File size: 19,260 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import os
import warnings
from collections import defaultdict
from dataclasses import FrozenInstanceError, replace
from pathlib import Path
from typing import Any, Callable, Optional, Union

import pandas as pd
import torch
import torch.nn as nn
from accelerate import PartialState
from accelerate.utils import gather_object
from datasets import Dataset
from transformers import (
    BaseImageProcessor,
    DataCollator,
    FeatureExtractionMixin,
    PreTrainedModel,
    PreTrainedTokenizerBase,
    ProcessorMixin,
    Trainer,
    is_wandb_available,
)
from transformers.trainer_callback import TrainerCallback
from transformers.trainer_pt_utils import nested_detach
from transformers.trainer_utils import EvalPrediction
from transformers.utils import is_peft_available, is_rich_available

from ..data_utils import maybe_apply_chat_template
from .reward_config import RewardConfig
from .utils import (
    RewardDataCollatorWithPadding,
    compute_accuracy,
    decode_and_strip_padding,
    disable_dropout_in_model,
    generate_model_card,
    get_comet_experiment_url,
    log_table_to_comet_experiment,
    print_rich_table,
)


if is_peft_available():
    from peft import PeftModel, get_peft_model, prepare_model_for_kbit_training

if is_wandb_available():
    import wandb


def _tokenize(batch: dict[str, list[Any]], tokenizer: "PreTrainedTokenizerBase") -> dict[str, list[Any]]:
    """Tokenize a batch from a reward modelling dataset."""
    new_examples = {
        "input_ids_chosen": [],
        "attention_mask_chosen": [],
        "input_ids_rejected": [],
        "attention_mask_rejected": [],
    }
    for chosen, rejected in zip(batch["chosen"], batch["rejected"]):
        tokenized_chosen = tokenizer(chosen)
        tokenized_rejected = tokenizer(rejected)
        new_examples["input_ids_chosen"].append(tokenized_chosen["input_ids"])
        new_examples["attention_mask_chosen"].append(tokenized_chosen["attention_mask"])
        new_examples["input_ids_rejected"].append(tokenized_rejected["input_ids"])
        new_examples["attention_mask_rejected"].append(tokenized_rejected["attention_mask"])

    return new_examples


class RewardTrainer(Trainer):
    _tag_names = ["trl", "reward-trainer"]

    def __init__(
        self,
        model: Optional[Union[PreTrainedModel, nn.Module]] = None,
        args: Optional[RewardConfig] = None,
        data_collator: Optional[DataCollator] = None,
        train_dataset: Optional[Dataset] = None,
        eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
        processing_class: Optional[
            Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
        ] = None,
        model_init: Optional[Callable[[], PreTrainedModel]] = None,
        compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
        callbacks: Optional[list[TrainerCallback]] = None,
        optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (
            None,
            None,
        ),
        preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
        peft_config: Optional[dict] = None,
    ):
        """
        Initialize RewardTrainer.

        Args:
            model (`transformers.PreTrainedModel`):
                The model to train, preferably an `AutoModelForSequenceClassification`.
            args (`RewardConfig`):
                The arguments to use for training.
            data_collator (`transformers.DataCollator`):
                The data collator to use for training. If None is specified, the default data collator (`RewardDataCollatorWithPadding`) will be used
                which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences.
            train_dataset (`datasets.Dataset`):
                The dataset to use for training.
            eval_dataset (`datasets.Dataset`):
                The dataset to use for evaluation.
            processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*):
                Processing class used to process the data. If provided, will be used to automatically process the inputs
                for the model, and it will be saved along the model to make it easier to rerun an interrupted training or
                reuse the fine-tuned model.
            model_init (`Callable[[], transformers.PreTrainedModel]`):
                The model initializer to use for training. If None is specified, the default model initializer will be used.
            compute_metrics (`Callable[[transformers.EvalPrediction], dict]`, *optional* defaults to `compute_accuracy`):
                The metrics to use for evaluation. If no metrics are specified, the default metric (`compute_accuracy`) will be used.
            callbacks (`list[transformers.TrainerCallback]`):
                The callbacks to use for training.
            optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`):
                The optimizer and scheduler to use for training.
            preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`):
                The function to use to preprocess the logits before computing the metrics.
            peft_config (`dict`, defaults to `None`):
                The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in a PEFT model.
        """
        if not is_peft_available() and peft_config is not None:
            raise ValueError(
                "PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models"
            )
        elif is_peft_available() and peft_config is not None:
            if not isinstance(model, PeftModel):
                if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_quantized", False):
                    _supports_gc_kwargs = "gradient_checkpointing_kwargs" in list(
                        inspect.signature(prepare_model_for_kbit_training).parameters
                    )

                    prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing}

                    if not _supports_gc_kwargs and args.gradient_checkpointing_kwargs is not None:
                        warnings.warn(
                            "You passed `gradient_checkpointing_kwargs` in the trainer's kwargs, but your peft version does not support it. "
                            "please update to the latest version of peft to use `gradient_checkpointing_kwargs`.",
                            UserWarning,
                        )
                    elif _supports_gc_kwargs and args.gradient_checkpointing_kwargs is not None:
                        prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs

                    model = prepare_model_for_kbit_training(model, **prepare_model_kwargs)

                model = get_peft_model(model, peft_config)

        # Disable dropout in the model
        if args.disable_dropout:
            disable_dropout_in_model(model)

        if compute_metrics is None:
            compute_metrics = compute_accuracy

        if data_collator is None:
            if processing_class is None:
                raise ValueError(
                    "A processing_class must be specified when using the default RewardDataCollatorWithPadding"
                )

            max_length = args.max_length

            data_collator = RewardDataCollatorWithPadding(processing_class)

            if args.remove_unused_columns:
                try:  # for bc before https://github.com/huggingface/transformers/pull/25435
                    args.remove_unused_columns = False
                except FrozenInstanceError:
                    args = replace(args, remove_unused_columns=False)
                # warn users
                warnings.warn(
                    "When using RewardDataCollatorWithPadding, you should set `remove_unused_columns=False` in your RewardConfig"
                    " we have set it for you, but you should do it yourself in the future.",
                    UserWarning,
                )

            self.use_reward_data_collator = True
        else:
            self.use_reward_data_collator = False

        # The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the
        # input tensor associated with the key "input_ids". However, in Reward, the sampled data does not include the
        # "input_ids" key. Instead, the available keys are "input_ids_chosen" and "input_ids_rejected". As a result,
        # the trainer issues the warning: "Could not estimate the number of tokens of the input, floating-point
        # operations will not be computed." To suppress this warning, we set the "estimate_tokens" key in the model's
        # "warnings_issued" dictionary to True. This acts as a flag to indicate that the warning has already been
        # issued.
        model.warnings_issued["estimate_tokens"] = True

        if "input_ids_chosen" not in train_dataset.column_names:
            with PartialState().main_process_first():
                fn_kwargs = {"tokenizer": processing_class}
                train_dataset = train_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": processing_class})
                train_dataset = train_dataset.map(
                    _tokenize,
                    batched=True,
                    fn_kwargs=fn_kwargs,
                    num_proc=args.dataset_num_proc,
                )
                # This filter is important because otherwise you get samples that exceed the model's context length and
                # get truncated => noisy signal the chosen/rejected label gets lost. The downside is that the
                # user might get surprised if N samples are missing from training.
                train_dataset = train_dataset.filter(
                    lambda x: len(x["input_ids_chosen"]) <= max_length and len(x["input_ids_rejected"]) <= max_length,
                    num_proc=args.dataset_num_proc,
                )
                if eval_dataset is not None:
                    eval_dataset = eval_dataset.map(
                        maybe_apply_chat_template, fn_kwargs={"tokenizer": processing_class}
                    )
                    eval_dataset = eval_dataset.map(
                        _tokenize,
                        fn_kwargs=fn_kwargs,
                        batched=True,
                        num_proc=args.dataset_num_proc,
                    )
                    # This filter is important because otherwise you get samples that exceed the model's context length and
                    # get truncated => noisy signal the chosen/rejected label gets lost. The downside is that the
                    # user might get surprised if N samples are missing from training.
                    eval_dataset = eval_dataset.filter(
                        lambda x: len(x["input_ids_chosen"]) <= max_length
                        and len(x["input_ids_rejected"]) <= max_length,
                        num_proc=args.dataset_num_proc,
                    )

        super().__init__(
            model=model,
            args=args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            processing_class=processing_class,
            model_init=model_init,
            compute_metrics=compute_metrics,
            callbacks=callbacks,
            optimizers=optimizers,
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
        )

        # Add tags for models that have been loaded with the correct transformers version
        if hasattr(self.model, "add_model_tags"):
            self.model.add_model_tags(self._tag_names)

    def compute_loss(
        self,
        model: Union[PreTrainedModel, nn.Module],
        inputs: dict[str, Union[torch.Tensor, Any]],
        return_outputs=False,
        num_items_in_batch=None,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, dict[str, torch.Tensor]]]:
        rewards_chosen = model(
            input_ids=inputs["input_ids_chosen"],
            attention_mask=inputs["attention_mask_chosen"],
            return_dict=True,
        )["logits"]
        rewards_rejected = model(
            input_ids=inputs["input_ids_rejected"],
            attention_mask=inputs["attention_mask_rejected"],
            return_dict=True,
        )["logits"]
        # calculate loss, optionally modulate with margin
        if "margin" in inputs:
            loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected - inputs["margin"]).mean()
        else:
            loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected).mean()

        if self.args.center_rewards_coefficient is not None:
            loss += self.args.center_rewards_coefficient * torch.mean((rewards_chosen + rewards_rejected) ** 2)

        if return_outputs:
            return loss, {
                "rewards_chosen": rewards_chosen,
                "rewards_rejected": rewards_rejected,
            }
        return loss

    def prediction_step(
        self,
        model: Union[PreTrainedModel, nn.Module],
        inputs: dict[str, Union[torch.Tensor, Any]],
        prediction_loss_only: bool,
        ignore_keys: Optional[list[str]] = None,
    ) -> tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
        inputs = self._prepare_inputs(inputs)
        if ignore_keys is None:
            if hasattr(self.model, "config"):
                ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
            else:
                ignore_keys = []

        with torch.no_grad():
            loss, logits_dict = self.compute_loss(model, inputs, return_outputs=True)

        if prediction_loss_only:
            return (loss, None, None)

        loss = loss.detach()
        logits = tuple(v for k, v in logits_dict.items() if k not in ignore_keys)
        logits = nested_detach(logits)
        # Stack accepted against rejected, mean over logits
        # and softmax to get preferences between accepted and rejected to sum to 1
        logits = torch.stack(logits).mean(dim=2).softmax(dim=0).T

        labels = torch.zeros(logits.shape[0])
        labels = self._prepare_inputs(labels)

        return loss, logits, labels

    def evaluate(self, *args, **kwargs):
        num_print_samples = kwargs.pop("num_print_samples", 4)
        self.visualize_samples(num_print_samples)
        return super().evaluate(*args, **kwargs)

    def visualize_samples(self, num_print_samples: int):
        """
        Visualize the reward model logits prediction

        Args:
            num_print_samples (`int`, defaults to `4`):
                The number of samples to print. Set to `-1` to print all samples.
        """
        eval_dataloader = self.get_eval_dataloader()
        table = defaultdict(list)
        for _, inputs in enumerate(eval_dataloader):
            _, logits, _ = self.prediction_step(self.model, inputs, prediction_loss_only=False)
            chosen_text = decode_and_strip_padding(inputs["input_ids_chosen"], self.processing_class)
            rejected_text = decode_and_strip_padding(inputs["input_ids_rejected"], self.processing_class)
            table["chosen_text"].extend(gather_object(chosen_text))
            table["rejected_text"].extend(gather_object(rejected_text))
            table["logits"].extend(
                gather_object([[round(inner_item, 4) for inner_item in item] for item in logits.tolist()])
            )
            if num_print_samples >= 0 and len(table["chosen_text"]) >= num_print_samples:
                break
        df = pd.DataFrame(table)
        if self.accelerator.process_index == 0:
            if is_rich_available():
                print_rich_table(df[:num_print_samples])
            if "wandb" in self.args.report_to:
                import wandb

                if wandb.run is not None:
                    wandb.log({"completions": wandb.Table(dataframe=df)})

            if "comet_ml" in self.args.report_to:
                log_table_to_comet_experiment(
                    name="completions.csv",
                    table=df,
                )

    # Ensure the model card is saved along with the checkpoint
    def _save_checkpoint(self, model, trial):
        if self.args.hub_model_id is None:
            model_name = Path(self.args.output_dir).name
        else:
            model_name = self.args.hub_model_id.split("/")[-1]
        self.create_model_card(model_name=model_name)
        super()._save_checkpoint(model, trial)

    def create_model_card(
        self,
        model_name: Optional[str] = None,
        dataset_name: Optional[str] = None,
        tags: Union[str, list[str], None] = None,
    ):
        """
        Creates a draft of a model card using the information available to the `Trainer`.

        Args:
            model_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the model.
            dataset_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the dataset used for training.
            tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
                Tags to be associated with the model card.
        """
        if not self.is_world_process_zero():
            return

        if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
            base_model = self.model.config._name_or_path
        else:
            base_model = None

        tags = tags or set()
        if isinstance(tags, str):
            tags = {tags}

        if hasattr(self.model.config, "unsloth_version"):
            tags.add("unsloth")

        tags.update(self._tag_names)

        model_card = generate_model_card(
            base_model=base_model,
            model_name=model_name,
            hub_model_id=self.hub_model_id,
            dataset_name=dataset_name,
            tags=tags,
            wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
            comet_url=get_comet_experiment_url(),
            trainer_name="Reward",
        )

        model_card.save(os.path.join(self.args.output_dir, "README.md"))