File size: 22,218 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import warnings
from pathlib import Path
from typing import Callable, Optional, Union

import torch
from datasets import Dataset
from torch.utils.data import DataLoader
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BaseImageProcessor,
    DataCollator,
    DataCollatorForLanguageModeling,
    DataCollatorForSeq2Seq,
    FeatureExtractionMixin,
    PreTrainedModel,
    PreTrainedTokenizerBase,
    ProcessorMixin,
    Trainer,
    TrainingArguments,
    is_wandb_available,
)
from transformers.trainer_utils import EvalLoopOutput
from transformers.utils import is_peft_available

from ..core import PPODecorators
from .iterative_sft_config import IterativeSFTConfig
from .utils import generate_model_card, get_comet_experiment_url


if is_peft_available():
    from peft import PeftModel


if is_wandb_available():
    import wandb


class IterativeSFTTrainer(Trainer):
    """
    The IterativeSFTTrainer can be used to finetune models with methods that requires some steps between optimization.

    Args:
        model (`Union[str, PreTrainedModel]`):
            Model to be trained. Can be either:

            - A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or
              a path to a *directory* containing model weights saved using
              [`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is
              loaded using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keywork arguments
              in `args.model_init_kwargs`.
            - A [`~transformers.PreTrainedModel`] object. Only causal language models are supported.
        args ([`IterativeSFTConfig`], *optional*, defaults to `None`):
            Configuration for this trainer. If `None`, a default configuration is used.
        data_collator (`DataCollator`, *optional*):
            Function to use to form a batch from a list of elements of the processed `train_dataset` or `eval_dataset`.
            Will default to [`~transformers.default_data_collator`] if no `processing_class` is provided, an instance
            of [`~transformers.DataCollatorWithPadding`] otherwise if the processing_class is a feature extractor or
            tokenizer.
        eval_dataset (`datasets.Dataset`):
            The dataset to use for evaluation.
        processing_class ([`~transformers.PreTrainedTokenizerBase`], *optional*, defaults to `None`):
            Processing class used to process the data. If `None`, the processing class is loaded from the model's name
            with [`~transformers.AutoTokenizer.from_pretrained`].
        optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`):
            The optimizer and scheduler to use for training.
        preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`):
            The function to use to preprocess the logits before computing the metrics.
        compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*):
            The function to use to compute the metrics. Must take a `EvalPrediction` and return a dictionary string to metric values.
        max_length (`int`, *optional*, deprecated):
            Maximum length of the tokenized sequence. Use `args.max_length` instead.
        truncation_mode (`str`, *optional*, deprecated):
            The truncation mode to use. Use `args.truncation_mode` instead.
        optimize_device_cache (`bool`, *optional*, deprecated):
            Whether to optimize accelerator cache. Use `args.optimize_device_cache` instead.
    """

    _tag_names = ["trl", "iterative-sft"]

    def __init__(
        self,
        model: Union[str, PreTrainedModel],
        args: Optional[Union[IterativeSFTConfig, TrainingArguments]] = None,
        data_collator: Optional[DataCollator] = None,
        eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
        processing_class: Optional[
            Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
        ] = None,
        optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (
            None,
            None,
        ),
        preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
        compute_metrics: Optional[Callable[[EvalLoopOutput], dict]] = None,
        # Deprecated parameters
        max_length: Optional[int] = None,
        truncation_mode: Optional[str] = None,
        optimize_device_cache: Optional[bool] = None,
    ):
        # Handle deprecated parameters
        deprecated_params = {}
        if max_length is not None:
            deprecated_params["max_length"] = max_length
            warnings.warn(
                "The `max_length` parameter is deprecated and will be removed in version 0.20. "
                "Pass it through the `args` parameter using `IterativeSFTConfig(max_length=...)` instead.",
                DeprecationWarning,
            )
        if truncation_mode is not None:
            deprecated_params["truncation_mode"] = truncation_mode
            warnings.warn(
                "The `truncation_mode` parameter is deprecated and will be removed in version 0.20. "
                "Pass it through the `args` parameter using `IterativeSFTConfig(truncation_mode=...)` instead.",
                DeprecationWarning,
            )
        if optimize_device_cache is not None:
            deprecated_params["optimize_device_cache"] = optimize_device_cache
            warnings.warn(
                "The `optimize_device_cache` parameter is deprecated and will be removed in version 0.20  "
                "Pass it through the `args` parameter using `IterativeSFTConfig(optimize_device_cache=...)` instead.",
                DeprecationWarning,
            )

        # Args
        model_id = model if isinstance(model, str) else model.config._name_or_path
        if args is None:
            model_name = model_id.split("/")[-1]
            args = IterativeSFTConfig(f"{model_name}-IterativeSFT")
        elif isinstance(args, TrainingArguments) and not isinstance(args, IterativeSFTConfig):
            dict_args = args.to_dict()
            dict_args["hub_token"] = args.hub_token  # to_dict hides the hub_token
            dict_args.pop("push_to_hub_token")
            args = IterativeSFTConfig(**dict_args)

        # Update args with deprecated parameters if provided
        if deprecated_params:
            for key, value in deprecated_params.items():
                setattr(args, key, value)

        # Handle the tokenizer
        if processing_class is None:
            processing_class = AutoTokenizer.from_pretrained(model_id)

        # Model
        if args.model_init_kwargs is not None and not isinstance(model, str):
            warnings.warn(
                "You passed model_init_kwargs to the `IterativeSFTConfig`, but your model is already instantiated. "
                "The `model_init_kwargs` will be ignored."
            )
        if isinstance(model, str):
            model = self._create_model_from_path(model, args)

        # PEFT configuration and model wrapping
        if is_peft_available() and isinstance(model, PeftModel):
            self.is_peft_model = True
        else:
            self.is_peft_model = False

        self.processing_class = processing_class
        self.is_encoder_decoder = getattr(model.config, "is_encoder_decoder", False)

        if data_collator is None:
            if self.is_encoder_decoder:
                self.data_collator = DataCollatorForSeq2Seq(
                    processing_class, label_pad_token_id=-100, pad_to_multiple_of=8
                )
            else:
                self.data_collator = DataCollatorForLanguageModeling(self.processing_class, mlm=False)
        else:
            self.data_collator = data_collator

        self.max_length = args.max_length
        self.truncation_mode = args.truncation_mode
        self.optimize_device_cache = args.optimize_device_cache

        super().__init__(
            model=model,
            args=args,
            data_collator=self.data_collator,
            eval_dataset=eval_dataset,
            processing_class=processing_class,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
        )

        # Add tags for models that have been loaded with the correct transformers version
        if hasattr(self.model, "add_model_tags"):
            self.model.add_model_tags(self._tag_names)

        self.create_optimizer_and_scheduler(self.args.max_steps)

        # prepare model, optimizer and lr_scheduler
        self.model, self.optimizer, self.lr_scheduler = self.accelerator.prepare(
            self.model, self.optimizer, self.lr_scheduler
        )

        self.processing_class.truncation_side = "left" if self.truncation_mode == "keep_end" else "right"

        if not hasattr(self, "accelerator"):
            raise AttributeError(
                "Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`."
            )

        PPODecorators.optimize_device_cache = self.optimize_device_cache

    def _create_model_from_path(self, model_path: str, args: IterativeSFTConfig) -> PreTrainedModel:
        """Creates a model from a path or model identifier."""
        model_init_kwargs = args.model_init_kwargs or {}
        return AutoModelForCausalLM.from_pretrained(model_path, **model_init_kwargs)

    def prepare_model_inputs(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, labels: torch.Tensor):
        if attention_mask is None:
            attention_mask = [torch.ones_like(ids) for ids in input_ids]

        if self.is_encoder_decoder:
            input_data = self.data_collator(
                [
                    {"input_ids": ids, "attention_mask": att, "labels": lab}
                    for ids, att, lab in zip(input_ids, attention_mask, labels)
                ]
            ).to(self.model.device)

            input_data.pop("decoder_input_ids", None)  # This is directly computed inside the model

            input_data["labels"][input_data["labels"] == self.processing_class.pad_token_id] = -100

        else:
            input_data = self.data_collator(
                [{"input_ids": ids, "attention_mask": att} for ids, att in zip(input_ids, attention_mask)]
            ).to(self.model.device)

        # truncate in case the user has provided input_ids, attention_mask and labels
        if self.max_length is not None:
            if self.truncation_mode == "keep_start":
                input_data = {k: v[: self.max_length] for k, v in input_data.items()}
            elif self.truncation_mode == "keep_end":
                input_data = {k: v[-self.max_length :] for k, v in input_data.items()}
            else:
                raise ValueError(f"Unknown truncation mode: {self.truncation_mode}")

        return input_data

    @staticmethod
    def _step_safety_checker(
        input_ids: list[torch.LongTensor],
        attention_mask: list[torch.LongTensor],
        labels: list[torch.LongTensor],
        texts: list[str],
        texts_labels: list[str],
    ):
        """
        Check if the input data is valid for training.

        Args:
            input_ids (list[`torch.LongTensor`]):
                List of tensors containing the input_ids
            attention_mask (list[`torch.LongTensor`]):
                List of tensors containing the attention_mask
            labels (list[`torch.FloatTensor`]):
                List of tensors containing the labels
            texts (list[`str`]):
                List of string containing the text input.
            texts_labels (list[`str`]):
                List of string containing the text labels.

        Returns:
            `tuple`: The input data.
        """
        if texts is None:
            if attention_mask is None:
                for name, tensor_list in zip(["input_ids", "labels"], [input_ids, labels]):
                    if not isinstance(tensor_list, list):
                        raise ValueError(f"{name} must be a list of tensors - got {type(tensor_list)}")
                    if not isinstance(tensor_list[0], torch.Tensor):
                        raise ValueError(f"Elements in {name} must be tensors - got {type(tensor_list[0])}")
            else:
                for name, tensor_list in zip(
                    ["input_ids", "attention_mask", "labels"], [input_ids, attention_mask, labels]
                ):
                    if not isinstance(tensor_list, list):
                        raise ValueError(f"{name} must be a list of tensors - got {type(tensor_list)}")
                    if not isinstance(tensor_list[0], torch.Tensor):
                        raise ValueError(f"Elements in {name} must be tensors - got {type(tensor_list[0])}")
        else:
            if not isinstance(texts, list):
                raise ValueError(f"'text' must be a list of strings - got {type(texts)}")
            if not isinstance(texts[0], str):
                raise ValueError(f"Elements in 'text' must be strings - got {type(texts[0])}")
            if texts_labels is not None:
                if not isinstance(texts_labels, list):
                    raise ValueError(f"'text_labels' must be a list of strings - got {type(texts_labels)}")
                if not isinstance(texts_labels[0], str):
                    raise ValueError(f"Elements in 'text_labels' must be strings - got {type(texts_labels[0])}")

        return input_ids, attention_mask, labels, texts, texts_labels

    @PPODecorators.empty_device_cache()
    def step(
        self,
        input_ids: Optional[list[torch.LongTensor]] = None,
        attention_mask: Optional[list[torch.LongTensor]] = None,
        labels: Optional[list[torch.LongTensor]] = None,
        texts: Optional[list[str]] = None,
        texts_labels: Optional[list[str]] = None,
    ):
        """
        Run an optimisation step given a list of input_ids, attention_mask, and labels or a list of text and text_labels.
        Args:
            input_ids (list[`torch.LongTensor`]):
                List of tensors containing the input_ids (if not provided, text will be used)
            attention_mask (list[`torch.LongTensor`], , *optional*):
                List of tensors containing the attention_mask
            labels (list[`torch.FloatTensor`], *optional*):
                List of tensors containing the labels (if set to None, will default to input_ids)
            texts (list[`str`], *optional*):
                List of strings containing the text input (if not provided, input_ids will directly be used)
            texts_labels (list[`str`], *optional*):
                List of strings containing the text labels (if set to None, will default to text)

        Returns:
            `dict[str, Any]`: A summary of the training statistics
        """
        self.model.train()

        if self.state.global_step == 0:
            self.tr_loss = torch.tensor(0.0).to(self.args.device)
            self._globalstep_last_logged = self.state.global_step

        if input_ids is None and texts is None:
            raise ValueError("Step should include `input_ids` or `texts` as keyword arguments.")
        elif input_ids is not None and texts is not None:
            warnings.warn(
                "Both `input_ids` and `texts` argument are provided. `input_ids` will be ignored. "
                "Please provide only one of the two.",
                UserWarning,
            )

        if labels is None and texts_labels is None and self.is_encoder_decoder:
            raise ValueError(
                "No 'labels' or 'text_labels' are provided. When using an encoder-decoder architecture, 'labels' or 'text_labels' must be passed."
            )

        input_ids, attention_mask, labels, texts, texts_labels = self._step_safety_checker(
            input_ids, attention_mask, labels, texts, texts_labels
        )

        if texts is not None:
            model_inputs = self.processing_class(
                texts, max_length=self.max_length, truncation=True, padding=True, return_tensors="pt"
            )

            input_ids, attention_mask = model_inputs["input_ids"], model_inputs["attention_mask"]

        if texts_labels is not None:
            labels = self.processing_class(
                texts, max_length=self.max_length, truncation=True, padding=True, return_tensors="pt"
            )["input_ids"]

        if labels is None:
            labels = input_ids

        model_inputs = self.prepare_model_inputs(input_ids, attention_mask, labels)

        model_inputs_names = list(model_inputs.keys())

        batch_dict = {}
        batch_dict.update(model_inputs)

        def collator(data):
            return_dict = dict()
            for key in data[0]:
                if key in ["input_ids", "attention_mask", "labels"]:
                    return_dict[key] = torch.stack([d[key] for d in data]).to(self.model.device)
            return return_dict

        batch_data = Dataset.from_dict(batch_dict)
        batch_data.set_format("torch")

        step_dataloader = DataLoader(
            batch_data,
            batch_size=self.args.per_device_train_batch_size,
            shuffle=True,
            collate_fn=collator,
        )

        for _, batch in enumerate(step_dataloader):
            with self.accelerator.accumulate(self.model):
                model_inputs = {k: batch[k] for k in model_inputs_names}
                loss = self.compute_loss(self.model, model_inputs)

                if self.args.n_gpu > 1:
                    loss = loss.mean()

                tr_loss_step = loss.detach()

                self.accelerator.backward(loss)

                if self.accelerator.sync_gradients and self.args.max_grad_norm is not None:
                    self.accelerator.clip_grad_norm_(
                        self.model.parameters(),
                        self.args.max_grad_norm,
                    )

                self.optimizer.step()
                self.optimizer.zero_grad()
                if self.lr_scheduler is not None:
                    self.lr_scheduler.step()

                self.state.global_step += 1

                # update stats etc
                self.tr_loss += tr_loss_step

                self._maybe_log_save_evaluate()

    def _maybe_log_save_evaluate(self):
        # check if eval is required
        if self.args.eval_steps is not None:
            if self.state.global_step % self.args.eval_steps == 0 and self.state.global_step != 0:
                self.evaluate(self.eval_dataset)

        # check if logging is required
        if self.args.logging_steps is not None:
            if self.state.global_step % self.args.logging_steps == 0 and self.state.global_step != 0:
                logs: dict[str, float] = {}

                tr_loss_scalar = self._nested_gather(self.tr_loss).mean().item()

                # reset tr_loss to zero
                self.tr_loss -= self.tr_loss

                logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4)
                logs["learning_rate"] = self._get_learning_rate()

                self._globalstep_last_logged = self.state.global_step

                self.log(logs)

    # Ensure the model card is saved along with the checkpoint
    def _save_checkpoint(self, model, trial):
        if self.args.hub_model_id is None:
            model_name = Path(self.args.output_dir).name
        else:
            model_name = self.args.hub_model_id.split("/")[-1]
        self.create_model_card(model_name=model_name)
        super()._save_checkpoint(model, trial)

    def create_model_card(
        self,
        model_name: Optional[str] = None,
        dataset_name: Optional[str] = None,
        tags: Union[str, list[str], None] = None,
    ):
        """
        Creates a draft of a model card using the information available to the `Trainer`.

        Args:
            model_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the model.
            dataset_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the dataset used for training.
            tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
                Tags to be associated with the model card.
        """
        if not self.is_world_process_zero():
            return

        if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
            base_model = self.model.config._name_or_path
        else:
            base_model = None

        tags = tags or set()
        if isinstance(tags, str):
            tags = {tags}

        if hasattr(self.model.config, "unsloth_version"):
            tags.add("unsloth")

        tags.update(self._tag_names)

        model_card = generate_model_card(
            base_model=base_model,
            model_name=model_name,
            hub_model_id=self.hub_model_id,
            dataset_name=dataset_name,
            tags=tags,
            wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
            comet_url=get_comet_experiment_url(),
            trainer_name="Iterative SFT",
        )

        model_card.save(os.path.join(self.args.output_dir, "README.md"))