File size: 23,943 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import textwrap
from typing import Any, Callable, Optional, Union

import jinja2
import torch
import torch.nn as nn
import torch.nn.functional as F
from datasets import Dataset, IterableDataset
from transformers import (
    BaseImageProcessor,
    FeatureExtractionMixin,
    PreTrainedModel,
    PreTrainedTokenizerBase,
    ProcessorMixin,
    TrainerCallback,
    is_wandb_available,
)
from transformers.trainer_utils import EvalPrediction
from transformers.training_args import OptimizerNames
from transformers.utils import is_apex_available, is_peft_available

from ..data_utils import is_conversational, maybe_apply_chat_template
from ..models.modeling_base import GeometricMixtureWrapper
from ..models.utils import unwrap_model_for_generation
from .judges import BasePairwiseJudge
from .nash_md_config import NashMDConfig
from .online_dpo_trainer import OnlineDPOTrainer
from .utils import (
    SIMPLE_CHAT_TEMPLATE,
    empty_cache,
    generate_model_card,
    get_comet_experiment_url,
    get_reward,
    selective_log_softmax,
    truncate_right,
)


if is_apex_available():
    from apex import amp


if is_wandb_available():
    import wandb


if is_peft_available():
    from peft import PeftModel


class NashMDTrainer(OnlineDPOTrainer):
    r"""
    Initialize NashMDTrainer as a subclass of [`OnlineDPOConfig`].

    Args:
        model (`transformers.PreTrainedModel`):
            The model to train, preferably an `AutoModelForCausalLM`.
        ref_model (`PreTrainedModelWrapper`):
            Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation and loss. If no
            reference model is provided, the trainer will create a reference model with the same architecture as the model to be optimized.
        reward_model (`transformers.PreTrainedModel`):
            The reward model to score completions with, preferably an `AutoModelForSequenceClassification`.
        judge (`BasePairwiseJudge`):
            The judge to use for pairwise comparison of model completions.
        args (`NashMDConfig`):
            The NashMD config arguments to use for training.
        data_collator (`transformers.DataCollator`):
            The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used
            which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences.
        train_dataset (`datasets.Dataset`):
            The dataset to use for training.
        eval_dataset (`datasets.Dataset`):
            The dataset to use for evaluation.
        processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*):
            Processing class used to process the data. If provided, will be used to automatically process the inputs
            for the model, and it will be saved along the model to make it easier to rerun an interrupted training or
            reuse the fine-tuned model.
        peft_config (`dict`):
            The peft config to use for training.
        compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*):
            The function to use to compute the metrics. Must take a `EvalPrediction` and return
            a dictionary string to metric values.
        callbacks (`list[transformers.TrainerCallback]`):
            The callbacks to use for training.
        optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`):
            The optimizer and scheduler to use for training.
        preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`):
            The function to use to preprocess the logits before computing the metrics.
    """

    _tag_names = ["trl", "nash-md"]

    def __init__(
        self,
        model: Union[PreTrainedModel, nn.Module] = None,
        ref_model: Union[PreTrainedModel, nn.Module] = None,
        reward_model: Union[PreTrainedModel, nn.Module, None] = None,
        judge: Optional[BasePairwiseJudge] = None,
        args: Optional[NashMDConfig] = None,
        data_collator: Optional[Callable] = None,
        train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
        eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
        processing_class: Optional[
            Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
        ] = None,
        peft_config: Optional[dict] = None,
        compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
        callbacks: Optional[list[TrainerCallback]] = None,
        optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
        preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
    ) -> None:
        super().__init__(
            model=model,
            ref_model=ref_model,
            reward_model=reward_model,
            judge=judge,
            args=args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            processing_class=processing_class,
            reward_processing_class=processing_class,  # for now, NashMDTrainer can't use any reward model
            peft_config=peft_config,
            compute_metrics=compute_metrics,
            callbacks=callbacks,
            optimizers=optimizers,
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
        )

        self._mixture_coef = self.args.mixture_coef

        # Overwrite the stats dictionary to include NashMD specific statistics
        self.stats = {
            # Remove "non_score_reward", "rlhf_reward", "scores_margin"
            # Add "mixture_coef"
            "loss/kl": [],
            "objective/entropy": [],
            "loss/score": [],
            "rewards/probabilities": [],
            "rewards/accuracies": [],
            "rewards/margins": [],
            "logps/chosen": [],
            "logps/rejected": [],
            "val/model_contain_eos_token": [],
            "val/ref_contain_eos_token": [],
            "beta": [],
            "mixture_coef": [],
        }
        if self.reward_model is not None:
            self.stats["rewards/chosen"] = []
            self.stats["rewards/rejected"] = []

    @property
    def mixture_coef(self):
        if isinstance(self._mixture_coef, list):
            epoch = self.state.epoch
            return self._mixture_coef[epoch] if epoch < len(self._mixture_coef) else self._mixture_coef[-1]
        else:
            return self._mixture_coef

    def _generate_completions(self, model, prompts):
        # Generate completions from the policy model.
        with unwrap_model_for_generation(model, self.accelerator) as unwrapped_policy_for_gen_ctx:
            model_output = unwrapped_policy_for_gen_ctx.generate(
                input_ids=prompts["input_ids"],
                attention_mask=prompts["attention_mask"],
                generation_config=self.generation_config,
            )

        # Get the DDP/FSDP unwrapped version of the main model.
        # This will be the policy model for GeometricMixtureWrapper (PEFT adapters active if PEFT is used).
        policy_model_for_gmw = self.accelerator.unwrap_model(model)

        # Determine the correct reference model for GeometricMixtureWrapper.
        # This also needs to be DDP/FSDP unwrapped.
        ref_model_for_gmw: torch.nn.Module
        if self.ref_model is None:
            # No explicit ref_model is provided.
            # Use the base of the main `model` if it's a PEFT model.
            # policy_model_for_gmw is already DDP-unwrapped.
            if is_peft_available() and isinstance(policy_model_for_gmw, PeftModel):
                ref_model_for_gmw = policy_model_for_gmw.get_base_model()
            else:
                # Not a PEFT model (or PEFT not available), or already a base model.
                # Use the DDP-unwrapped policy model itself as the reference.
                ref_model_for_gmw = policy_model_for_gmw
        else:
            # An explicit ref_model is provided. Unwrap it for DDP/FSDP.
            ref_model_for_gmw = self.accelerator.unwrap_model(self.ref_model)

        # Both models given to GeometricMixtureWrapper (policy_model_for_gmw and ref_model_for_gmw) are DDP-unwrapped.
        with torch.no_grad():  # Ensure no_grad context for mixture model generation
            mixture_model = GeometricMixtureWrapper(
                model=policy_model_for_gmw,
                ref_model=ref_model_for_gmw,
                generation_config=self.generation_config,
                mixture_coef=self.mixture_coef,
                device=self.accelerator.device,
            )

            mixture_output = mixture_model.generate(
                input_ids=prompts["input_ids"],
                attention_mask=prompts["attention_mask"],
                generation_config=self.generation_config,
            )

        return model_output, mixture_output

    def _process_completions(self, model_output, mixture_output, prompts):
        context_length = prompts["input_ids"].shape[1]

        # Process model completions
        model_completion_ids = model_output[:, context_length:]
        model_completion_ids, model_completion_mask = truncate_right(
            model_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id
        )
        model_data = {
            "input_ids": torch.cat((prompts["input_ids"], model_completion_ids), dim=1),
            "attention_mask": torch.cat((prompts["attention_mask"], model_completion_mask), dim=1),
            "raw": prompts["raw"],
        }

        # Process reference model completions
        mixture_completion_ids = mixture_output[:, context_length:]
        mixture_completion_ids, mixture_completion_mask = truncate_right(
            mixture_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id
        )
        mixture_data = {
            "input_ids": torch.cat((prompts["input_ids"], mixture_completion_ids), dim=1),
            "attention_mask": torch.cat((prompts["attention_mask"], mixture_completion_mask), dim=1),
            "raw": prompts["raw"],
        }

        return model_data, mixture_data

    def _compute_rewards(self, model_data, mixture_data, context_length):
        with torch.no_grad():
            _, model_scores, _ = get_reward(
                self.reward_model, model_data["input_ids"], self.processing_class.pad_token_id, context_length
            )
            _, mixture_scores, _ = get_reward(
                self.reward_model, mixture_data["input_ids"], self.processing_class.pad_token_id, context_length
            )

        # Apply EOS penalty if needed
        if self.args.missing_eos_penalty is not None:
            model_contain_eos = torch.any(model_data["input_ids"] == self.processing_class.eos_token_id, dim=-1)
            mixture_contain_eos = torch.any(mixture_data["input_ids"] == self.processing_class.eos_token_id, dim=-1)
            model_scores[~model_contain_eos] -= self.args.missing_eos_penalty
            mixture_scores[~mixture_contain_eos] -= self.args.missing_eos_penalty

        return model_scores, mixture_scores

    def _compute_judge(self, model_data, mixture_data, context_length):
        prompts = model_data["raw"]
        model_data_completions = self.processing_class.batch_decode(
            model_data["input_ids"][:, context_length:], skip_special_tokens=True
        )
        model_data_completions = [completion.strip() for completion in model_data_completions]

        mixture_data_completions = self.processing_class.batch_decode(
            mixture_data["input_ids"][:, context_length:], skip_special_tokens=True
        )
        mixture_data_completions = [completion.strip() for completion in mixture_data_completions]
        if is_conversational({"prompt": prompts[0]}):
            model_data_completions = [
                [{"role": "assistant", "content": completion}] for completion in model_data_completions
            ]
            environment = jinja2.Environment()
            template = environment.from_string(SIMPLE_CHAT_TEMPLATE)
            prompts = [template.render(messages=message) for message in prompts]
            model_data_completions = [template.render(messages=completion) for completion in model_data_completions]

            mixture_data_completions = [
                [{"role": "assistant", "content": completion}] for completion in mixture_data_completions
            ]
            mixture_data_completions = [
                template.render(messages=completion) for completion in mixture_data_completions
            ]

        probability = self.judge.judge(
            prompts,
            list(zip(model_data_completions, mixture_data_completions)),
            return_scores=True,
        )
        return torch.tensor(probability, device=model_data["input_ids"].device)

    def _compute_logprobs(self, model, model_data, context_length):
        def compute_logprobs_for_data(m, data):
            output = m(data["input_ids"], attention_mask=data["attention_mask"])
            logits = output.logits[:, context_length - 1 : -1]
            token_logprobs = selective_log_softmax(logits, data["input_ids"][:, context_length:])
            return token_logprobs

        # Compute logprobs for model completions under the model
        model_logprobs_model_data = compute_logprobs_for_data(model, model_data)

        # Compute logprobs of model completions under the reference model
        with torch.no_grad():
            if self.ref_model is None:
                with model.disable_adapter():
                    ref_logprobs_model_data = compute_logprobs_for_data(model, model_data)
            else:
                ref_logprobs_model_data = compute_logprobs_for_data(self.ref_model, model_data)

        # Mask padding tokens
        model_padding_mask = model_data["attention_mask"][:, context_length:] == 0
        model_logprobs_model_data = model_logprobs_model_data.masked_fill(model_padding_mask, 0.0)
        ref_logprobs_model_data = ref_logprobs_model_data.masked_fill(model_padding_mask, 0.0)

        return (model_logprobs_model_data, ref_logprobs_model_data)

    def _compute_losses(
        self,
        model_logprobs_model_data,
        ref_logprobs_model_data,
        probability,
    ):
        # reinforce score where 0.5 is a control variate
        score = (probability - 0.5) * model_logprobs_model_data.sum(1)

        # kl divergence via reinforce
        with torch.no_grad():
            log_ratio = model_logprobs_model_data - ref_logprobs_model_data
            kl_div_log = log_ratio.sum(1)
        kl_div_loss = (log_ratio * model_logprobs_model_data).sum(1)

        # final loss
        loss = self.beta * kl_div_loss - score

        return loss.mean(), score, kl_div_log

    def _log_statistics(
        self,
        model_data,
        mixture_data,
        model_logprobs_model_data,
        ref_logprobs_model_data,
        probability,
        score,
        kl_div,
        context_length,
        model_scores=None,
        mixture_scores=None,
    ):
        # Helper function to gather and compute mean
        def gather_mean(tensor):
            return self.accelerator.gather_for_metrics(tensor).mean().item()

        # Log score
        self.stats["loss/score"].append(gather_mean(score))
        # Log KL divergence
        self.stats["loss/kl"].append(gather_mean(kl_div))

        # Log logprobs
        model_logprobs_model_data_sum = model_logprobs_model_data.sum(1)
        ref_logprobs_model_data_sum = ref_logprobs_model_data.sum(1)

        self.stats["logps/chosen"].append(gather_mean(model_logprobs_model_data_sum))
        self.stats["logps/rejected"].append(gather_mean(ref_logprobs_model_data_sum))

        # Log rewards
        if self.reward_model is not None:
            self.stats["rewards/chosen"].append(gather_mean(model_scores))
            self.stats["rewards/rejected"].append(gather_mean(mixture_scores))

        # Log probabilities
        self.stats["rewards/probabilities"].append(gather_mean(probability))

        # Calculate entropy for model data
        entropy_model_data = -model_logprobs_model_data.sum(1)
        self.stats["objective/entropy"].append(gather_mean(entropy_model_data))

        # Calculate margins
        margin = model_logprobs_model_data_sum - ref_logprobs_model_data_sum
        self.stats["rewards/margins"].append(gather_mean(margin))

        # Calculate accuracy
        accuracy = (margin > 0).float()
        self.stats["rewards/accuracies"].append(gather_mean(accuracy))

        # Log EOS token statistics
        model_eos = (model_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1)
        mixture_eos = (mixture_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1)
        self.stats["val/model_contain_eos_token"].append(gather_mean(model_eos.float()))
        self.stats["val/ref_contain_eos_token"].append(gather_mean(mixture_eos.float()))

        # Log beta and mixture coef
        self.stats["beta"].append(self.beta)
        self.stats["mixture_coef"].append(self.mixture_coef)

    def training_step(
        self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None
    ) -> torch.Tensor:
        model.train()

        # Apply chat template and tokenize the input
        batch_size = len(next(iter(inputs.values())))
        prompts = inputs["prompt"]
        inputs = [{k: v[i] for k, v in inputs.items()} for i in range(batch_size)]
        inputs = [maybe_apply_chat_template(x, self.processing_class) for x in inputs]
        inputs = [self.tokenize_row(x, self.model.config.is_encoder_decoder, self.processing_class) for x in inputs]
        inputs = self.data_collator(inputs)

        # need the prompt_ only
        inputs = self._prepare_inputs(inputs)
        context_length = inputs["prompt_input_ids"].shape[1]
        prompts = {
            "input_ids": inputs["prompt_input_ids"],
            "attention_mask": inputs["prompt_attention_mask"],
            "raw": prompts,
        }
        del inputs

        # Sample completions from both the model and the reference model
        model_output, mixture_output = self._generate_completions(model, prompts)

        # Process model completions
        model_data, mixture_data = self._process_completions(model_output, mixture_output, prompts)

        # Compute rewards
        if self.reward_model is not None:
            model_scores, mixture_scores = self._compute_rewards(model_data, mixture_data, context_length)
            # probability of the model data vs the mixture data
            probability = F.sigmoid(model_scores - mixture_scores)
        else:
            model_scores, mixture_scores = None, None
            probability = self._compute_judge(model_data, mixture_data, context_length)

        # Compute logprobs
        model_logprobs_model_data, ref_logprobs_model_data = self._compute_logprobs(model, model_data, context_length)

        # Compute loss
        loss, score, kl_div = self._compute_losses(model_logprobs_model_data, ref_logprobs_model_data, probability)

        # Log everything
        self._log_statistics(
            model_data,
            mixture_data,
            model_logprobs_model_data.detach(),
            ref_logprobs_model_data,
            probability,
            score.detach(),
            kl_div.detach(),
            context_length,
            model_scores,
            mixture_scores,
        )

        if (
            self.args.torch_empty_cache_steps is not None
            and self.state.global_step % self.args.torch_empty_cache_steps == 0
        ):
            empty_cache()

        kwargs = {}
        # For LOMO optimizers you need to explicitly use the learning rate
        if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]:
            kwargs["learning_rate"] = self._get_learning_rate()

        if self.args.n_gpu > 1:
            loss = loss.mean()  # mean() to average on multi-gpu parallel training

        if self.use_apex:
            with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            self.accelerator.backward(loss, **kwargs)

        return loss.detach() / self.args.gradient_accumulation_steps

    def create_model_card(
        self,
        model_name: Optional[str] = None,
        dataset_name: Optional[str] = None,
        tags: Union[str, list[str], None] = None,
    ):
        """
        Creates a draft of a model card using the information available to the `Trainer`.

        Args:
            model_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the model.
            dataset_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the dataset used for training.
            tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
                Tags to be associated with the model card.
        """
        if not self.is_world_process_zero():
            return

        if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
            base_model = self.model.config._name_or_path
        else:
            base_model = None

        tags = tags or set()
        if isinstance(tags, str):
            tags = {tags}

        if hasattr(self.model.config, "unsloth_version"):
            tags.add("unsloth")

        tags.update(self._tag_names)

        citation = textwrap.dedent("""\
        @inproceedings{munos2024nash,
            title        = {{Nash Learning from Human Feedback}},
            author       = {R{\'{e}}mi Munos and Michal Valko and Daniele Calandriello and Mohammad Gheshlaghi Azar and Mark Rowland and Zhaohan Daniel Guo and Yunhao Tang and Matthieu Geist and Thomas Mesnard and C{\\^{o}}me Fiegel and Andrea Michi and Marco Selvi and Sertan Girgin and Nikola Momchev and Olivier Bachem and Daniel J. Mankowitz and Doina Precup and Bilal Piot},
            year         = 2024,
            booktitle    = {Forty-first International Conference on Machine Learning, {ICML} 2024, Vienna, Austria, July 21-27, 2024},
            publisher    = {OpenReview.net},
            url          = {https://openreview.net/forum?id=Y5AmNYiyCQ}
        }""")

        model_card = generate_model_card(
            base_model=base_model,
            model_name=model_name,
            hub_model_id=self.hub_model_id,
            dataset_name=dataset_name,
            tags=tags,
            wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
            comet_url=get_comet_experiment_url(),
            trainer_name="Nash-MD",
            trainer_citation=citation,
            paper_title="Nash Learning from Human Feedback",
            paper_id="2312.00886",
        )

        model_card.save(os.path.join(self.args.output_dir, "README.md"))