File size: 40,008 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import math
import os
import textwrap
import time
from collections import defaultdict
from contextlib import contextmanager, nullcontext
from pathlib import Path
from typing import Optional, Union

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from accelerate import Accelerator
from accelerate.utils import broadcast, gather_object
from datasets import Dataset
from torch.utils.data import DataLoader
from transformers import (
    BaseImageProcessor,
    DataCollatorWithPadding,
    FeatureExtractionMixin,
    GenerationConfig,
    PreTrainedTokenizerBase,
    ProcessorMixin,
    Trainer,
    TrainerCallback,
    TrainerControl,
    is_wandb_available,
)
from transformers.integrations import get_reporting_integration_callbacks
from transformers.trainer import DEFAULT_CALLBACKS, DEFAULT_PROGRESS_CALLBACK
from transformers.trainer_callback import CallbackHandler, ExportableState, PrinterCallback
from transformers.utils import is_peft_available, is_rich_available

from ..core import masked_mean, masked_whiten
from ..models import create_reference_model
from ..models.utils import unwrap_model_for_generation
from .ppo_config import PPOConfig
from .utils import (
    OnlineTrainerState,
    batch_generation,
    disable_dropout_in_model,
    empty_cache,
    exact_div,
    first_true_indices,
    forward,
    generate_model_card,
    get_comet_experiment_url,
    get_reward,
    log_table_to_comet_experiment,
    peft_module_casting_to_bf16,
    prepare_deepspeed,
    print_rich_table,
    selective_log_softmax,
    truncate_response,
)


if is_peft_available():
    from peft import PeftConfig, PeftModel, get_peft_model

if is_wandb_available():
    import wandb


INVALID_LOGPROB = 1.0


# taken from https://github.com/OpenLMLab/MOSS-RLHF/blob/40b91eb2f2b71b16919addede0341d2bef70825d/ppo/ppo_trainer.py#L29
# we did this we can do a single `model = accelerator.prepare(model)`
class PolicyAndValueWrapper(nn.Module):
    def __init__(self, policy, value_model) -> None:
        super().__init__()
        self.policy = policy
        self.value_model = value_model
        self.critic_backbone = getattr(value_model, value_model.base_model_prefix)

    def forward(self, **kwargs):
        output = self.critic_backbone(**kwargs)
        logits = self.value_model.score(output.hidden_states[-1])
        return self.policy(**kwargs), logits


class PPOTrainer(Trainer):
    _tag_names = ["trl", "ppo"]

    def __init__(
        self,
        args: PPOConfig,
        processing_class: Optional[
            Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
        ],
        model: nn.Module,
        ref_model: Optional[nn.Module],
        reward_model: nn.Module,
        train_dataset: Dataset,
        value_model: nn.Module,
        data_collator: Optional[DataCollatorWithPadding] = None,
        eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
        # less commonly used
        optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
        callbacks: Optional[list[TrainerCallback]] = None,
        peft_config: Optional["PeftConfig"] = None,
    ) -> None:
        if ref_model is model:
            raise ValueError(
                "`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the "
                "same as `model`, you must make a copy of it, or `None` if you use peft."
            )

        self.args = args
        self.processing_class = processing_class
        self.policy_model = model

        # Define the collator if not provided
        if data_collator is None:
            data_collator = DataCollatorWithPadding(self.processing_class)

        # Handle stop token settings: update policy model's generation_config to use provided stop token
        if args.stop_token and args.stop_token_id:
            raise ValueError("You cannot set both `stop_token` and `stop_token_id`.")
        elif args.stop_token:
            if args.stop_token == "eos":
                self.policy_model.generation_config.eos_token_id = self.stop_token_id = processing_class.eos_token_id
            else:
                raise ValueError(
                    f"Unknown `stop_token` {args.stop_token}. Allowed values are: `'eos'` and `None` (no stop token)."
                )
        else:
            self.policy_model.generation_config.eos_token_id = self.stop_token_id = args.stop_token_id  # None or int

        # Check that the kl estimator is valid
        if self.args.kl_estimator not in {"k1", "k3"}:
            raise ValueError(
                "kl_estimator must be either 'k1' (straightforward, unbiased) or 'k3' (lower variance, unbiased, "
                "appears to be a strictly better estimator). See "
                "[Approximating KL Divergence](http://joschu.net/blog/kl-approx.html) for details."
            )

        # peft support
        if not is_peft_available() and peft_config is not None:
            raise ImportError(
                "PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models"
            )
        elif is_peft_available() and peft_config is not None:
            # if model is a peft model and we have a peft_confg, we merge and unload it first
            if isinstance(self.policy_model, PeftModel):
                self.policy_model = self.policy_model.merge_and_unload()

            # get peft model with the given config
            self.policy_model = get_peft_model(self.policy_model, peft_config)
            if args.bf16 and getattr(self.policy_model, "is_loaded_in_4bit", False):
                peft_module_casting_to_bf16(self.policy_model)

        self.is_peft_model = is_peft_available() and isinstance(self.policy_model, PeftModel)
        self.model_adapter_name = args.model_adapter_name
        self.ref_adapter_name = args.ref_adapter_name

        if ref_model:
            self.ref_model = ref_model
        elif self.is_peft_model:
            self.ref_model = None
        else:
            self.ref_model = create_reference_model(self.policy_model)

        self.reward_model = reward_model
        self.train_dataset = train_dataset
        self.train_dataset_len = len(train_dataset)
        self.value_model = value_model
        self.data_collator = data_collator
        self.eval_dataset = eval_dataset
        self.optimizer, self.lr_scheduler = optimizers
        self.optimizer_cls_and_kwargs = None  # needed for transformers >= 4.47

        #########
        # calculate various batch sizes
        #########
        if args.total_episodes is None:  # allow the users to define episodes in terms of epochs.
            args.total_episodes = int(args.num_train_epochs * self.train_dataset_len)
        accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps)
        self.accelerator = accelerator
        args.world_size = accelerator.num_processes
        args.local_batch_size = args.per_device_train_batch_size * args.gradient_accumulation_steps
        args.micro_batch_size = int(args.per_device_train_batch_size * args.world_size)
        args.batch_size = int(args.local_batch_size * args.world_size)
        args.mini_batch_size = exact_div(
            args.batch_size, args.num_mini_batches, "`batch_size` must be a multiple of `num_mini_batches`"
        )
        args.local_mini_batch_size = exact_div(
            args.local_batch_size, args.num_mini_batches, "`local_batch_size` must be a multiple of `num_mini_batches`"
        )
        if args.whiten_rewards:
            assert args.local_mini_batch_size >= 8, (
                f"Per-rank minibatch size {args.local_mini_batch_size} is insufficient for whitening"
            )
        # `per_rank_rollout_batch_size` is our `args.local_batch_size`
        # `per_rank_minibatch_size` is our `args.local_mini_batch_size`
        args.num_total_batches = math.ceil(
            args.total_episodes / args.batch_size
        )  # we may train for more than `total_episodes`
        time_tensor = torch.tensor(int(time.time()), device=accelerator.device)
        time_int = broadcast(time_tensor, 0).item()  # avoid different timestamps across processes
        args.run_name = f"{args.exp_name}__{args.seed}__{time_int}"
        self.local_seed = args.seed + accelerator.process_index * 100003  # Prime
        if args.num_sample_generations > 0:
            self.sample_generations_freq = max(1, args.num_total_batches // args.num_sample_generations)
        self.local_dataloader_batch_size = args.local_batch_size

        #########
        # setup model, optimizer, and others
        #########
        for module in [self.policy_model, self.ref_model, self.value_model, self.reward_model]:
            if module is not None:
                disable_dropout_in_model(module)
        self.model = PolicyAndValueWrapper(self.policy_model, self.value_model)
        self.model.config = self.policy_model.config  # needed for pushing to hub
        self.create_optimizer_and_scheduler(
            num_training_steps=args.num_total_batches
        )  # note that we are calling `self.lr_scheduler.step()` manually only at the batch level

        #########
        ### trainer specifics
        #########
        default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to)
        self.callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
        self.callback_handler = CallbackHandler(
            self.callbacks, self.model, self.processing_class, self.optimizer, self.lr_scheduler
        )
        self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)
        self.control = TrainerControl()
        self.state = OnlineTrainerState(
            is_local_process_zero=self.is_local_process_zero(),
            is_world_process_zero=self.is_world_process_zero(),
            stateful_callbacks=[
                cb for cb in self.callback_handler.callbacks + [self.control] if isinstance(cb, ExportableState)
            ],
        )
        self.current_flos = 0
        self.hp_search_backend = None
        self.is_deepspeed_enabled = getattr(self.accelerator.state, "deepspeed_plugin", None) is not None
        self.is_fsdp_enabled = getattr(self.accelerator.state, "fsdp_plugin", None) is not None
        # Create distant repo and output directory if needed
        self.hub_model_id = None
        if self.args.push_to_hub:
            self.init_hf_repo()
        if self.args.should_save:
            os.makedirs(self.args.output_dir, exist_ok=True)

        # Add tags for models that have been loaded with the correct transformers version
        if hasattr(self.model, "add_model_tags"):
            self.model.add_model_tags(self._tag_names)

        #########
        ### setup dataloader
        #########
        self.dataloader = DataLoader(
            self.train_dataset,
            batch_size=self.local_dataloader_batch_size,
            shuffle=True,
            collate_fn=self.data_collator,
            drop_last=True,  # needed; otherwise the last batch will be of ragged shape
        )
        # sync random states for DataLoader(shuffle=True) before `accelerator.prepare`
        # see https://gist.github.com/vwxyzjn/2581bff1e48e185e0b85b6dfe1def79c
        torch.manual_seed(args.seed)
        self.model, self.optimizer, self.dataloader = accelerator.prepare(self.model, self.optimizer, self.dataloader)
        torch.manual_seed(self.local_seed)  # reset the local seed again

        self.eval_dataloader = DataLoader(
            self.eval_dataset,
            batch_size=args.per_device_eval_batch_size,
            collate_fn=self.data_collator,
            drop_last=True,
        )  # no need to shuffle eval dataset
        self.eval_dataloader = accelerator.prepare(self.eval_dataloader)

        if self.is_deepspeed_enabled:
            self.reward_model = prepare_deepspeed(
                self.reward_model, args.per_device_train_batch_size, args.fp16, args.bf16
            )

            if self.ref_model is None:
                if not self.is_peft_model:
                    raise ValueError("No reference model and model is not a Peft model.")
            else:
                self.ref_model = prepare_deepspeed(
                    self.ref_model, args.per_device_train_batch_size, args.fp16, args.bf16
                )
        else:
            if self.ref_model is None:
                if not self.is_peft_model:
                    raise ValueError("No reference model and model is not a Peft model.")
            else:
                self.ref_model = self.ref_model.to(self.accelerator.device)
            self.reward_model = self.reward_model.to(self.accelerator.device)

    def get_train_dataloader(self) -> DataLoader:
        return self.dataloader

    def get_eval_dataloader(self) -> DataLoader:
        return self.eval_dataloader

    @contextmanager
    def null_ref_context(self):
        """Context manager for handling null reference model (that is, peft adapter manipulation)."""
        with (
            self.accelerator.unwrap_model(self.model.policy).disable_adapter()
            if self.is_peft_model and not self.ref_adapter_name
            else nullcontext()
        ):
            if self.ref_adapter_name:
                self.model.policy.set_adapter(self.ref_adapter_name)
            yield
            if self.ref_adapter_name:
                self.model.policy.set_adapter(self.model_adapter_name or "default")

    def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False):
        backup_model = self.model
        self.model = self.model.policy  # save only the policy

        if self.is_deepspeed_enabled:
            backup_deepspeed = self.deepspeed
            self.deepspeed = self.model

        super().save_model(output_dir, _internal_call)

        self.model = backup_model

        if self.is_deepspeed_enabled:
            self.deepspeed = backup_deepspeed

    def train(self):
        args = self.args
        accelerator = self.accelerator
        optimizer = self.optimizer
        model = self.model
        ref_policy = self.ref_model
        reward_model = self.reward_model
        processing_class = self.processing_class
        dataloader = self.dataloader
        device = accelerator.device

        def repeat_generator():
            while True:
                yield from dataloader

        iter_dataloader = iter(repeat_generator())
        generation_config = GenerationConfig(
            max_new_tokens=args.response_length,
            temperature=(args.temperature + 1e-7),
            top_k=0.0,
            top_p=1.0,
            do_sample=True,
        )

        accelerator.print("===training policy===")
        start_time = time.time()
        stats_shape = (args.num_ppo_epochs, args.num_mini_batches, args.gradient_accumulation_steps)
        approxkl_stats = torch.zeros(stats_shape, device=device)
        pg_clipfrac_stats = torch.zeros(stats_shape, device=device)
        pg_loss_stats = torch.zeros(stats_shape, device=device)
        vf_loss_stats = torch.zeros(stats_shape, device=device)
        vf_clipfrac_stats = torch.zeros(stats_shape, device=device)
        entropy_stats = torch.zeros(stats_shape, device=device)
        ratio_stats = torch.zeros(stats_shape, device=device)
        model.train()

        # trainer state initialization
        self.state.global_step = 0
        self.state.episode = 0
        self.state.max_steps = args.num_total_batches
        self.state.num_train_epochs = args.total_episodes / self.train_dataset_len
        # Compute absolute values for logging, eval, and save if given as ratio
        if args.logging_steps is not None:
            if args.logging_steps < 1:
                self.state.logging_steps = math.ceil(self.state.max_steps * args.logging_steps)
            else:
                self.state.logging_steps = args.logging_steps
        if args.eval_steps is not None:
            if args.eval_steps < 1:
                self.state.eval_steps = math.ceil(self.state.max_steps * args.eval_steps)
            else:
                self.state.eval_steps = args.eval_steps
        if args.save_steps is not None:
            if args.save_steps < 1:
                self.state.save_steps = math.ceil(self.state.max_steps * args.save_steps)
            else:
                self.state.save_steps = args.save_steps
        self.control = self.callback_handler.on_train_begin(args, self.state, self.control)

        # backward compatibility
        if self.is_deepspeed_enabled:
            self.deepspeed = self.model
            self.model_wrapped = self.model

        for update in range(1, args.num_total_batches + 1):
            self.state.episode += 1 * args.batch_size
            data = next(iter_dataloader)
            with torch.no_grad():
                queries = data["input_ids"].to(device)
                context_length = queries.shape[1]
                responses = []
                postprocessed_responses = []
                logprobs = []
                ref_logprobs = []
                scores = []
                sequence_lengths = []
                values = []
                with unwrap_model_for_generation(
                    self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
                ) as unwrapped_model:
                    query_responses, logitss = batch_generation(
                        unwrapped_model.policy,
                        queries,
                        args.local_rollout_forward_batch_size,
                        processing_class.pad_token_id,
                        generation_config,
                    )

                for i in range(0, queries.shape[0], args.local_rollout_forward_batch_size):
                    query = queries[i : i + args.local_rollout_forward_batch_size]
                    query_response = query_responses[i : i + args.local_rollout_forward_batch_size]
                    response = query_response[:, context_length:]
                    logits = logitss[i : i + args.local_rollout_forward_batch_size]
                    logprob = selective_log_softmax(logits, response)
                    del logits
                    empty_cache()

                    if ref_policy is None:
                        with self.null_ref_context():
                            ref_output = forward(model.policy, query_response, processing_class.pad_token_id)
                    else:
                        ref_output = forward(ref_policy, query_response, processing_class.pad_token_id)
                    ref_logits = ref_output.logits[:, context_length - 1 : -1]
                    ref_logits /= args.temperature + 1e-7
                    ref_logprob = selective_log_softmax(ref_logits, response)
                    del ref_output, ref_logits
                    empty_cache()

                    # Response Processing 1. truncate response after the first occurrence of `stop_token_id`
                    postprocessed_response = response
                    if self.stop_token_id is not None:  # handle the edge case when stop_token_id exists but is 0
                        postprocessed_response = truncate_response(
                            self.stop_token_id, processing_class.pad_token_id, response
                        )

                    # Response Processing 2. run reward model on the truncated responses
                    postprocessed_query_response = torch.cat((query, postprocessed_response), 1)
                    sequence_length = first_true_indices(postprocessed_response == processing_class.pad_token_id) - 1
                    unwrapped_value_model = accelerator.unwrap_model(model).value_model
                    full_value, _, _ = get_reward(
                        unwrapped_value_model, query_response, processing_class.pad_token_id, context_length
                    )
                    value = full_value[:, context_length - 1 : -1].squeeze(-1)
                    _, score, _ = get_reward(
                        reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length
                    )

                    responses.append(response)
                    postprocessed_responses.append(postprocessed_response)
                    logprobs.append(logprob)
                    ref_logprobs.append(ref_logprob)
                    sequence_lengths.append(sequence_length)
                    scores.append(score)
                    values.append(value)
                responses = torch.cat(responses, 0)
                postprocessed_responses = torch.cat(postprocessed_responses, 0)
                logprobs = torch.cat(logprobs, 0)
                ref_logprobs = torch.cat(ref_logprobs, 0)
                sequence_lengths = torch.cat(sequence_lengths, 0)
                scores = torch.cat(scores, 0)
                values = torch.cat(values, 0)
                del (logprob, ref_logprob, full_value, value, score, unwrapped_model)
                empty_cache()
                gc.collect()

                # Response Processing 3. Filter completion. Ensure that the sample contains stop_token_id
                # Completions not passing that filter will receive a lower score.
                contain_eos_token = torch.any(postprocessed_responses == self.processing_class.eos_token_id, dim=-1)
                if self.args.missing_eos_penalty is not None:
                    scores[~contain_eos_token] -= self.args.missing_eos_penalty
                # accelerator.print(f"{scores=}, {(contain_eos_token.sum() / len(contain_eos_token))=}")

                # be very careful with `padding_mask_p1`; see https://excalidraw.com/#json=LWnzG4w2k5DjF_EOL_xPt,e2w3a-hFJ_gX5vOfeyXGTw
                response_idxs = torch.arange(responses.shape[1], device=responses.device).repeat(responses.shape[0], 1)
                padding_mask = response_idxs > sequence_lengths.unsqueeze(1)
                logprobs = torch.masked_fill(logprobs, padding_mask, INVALID_LOGPROB)
                ref_logprobs = torch.masked_fill(ref_logprobs, padding_mask, INVALID_LOGPROB)
                sequence_lengths_p1 = sequence_lengths + 1
                padding_mask_p1 = response_idxs > (sequence_lengths_p1.unsqueeze(1))
                values = torch.masked_fill(values, padding_mask_p1, 0)

                # 4. compute rewards
                # Formula used by http://joschu.net/blog/kl-approx.html for the k1 and k3 estimators
                logr = ref_logprobs - logprobs
                kl = -logr if args.kl_estimator == "k1" else (logr.exp() - 1) - logr  # Else statement is k3
                non_score_reward = -args.kl_coef * kl
                rewards = non_score_reward.clone()
                actual_start = torch.arange(rewards.size(0), device=rewards.device)
                actual_end = torch.where(sequence_lengths_p1 < rewards.size(1), sequence_lengths_p1, sequence_lengths)
                rewards[[actual_start, actual_end]] += scores

                # 5. whiten rewards
                if args.whiten_rewards:
                    rewards = masked_whiten(rewards, mask=~padding_mask_p1, shift_mean=False)
                    rewards = torch.masked_fill(rewards, padding_mask_p1, 0)

                # 6. compute advantages and returns
                lastgaelam = 0
                advantages_reversed = []
                gen_length = responses.shape[1]
                for t in reversed(range(gen_length)):
                    nextvalues = values[:, t + 1] if t < gen_length - 1 else 0.0
                    delta = rewards[:, t] + args.gamma * nextvalues - values[:, t]
                    lastgaelam = delta + args.gamma * args.lam * lastgaelam
                    advantages_reversed.append(lastgaelam)
                advantages = torch.stack(advantages_reversed[::-1], axis=1)
                returns = advantages + values
                advantages = masked_whiten(advantages, ~padding_mask)
                advantages = torch.masked_fill(advantages, padding_mask, 0)
                empty_cache()

            # Do multiple epochs of PPO training, with a fresh random shuffle in each epoch
            for ppo_epoch_idx in range(args.num_ppo_epochs):
                b_inds = np.random.permutation(args.local_batch_size)
                minibatch_idx = 0
                for mini_batch_start in range(0, args.local_batch_size, args.local_mini_batch_size):
                    mini_batch_end = mini_batch_start + args.local_mini_batch_size
                    mini_batch_inds = b_inds[mini_batch_start:mini_batch_end]
                    gradient_accumulation_idx = 0
                    for micro_batch_start in range(0, args.local_mini_batch_size, args.per_device_train_batch_size):
                        with accelerator.accumulate(model):
                            micro_batch_end = micro_batch_start + args.per_device_train_batch_size
                            micro_batch_inds = mini_batch_inds[micro_batch_start:micro_batch_end]
                            mb_advantage = advantages[micro_batch_inds]
                            mb_responses = responses[micro_batch_inds]
                            mb_query_responses = query_responses[micro_batch_inds]
                            mb_logprobs = logprobs[micro_batch_inds]
                            mb_return = returns[micro_batch_inds]
                            mb_values = values[micro_batch_inds]

                            output, vpred_temp = forward(model, mb_query_responses, processing_class.pad_token_id)
                            logits = output.logits[:, context_length - 1 : -1]
                            logits /= args.temperature + 1e-7
                            new_logprobs = selective_log_softmax(logits, mb_responses)
                            new_logprobs = torch.masked_fill(
                                new_logprobs, padding_mask[micro_batch_inds], INVALID_LOGPROB
                            )
                            vpred = vpred_temp[:, context_length - 1 : -1].squeeze(-1)
                            vpred = torch.masked_fill(vpred, padding_mask_p1[micro_batch_inds], 0)
                            vpredclipped = torch.clamp(
                                vpred,
                                mb_values - args.cliprange_value,
                                mb_values + args.cliprange_value,
                            )
                            vf_losses1 = torch.square(vpred - mb_return)
                            vf_losses2 = torch.square(vpredclipped - mb_return)
                            vf_loss_max = torch.max(vf_losses1, vf_losses2)
                            vf_loss = 0.5 * masked_mean(vf_loss_max, ~padding_mask_p1[micro_batch_inds])
                            vf_clipfrac = masked_mean(
                                (vf_losses2 > vf_losses1).float(), ~padding_mask_p1[micro_batch_inds]
                            )
                            logprobs_diff = new_logprobs - mb_logprobs
                            ratio = torch.exp(logprobs_diff)
                            pg_losses = -mb_advantage * ratio
                            pg_losses2 = -mb_advantage * torch.clamp(ratio, 1.0 - args.cliprange, 1.0 + args.cliprange)
                            pg_loss_max = torch.max(pg_losses, pg_losses2)
                            pg_loss = masked_mean(pg_loss_max, ~padding_mask[micro_batch_inds])
                            loss = pg_loss + args.vf_coef * vf_loss
                            accelerator.backward(loss)
                            optimizer.step()
                            optimizer.zero_grad()
                            with torch.no_grad():
                                pg_clipfrac = masked_mean(
                                    (pg_losses2 > pg_losses).float(), ~padding_mask[micro_batch_inds]
                                )
                                prob_dist = torch.nn.functional.softmax(logits, dim=-1)
                                entropy = torch.logsumexp(logits, dim=-1) - torch.sum(prob_dist * logits, dim=-1)
                                approxkl = 0.5 * (logprobs_diff**2).mean()
                                approxkl_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = approxkl
                                pg_clipfrac_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = (
                                    pg_clipfrac
                                )
                                pg_loss_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = pg_loss
                                vf_loss_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = vf_loss
                                vf_clipfrac_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = (
                                    vf_clipfrac
                                )
                                entropy_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = entropy.mean()
                                ratio_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = ratio.mean()
                        gradient_accumulation_idx += 1
                    minibatch_idx += 1
                    # del everything and empty cache
                    # fmt: off
                    del (
                        output, vpred_temp, logits, new_logprobs, vpred, vpredclipped,
                        vf_losses1, vf_losses2, vf_loss, vf_clipfrac, logprobs_diff, ratio, pg_losses, pg_losses2, pg_loss_max,
                        pg_loss, loss, pg_clipfrac, prob_dist, entropy, approxkl, mb_return,
                        mb_advantage, mb_values, mb_responses, mb_query_responses, mb_logprobs,
                    )
                    # fmt: on
                    empty_cache()
            with torch.no_grad():
                mean_kl = kl.sum(1).mean()
                mean_entropy = (-logprobs).sum(1).mean()
                mean_non_score_reward = non_score_reward.sum(1).mean()
                rlhf_reward = mean_non_score_reward + scores.mean()
                eps = int(self.state.episode / (time.time() - start_time))
                metrics = {}
                metrics["eps"] = eps
                metrics["objective/kl"] = self.accelerator.gather_for_metrics(mean_kl).mean().item()
                metrics["objective/entropy"] = self.accelerator.gather_for_metrics(mean_entropy).mean().item()
                metrics["objective/non_score_reward"] = (
                    self.accelerator.gather_for_metrics(mean_non_score_reward).mean().item()
                )
                metrics["objective/rlhf_reward"] = self.accelerator.gather_for_metrics(rlhf_reward).mean().item()
                metrics["objective/scores"] = self.accelerator.gather_for_metrics(scores.mean()).mean().item()
                metrics["policy/approxkl_avg"] = self.accelerator.gather_for_metrics(approxkl_stats).mean().item()
                metrics["policy/clipfrac_avg"] = self.accelerator.gather_for_metrics(pg_clipfrac_stats).mean().item()
                metrics["loss/policy_avg"] = self.accelerator.gather_for_metrics(pg_loss_stats).mean().item()
                metrics["loss/value_avg"] = self.accelerator.gather_for_metrics(vf_loss_stats).mean().item()
                metrics["val/clipfrac_avg"] = self.accelerator.gather_for_metrics(vf_clipfrac_stats).mean().item()
                metrics["policy/entropy_avg"] = self.accelerator.gather_for_metrics(entropy_stats).mean().item()
                metrics["val/ratio"] = self.accelerator.gather_for_metrics(ratio_stats).mean().item()
                metrics["val/ratio_var"] = self.accelerator.gather_for_metrics(ratio_stats).var().item()
                metrics["val/num_eos_tokens"] = (responses == processing_class.eos_token_id).sum().item()
                metrics["lr"] = self.lr_scheduler.get_last_lr()[0]
                metrics["episode"] = self.state.episode
                self.state.epoch = self.state.episode / self.train_dataset_len  # used by self.log
                self.state.global_step += 1
                self.log(metrics)

            self.lr_scheduler.step()
            self.control = self.callback_handler.on_step_end(args, self.state, self.control)
            if self.control.should_save:
                self._save_checkpoint(model, trial=None)
                self.control = self.callback_handler.on_save(self.args, self.state, self.control)
            del kl, mean_kl, mean_entropy, mean_non_score_reward, scores, metrics, non_score_reward
            empty_cache()
            gc.collect()

            if args.num_sample_generations > 0 and (update - 1) % self.sample_generations_freq == 0:
                self.generate_completions(sampling=True)
                empty_cache()
            del (
                query_responses,
                responses,
                postprocessed_responses,
                logprobs,
                ref_logprobs,
                values,
                sequence_lengths,
                contain_eos_token,
                sequence_lengths_p1,
                response_idxs,
                padding_mask,
                padding_mask_p1,
                rewards,
                actual_start,
                actual_end,
                advantages,
                returns,
            )
            empty_cache()

        # HF trainer specifics
        self.control = self.callback_handler.on_train_end(args, self.state, self.control)
        if self.control.should_save:
            self._save_checkpoint(model, trial=None, metrics=None)
            self.control = self.callback_handler.on_save(self.args, self.state, self.control)

    def generate_completions(self, sampling: bool = False):
        args = self.args
        processing_class = self.processing_class
        generation_config = GenerationConfig(
            max_new_tokens=self.args.response_length,
            temperature=(0.01 + 1e-7),
            top_k=0.0,
            top_p=1.0,
            do_sample=True,
        )

        table = defaultdict(list)
        with unwrap_model_for_generation(
            self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
        ) as unwrapped_model:
            for batch in self.eval_dataloader:
                query = batch["input_ids"]
                with torch.no_grad():
                    context_length = query.shape[1]
                    query_response, _ = batch_generation(
                        unwrapped_model.policy,
                        query,
                        query.shape[0],
                        processing_class.pad_token_id,
                        generation_config,
                    )
                    response = query_response[:, context_length:]
                    postprocessed_response = response
                    if self.stop_token_id is not None:  # handle the edge case when stop_token_id exists but is 0
                        postprocessed_response = truncate_response(
                            self.stop_token_id, processing_class.pad_token_id, response
                        )
                    table["query"].extend(
                        gather_object(processing_class.batch_decode(query, skip_special_tokens=True))
                    )
                    table["model response"].extend(
                        gather_object(processing_class.batch_decode(postprocessed_response))
                    )

                    postprocessed_query_response = torch.cat((query, postprocessed_response), 1)
                    _, score, _ = get_reward(
                        self.reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length
                    )
                    table["score"].extend(self.accelerator.gather_for_metrics(score).float().cpu().numpy())

                if sampling:
                    break
        df = pd.DataFrame(table)

        if self.accelerator.is_main_process:
            if is_rich_available():
                print_rich_table(df.iloc[0 : 0 + 5])
            if "wandb" in args.report_to:
                import wandb

                if wandb.run is not None:
                    wandb.log({"completions": wandb.Table(dataframe=df)})

            if "comet_ml" in args.report_to:
                log_table_to_comet_experiment(
                    name="completions.csv",
                    table=df,
                )

    # Ensure the model card is saved along with the checkpoint
    def _save_checkpoint(self, model, trial):
        if self.args.hub_model_id is None:
            model_name = Path(self.args.output_dir).name
        else:
            model_name = self.args.hub_model_id.split("/")[-1]
        self.create_model_card(model_name=model_name)
        super()._save_checkpoint(model, trial)

    def create_model_card(
        self,
        model_name: Optional[str] = None,
        dataset_name: Optional[str] = None,
        tags: Union[str, list[str], None] = None,
    ):
        """
        Creates a draft of a model card using the information available to the `Trainer`.

        Args:
            model_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the model.
            dataset_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the dataset used for training.
            tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
                Tags to be associated with the model card.
        """
        if not self.is_world_process_zero():
            return

        if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
            base_model = self.model.config._name_or_path
        else:
            base_model = None

        tags = tags or set()
        if isinstance(tags, str):
            tags = {tags}

        if hasattr(self.model.config, "unsloth_version"):
            tags.add("unsloth")

        tags.update(self._tag_names)

        citation = textwrap.dedent("""\
        @article{mziegler2019fine-tuning,
            title        = {{Fine-Tuning Language Models from Human Preferences}},
            author       = {Daniel M. Ziegler and Nisan Stiennon and Jeffrey Wu and Tom B. Brown and Alec Radford and Dario Amodei and Paul F. Christiano and Geoffrey Irving},
            year         = 2019,
            eprint       = {arXiv:1909.08593}
        }""")

        model_card = generate_model_card(
            base_model=base_model,
            model_name=model_name,
            hub_model_id=self.hub_model_id,
            dataset_name=dataset_name,
            tags=tags,
            wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
            comet_url=get_comet_experiment_url(),
            trainer_name="PPO",
            trainer_citation=citation,
            paper_title="Fine-Tuning Language Models from Human Preferences",
            paper_id="1909.08593",
        )

        model_card.save(os.path.join(self.args.output_dir, "README.md"))