else:
for name, param in self.model.named_parameters():
with gather_if_zero3([param]):
if self.vllm_mode == "server" and self.accelerator.is_main_process:
self.vllm_client.update_named_param(name, param.data)
elif self.vllm_mode == "colocate":
llm_model = self.llm.llm_engine.model_executor.driver_worker.model_runner.model
llm_model.load_weights([(name, param.data)])
# Reset cache on vLLM
if self.vllm_mode == "server" and self.accelerator.is_main_process:
self.vllm_client.reset_prefix_cache()
elif self.vllm_mode == "colocate":
self.llm.reset_prefix_cache()
@profiling_decorator
def _prepare_inputs(
self, generation_batch: dict[str, Union[torch.Tensor, Any]]
) -> dict[str, Union[torch.Tensor, Any]]:
# Prepares inputs for model training/evaluation by managing completion generation and batch handling.
# During training:
# - Receives the local generation batch (Per-GPU batch size × steps per generation)
# from the modified training dataloader instead of the standard local batch
# - Generates completions once for the entire generation batch and splits it into batches of size
# `per_device_train_batch_size`
# - Buffers these completions and returns the appropriate slice for the current accumulation step
# - Optimizes by regenerating completions only periodically (every steps_per_generation * num_iterations)
# During evaluation:
# - The input is treated as a standard local batch (no accumulation, no multiple iterations)
# - Completions are generated for each batch without buffering or reuse
# Returns a single local batch in both cases.
mode = "train" if self.model.training else "eval"
if mode == "train":
generate_every = self.args.steps_per_generation * self.num_iterations
if self._step % generate_every == 0 or self._buffered_inputs is None:
# self._buffered_inputs=None can occur when resuming from a checkpoint
generation_batch = self._generate_and_score_completions(generation_batch)
generation_batch = shuffle_tensor_dict(generation_batch)
self._buffered_inputs = split_tensor_dict(generation_batch, self.args.steps_per_generation)
inputs = self._buffered_inputs[self._step % self.args.steps_per_generation]
self._step += 1
else:
# In evaluation, there is neither batch grouping for generation, nor multiple iterations, hence
# local generation batch == local eval batch
inputs = self._generate_and_score_completions(generation_batch)
return inputs
def _generate_and_score_completions(
self, inputs: list[dict[str, Union[torch.Tensor, Any]]]
) -> dict[str, Union[torch.Tensor, Any]]:
device = self.accelerator.device
mode = "train" if self.model.training else "eval"
prompts = [x["prompt"] for x in inputs]
prompts_text = [maybe_apply_chat_template(example, self.processing_class)["prompt"] for example in inputs]
prompt_inputs = self.processing_class(
text=prompts_text, return_tensors="pt", padding=True, padding_side="left", add_special_tokens=False
)
prompt_inputs = super()._prepare_inputs(prompt_inputs)
prompt_ids, prompt_mask = prompt_inputs["input_ids"], prompt_inputs["attention_mask"]
if self.max_prompt_length is not None:
prompt_ids = prompt_ids[:, -self.max_prompt_length :]
prompt_mask = prompt_mask[:, -self.max_prompt_length :]
# Generate completions using either vLLM or regular generation
if self.use_vllm:
# First, update the vLLM weights if needed
if self.state.global_step != self._last_loaded_step:
self._move_model_to_vllm()
self._last_loaded_step = self.state.global_step
# Generate completions using vLLM: gather all prompts and use them in a single call in the main process
if self.vllm_mode == "server":
all_prompts_text = gather_object(prompts_text)
if self.accelerator.is_main_process:
# Since 'prompts' contains 'num_generations' duplicates, we first take unique prompts, and generate
# num_generations outputs for each one. This is faster than generating outputs for each duplicate
# prompt individually.
ordered_set_of_prompts = all_prompts_text[:: self.num_generations]
with profiling_context(self, "vLLM.generate"):
completion_ids = self.vllm_client.generate(
prompts=ordered_set_of_prompts,
n=self.num_generations,
repetition_penalty=self.repetition_penalty,
temperature=self.temperature,
top_p=self.top_p,
top_k=-1 if self.top_k is None else self.top_k,
min_p=0.0 if self.min_p is None else self.min_p,
max_tokens=self.max_completion_length,
guided_decoding_regex=self.guided_decoding_regex,
)
else:
completion_ids = [None] * len(all_prompts_text)
# Broadcast the completions from the main process to all processes, ensuring each process receives its
# corresponding slice.
completion_ids = broadcast_object_list(completion_ids, from_process=0)
process_slice = slice(
self.accelerator.process_index * len(prompts),
(self.accelerator.process_index + 1) * len(prompts),
)
completion_ids = completion_ids[process_slice]
# Generate completions using colocated vLLM instances: each device holds vLLM copy and work on their own batch of prompts
elif self.vllm_mode == "colocate":
if self.guided_decoding_regex:
guided_decoding = GuidedDecodingParams(backend="outlines", regex=self.guided_decoding_regex)
else:
guided_decoding = None
sampling_params = SamplingParams(
n=1, # vLLM on each GPU generates only 1 in colocate mode
repetition_penalty=self.repetition_penalty,
temperature=self.temperature,
top_p=self.top_p,
top_k=-1 if self.top_k is None else self.top_k,
min_p=0.0 if self.min_p is None else self.min_p,
max_tokens=self.max_completion_length,
guided_decoding=guided_decoding,
)
if self.vllm_tensor_parallel_size > 1:
# Gather prompts from all ranks in the TP group and flatten.
# Each rank starts with its own prompts; after gathering, all ranks see the full group set.
orig_size = len(prompts_text)
gathered_prompts = [None for _ in range(self.vllm_tensor_parallel_size)]
torch.distributed.all_gather_object(gathered_prompts, prompts_text, group=self.tp_group)
all_prompts_text = [p for sublist in gathered_prompts for p in sublist]
else:
all_prompts_text = prompts_text
with profiling_context(self, "vLLM.generate"):
all_outputs = self.llm.generate(all_prompts_text, sampling_params=sampling_params, use_tqdm=False)
completion_ids = [output.token_ids for outputs in all_outputs for output in outputs.outputs]
if self.vllm_tensor_parallel_size > 1:
# Slice completions for this rank within its TP group.
# Each rank generates all outputs — we keep only our share.
local_rank_in_group = torch.distributed.get_rank(group=self.tp_group)
tp_slice = slice(local_rank_in_group * orig_size, (local_rank_in_group + 1) * orig_size)
completion_ids = completion_ids[tp_slice]
# Pad the completions, and concatenate them with the prompts
completion_ids = [torch.tensor(ids, device=device) for ids in completion_ids]
completion_ids = pad(completion_ids, padding_value=self.processing_class.pad_token_id)
prompt_completion_ids = torch.cat([prompt_ids, completion_ids], dim=1)
else:
# Regular generation path
with unwrap_model_for_generation(
self.model_wrapped, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
) as unwrapped_model:
with (
FSDP.summon_full_params(self.model_wrapped, recurse=False)
if self.is_fsdp_enabled
else nullcontext()
):
prompt_completion_ids = unwrapped_model.generate(
prompt_ids, attention_mask=prompt_mask, generation_config=self.generation_config
)
# Compute prompt length and extract completion ids
prompt_length = prompt_ids.size(1)
prompt_ids = prompt_completion_ids[:, :prompt_length]
completion_ids = prompt_completion_ids[:, prompt_length:]
# Mask everything after the first EOS token
is_eos = completion_ids == self.processing_class.eos_token_id
eos_idx = torch.full((is_eos.size(0),), is_eos.size(1), dtype=torch.long, device=device)
eos_idx[is_eos.any(dim=1)] = is_eos.int().argmax(dim=1)[is_eos.any(dim=1)]
sequence_indices = torch.arange(is_eos.size(1), device=device).expand(is_eos.size(0), -1)
completion_mask = (sequence_indices <= eos_idx.unsqueeze(1)).int()
# Convert tensor to a list of lists of token IDs. This will be passed to the reward function, avoiding the need
# to re-tokenize completions if the reward is computed from tokens.
completion_ids_list = [
[id.item() for id, m in zip(row, mask_row) if m] for row, mask_row in zip(completion_ids, completion_mask)
]
# Sum along sequence dimension (dim=1) to get completion length per sequence, used for logging
completion_lengths = completion_mask.sum(1)
# If mask_truncated_completions is enabled, zero out truncated completions in completion_mask
if self.mask_truncated_completions:
truncated_completions = ~is_eos.any(dim=1)
completion_mask = completion_mask * (~truncated_completions).unsqueeze(1).int()
# Concatenate prompt_mask with completion_mask for logit computation
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) # (B, P+C)
logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens
batch_size = self.args.per_device_train_batch_size if mode == "train" else self.args.per_device_eval_batch_size
with torch.no_grad():
# When using num_iterations == 1 and steps_per_generation <= gradient_accumulation_steps
# old_per_token_logps == per_token_logps, so we can skip it's computation here, and use
# per_token_logps.detach() instead.
if self.num_iterations > 1 or self.args.steps_per_generation > self.args.gradient_accumulation_steps:
old_per_token_logps = self._get_per_token_logps(
self.model, prompt_completion_ids, attention_mask, logits_to_keep, batch_size
)
else:
old_per_token_logps = None
# Decode the generated completions
completions_text = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True)
if is_conversational(inputs[0]):
completions = []
for prompt, completion in zip(prompts, completions_text):
bootstrap = prompt.pop()["content"] if prompt[-1]["role"] == "assistant" else ""
completions.append([{"role": "assistant", "content": bootstrap + completion}])
else:
completions = completions_text
rewards_per_func = torch.zeros(len(prompts), len(self.reward_funcs), device=device)
# Repeat all input columns (but "prompt", "completion", and "completion_ids") to match the num of generations
keys = [key for key in inputs[0] if key not in ["prompt", "completion", "completion_ids"]]
reward_kwargs = {key: [example[key] for example in inputs] for key in keys}
for i, (reward_func, reward_processing_class, reward_func_name) in enumerate(
zip(self.reward_funcs, self.reward_processing_classes, self.reward_func_names)
):
with profiling_context(self, reward_func_name):
if isinstance(reward_func, nn.Module): # Module (no PretrainedModel) for compat with compiled models
if is_conversational(inputs[0]):
messages = [{"messages": p + c} for p, c in zip(prompts, completions)]
texts = [apply_chat_template(x, reward_processing_class)["text"] for x in messages]
else:
texts = [p + c for p, c in zip(prompts, completions)]
reward_inputs = reward_processing_class(
text=texts, return_tensors="pt", padding=True, padding_side="right", add_special_tokens=False
)
reward_inputs = super()._prepare_inputs(reward_inputs)
with torch.inference_mode():
rewards_per_func[:, i] = reward_func(**reward_inputs).logits[:, 0] # Shape (B*G,)
else:
output_reward_func = reward_func(
prompts=prompts, completions=completions, completion_ids=completion_ids_list, **reward_kwargs
)
# Convert None values to NaN
output_reward_func = [reward if reward is not None else torch.nan for reward in output_reward_func]
rewards_per_func[:, i] = torch.tensor(output_reward_func, dtype=torch.float32, device=device)
# If all reward functions return None for a given row, issue a detailed warning
if torch.isnan(rewards_per_func).all(dim=1).any():
nan_row_idx = torch.isnan(rewards_per_func).all(dim=1).nonzero(as_tuple=True)[0][0]
row_reward_kwargs = {key: value[nan_row_idx] for key, value in reward_kwargs.items()}
row_reward_kwargs["prompt"] = prompts[nan_row_idx]
row_reward_kwargs["completion"] = completions[nan_row_idx]
warnings.warn(
f"All reward functions returned None for the following kwargs: {row_reward_kwargs}. "
"Please ensure that at least one reward function returns a valid reward."
)
# Gather the reward per function: this part is crucial, because the rewards are normalized per group and the
# completions may be distributed across processes
rewards_per_func = gather(rewards_per_func)
# Apply weights to each reward function's output and sum
rewards = (rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).nansum(dim=1)
# Compute grouped-wise rewards
mean_grouped_rewards = rewards.view(-1, self.num_generations).mean(dim=1)
std_grouped_rewards = rewards.view(-1, self.num_generations).std(dim=1)
is_std_zero = torch.isclose(std_grouped_rewards, torch.zeros_like(std_grouped_rewards))
# Normalize the rewards to compute the advantages
mean_grouped_rewards = mean_grouped_rewards.repeat_interleave(self.num_generations, dim=0)
std_grouped_rewards = std_grouped_rewards.repeat_interleave(self.num_generations, dim=0)
advantages = rewards - mean_grouped_rewards
if self.scale_rewards:
advantages = advantages / (std_grouped_rewards + 1e-4)
# Slice to keep only the local part of the data
process_slice = slice(
self.accelerator.process_index * len(prompts),
(self.accelerator.process_index + 1) * len(prompts),
)
all_process_advantages = advantages.clone() # keep the aggregated advantages for logging
advantages = advantages[process_slice]
# Log the metrics
if mode == "train":
self.state.num_input_tokens_seen += self.accelerator.gather(attention_mask.sum()).sum().item()
self._metrics[mode]["num_tokens"] = [self.state.num_input_tokens_seen]
# Log completion lengths, mean, min, max
agg_completion_lengths = self.accelerator.gather(completion_lengths)
self._metrics[mode]["completions/mean_length"].append(agg_completion_lengths.float().mean().item())
self._metrics[mode]["completions/min_length"].append(agg_completion_lengths.float().min().item())
self._metrics[mode]["completions/max_length"].append(agg_completion_lengths.float().max().item())
# Identify sequences that terminated with EOS and log their lengths
agg_terminated_with_eos = self.accelerator.gather(is_eos.any(dim=1))
term_completion_lengths = agg_completion_lengths[agg_terminated_with_eos]
clipped_completions_ratio = 1 - len(term_completion_lengths) / len(agg_completion_lengths)
self._metrics[mode]["completions/clipped_ratio"].append(clipped_completions_ratio)
if len(term_completion_lengths) == 0: # edge case where no terminated sequences are found
term_completion_lengths = torch.zeros(1, device=device)
self._metrics[mode]["completions/mean_terminated_length"].append(term_completion_lengths.float().mean().item())
self._metrics[mode]["completions/min_terminated_length"].append(term_completion_lengths.float().min().item())
self._metrics[mode]["completions/max_terminated_length"].append(term_completion_lengths.float().max().item())
# Calculate mean reward per function, but only for samples where the function was applied (non-NaN values)
for i, reward_func_name in enumerate(self.reward_func_names):
mean_rewards = torch.nanmean(rewards_per_func[:, i]).item()
self._metrics[mode][f"rewards/{reward_func_name}/mean"].append(mean_rewards)
std_rewards = nanstd(rewards_per_func[:, i]).item()
self._metrics[mode][f"rewards/{reward_func_name}/std"].append(std_rewards)
self._metrics[mode]["reward"].append(mean_grouped_rewards.mean().item())
self._metrics[mode]["reward_std"].append(std_grouped_rewards.mean().item())
self._metrics[mode]["frac_reward_zero_std"].append(is_std_zero.float().mean().item())
# Log prompt and completion texts
self._textual_logs["prompt"].extend(gather_object(prompts_text))
self._textual_logs["completion"].extend(gather_object(completions_text))
for i, name in enumerate(self.reward_func_names):
self._textual_logs["rewards"][name].extend(rewards_per_func[:, i].tolist())
self._textual_logs["advantages"].extend(all_process_advantages.tolist())
return {
"prompt_ids": prompt_ids,
"prompt_mask": prompt_mask,
"completion_ids": completion_ids,
"completion_mask": completion_mask,
"advantages": advantages,
"old_per_token_logps": old_per_token_logps,
}
def compute_liger_loss(self, unwrapped_model, inputs):
# Compute the per-token log probabilities for the model
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]
input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens
# Compute the KL divergence between the model and the reference model
ref_per_token_logps = None
if self.beta != 0.0:
with torch.no_grad():
if self.ref_model is not None:
ref_per_token_logps = self._get_per_token_logps(
self.ref_model, input_ids, attention_mask, logits_to_keep
)
else:
with self.accelerator.unwrap_model(self.model).disable_adapter():
ref_per_token_logps = self._get_per_token_logps(
self.model, input_ids, attention_mask, logits_to_keep
)
# get the last hidden state of the model
last_hidden_state = self._get_last_hidden_state(unwrapped_model, input_ids, attention_mask, logits_to_keep)
# compute loss and metrics using liger grpo loss
loss, metrics = self.liger_grpo_loss(
_input=last_hidden_state,
lin_weight=unwrapped_model.lm_head.weight,
selected_token_ids=completion_ids,
attention_mask=completion_mask,
advantages=inputs["advantages"],
bias=unwrapped_model.lm_head.bias,
old_per_token_logps=inputs["old_per_token_logps"],
ref_per_token_logps=ref_per_token_logps,
)
# Extract metrics from the liger_grpo_loss output
# KL divergence is the first metric when beta is non-zero
mean_kl = metrics[0] if self.beta != 0.0 else None
clip_ratio = metrics[-1]
mode = "train" if self.model.training else "eval"
if self.beta != 0.0:
self._metrics[mode]["kl"].append(self.accelerator.gather(mean_kl).mean().item())
self._metrics[mode]["clip_ratio"].append(self.accelerator.gather(clip_ratio).mean().item())
return loss
@profiling_decorator
def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
if return_outputs:
raise ValueError("The GRPOTrainer does not support returning outputs")
if self.use_liger_loss:
# Compute the loss using the liger grpo loss
unwrapped_model = self.accelerator.unwrap_model(model)
return self._forward_redirection(model, unwrapped_model, self.compute_liger_loss, unwrapped_model, inputs)
else:
return self._compute_loss(model, inputs)
def _compute_loss(self, model, inputs):
# Compute the per-token log probabilities for the model
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]
input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens
per_token_logps = self._get_per_token_logps(model, input_ids, attention_mask, logits_to_keep)
# Compute the KL divergence between the model and the reference model
if self.beta != 0.0:
with torch.no_grad():
if self.ref_model is not None:
ref_per_token_logps = self._get_per_token_logps(
self.ref_model, input_ids, attention_mask, logits_to_keep
)
else:
with self.accelerator.unwrap_model(self.model).disable_adapter():
ref_per_token_logps = self._get_per_token_logps(
self.model, input_ids, attention_mask, logits_to_keep
)
per_token_kl = (
torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1
)
# Compute the loss
advantages = inputs["advantages"]
# When using num_iterations == 1 and steps_per_generation <= gradient_accumulation_steps
# old_per_token_logps == per_token_logps, so we can skip it's computation
# (see _generate_and_score_completions) and use per_token_logps.detach() instead.
old_per_token_logps = (
per_token_logps.detach() if inputs["old_per_token_logps"] is None else inputs["old_per_token_logps"]
)
coef_1 = torch.exp(per_token_logps - old_per_token_logps)
coef_2 = torch.clamp(coef_1, 1 - self.epsilon_low, 1 + self.epsilon_high)
# Two-sided clipping
if self.args.delta is not None:
coef_1 = torch.clamp(coef_1, max=self.args.delta)
per_token_loss1 = coef_1 * advantages.unsqueeze(1)
per_token_loss2 = coef_2 * advantages.unsqueeze(1)
per_token_loss = -torch.min(per_token_loss1, per_token_loss2)
if self.beta != 0.0:
per_token_loss = per_token_loss + self.beta * per_token_kl
if self.loss_type == "grpo":
loss = ((per_token_loss * completion_mask).sum(-1) / completion_mask.sum(-1).clamp(min=1.0)).mean()
elif self.loss_type == "bnpo":
loss = (per_token_loss * completion_mask).sum() / completion_mask.sum().clamp(min=1.0)
elif self.loss_type == "dr_grpo":
loss = (per_token_loss * completion_mask).sum() / (per_token_loss.size(0) * self.max_completion_length)
else:
raise ValueError(f"Unknown loss type: {self.loss_type}")
# Log the metrics
mode = "train" if self.model.training else "eval"
if self.beta != 0.0:
mean_kl = (per_token_kl * completion_mask).sum() / completion_mask.sum()
self._metrics[mode]["kl"].append(self.accelerator.gather(mean_kl).nanmean().item())
# Compute the clipped probability ratios
is_low_clipped = (coef_1 < 1 - self.epsilon_low) & (advantages.unsqueeze(1) < 0)
is_high_clipped = (coef_1 > 1 + self.epsilon_high) & (advantages.unsqueeze(1) > 0)
is_region_clipped = is_low_clipped | is_high_clipped
low_clip = (is_low_clipped * completion_mask).sum() / completion_mask.sum()
high_clip = (is_high_clipped * completion_mask).sum() / completion_mask.sum()
clip_ratio = (is_region_clipped * completion_mask).sum() / completion_mask.sum()
gathered_low_clip = self.accelerator.gather(low_clip)
self._metrics[mode]["clip_ratio/low_mean"].append(gathered_low_clip.nanmean().item())
self._metrics[mode]["clip_ratio/low_min"].append(nanmin(gathered_low_clip).item())
gathered_high_clip = self.accelerator.gather(high_clip)
self._metrics[mode]["clip_ratio/high_mean"].append(gathered_high_clip.nanmean().item())
self._metrics[mode]["clip_ratio/high_max"].append(nanmax(gathered_high_clip).item())
gathered_clip_ratio = self.accelerator.gather(clip_ratio)
self._metrics[mode]["clip_ratio/region_mean"].append(gathered_clip_ratio.nanmean().item())
return loss
def prediction_step(self, model, inputs, prediction_loss_only, ignore_keys: Optional[list[str]] = None):
inputs = self._prepare_inputs(inputs)
with torch.no_grad():
with self.compute_loss_context_manager():
loss = self.compute_loss(model, inputs)
loss = loss.mean().detach()
return loss, None, None
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None:
mode = "train" if self.model.training else "eval"
metrics = {key: sum(val) / len(val) for key, val in self._metrics[mode].items()} # average the metrics
# This method can be called both in training and evaluation. When called in evaluation, the keys in `logs`
# start with "eval_". We need to add the prefix "eval_" to the keys in `metrics` to match the format.
if mode == "eval":
metrics = {f"eval_{key}": val for key, val in metrics.items()}
logs = {**logs, **metrics}
super().log(logs, start_time)
self._metrics[mode].clear()
if self.accelerator.is_main_process and self.log_completions:
if is_rich_available():
print_prompt_completions_sample(
self._textual_logs["prompt"],
self._textual_logs["completion"],
self._textual_logs["rewards"],
self._textual_logs["advantages"],
self.state.global_step,
self.num_completions_to_print,
)
if self.args.report_to and "wandb" in self.args.report_to and wandb.run is not None:
import pandas as pd
table = {
"step": [str(self.state.global_step)] * len(self._textual_logs["prompt"]),
"prompt": self._textual_logs["prompt"],
"completion": self._textual_logs["completion"],
**self._textual_logs["rewards"],
"advantage": self._textual_logs["advantages"],
}
df = pd.DataFrame(table)
if self.wandb_log_unique_prompts:
df = df.drop_duplicates(subset=["prompt"])
wandb.log({"completions": wandb.Table(dataframe=df)})
# Ensure the model card is saved along with the checkpoint
def _save_checkpoint(self, model, trial):
if self.args.hub_model_id is None:
model_name = Path(self.args.output_dir).name
else:
model_name = self.args.hub_model_id.split("/")[-1]
self.create_model_card(model_name=model_name)
super()._save_checkpoint(model, trial)
def create_model_card(
self,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None,
tags: Union[str, list[str], None] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
model_name (`str` or `None`, *optional*, defaults to `None`):
Name of the model.
dataset_name (`str` or `None`, *optional*, defaults to `None`):
Name of the dataset used for training.
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
Tags to be associated with the model card.
"""
if not self.is_world_process_zero():
return
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
base_model = self.model.config._name_or_path
else:
base_model = None
tags = tags or set()
if isinstance(tags, str):
tags = {tags}
if hasattr(self.model.config, "unsloth_version"):
tags.add("unsloth")
tags.update(self._tag_names)
citation = textwrap.dedent(
"""\
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
"""
)
model_card = generate_model_card(
base_model=base_model,
model_name=model_name,
hub_model_id=self.hub_model_id,
dataset_name=dataset_name,
tags=tags,
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
comet_url=get_comet_experiment_url(),
trainer_name="GRPO",
trainer_citation=citation,
paper_title="DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models",
paper_id="2402.03300",
)
model_card.save(os.path.join(self.args.output_dir, "README.md"))
|