File size: 79,082 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import dataclasses
import importlib.resources as pkg_resources
import json
import random
import warnings
from collections import deque
from dataclasses import dataclass, field
from importlib.metadata import version
from typing import Any, Literal, Optional, Union

import datasets
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
import torch.utils.data
from accelerate import Accelerator, PartialState
from accelerate.state import AcceleratorState
from huggingface_hub import ModelCard, ModelCardData
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import IterableDataset
from transformers import (
    BitsAndBytesConfig,
    DataCollatorForLanguageModeling,
    EvalPrediction,
    GenerationConfig,
    PreTrainedTokenizerBase,
    TrainerState,
    TrainingArguments,
    is_comet_available,
)
from transformers.utils import (
    is_peft_available,
    is_rich_available,
    is_torch_mlu_available,
    is_torch_npu_available,
    is_torch_xpu_available,
)

from ..trainer.model_config import ModelConfig


if is_rich_available():
    from rich.console import Console
    from rich.panel import Panel
    from rich.table import Table
    from rich.text import Text

if is_comet_available():
    import comet_ml

if is_peft_available():
    from peft import LoraConfig, PeftConfig


class DataCollatorForCompletionOnlyLM(DataCollatorForLanguageModeling):
    """
    Data collator used for completion tasks. It ensures that all the tokens of the labels are set to an 'ignore_index'
    when they do not come from the assistant. This ensure that the loss is only
    calculated on the completion made by the assistant.

    Args:
        response_template (`Union[str, list[int]]`): the template form that indicates the start of the response, typically something like
            '### Response:\n'. It can also be passed as tokenized ids, which can be useful when using a tokenizer that encodes the response
            differently if it does not have proper context.
        instruction_template (`Union[str, list[int]]`): the template form that indicates the start of the human instruction, typically something like
            '### Human:\n'. Useful for assistant-style conversation datasets. It can also be passed as tokenized ids.
        mlm (`bool`, *optional*, defaults to `False`): Whether to use masked language modeling in the underlying
            `DataCollatorForLanguageModeling` class. Note that this option currently has no effect but is present
             for flexibility and backwards-compatibility.
        ignore_index (`int`, *optional*, defaults to `-100`):
            The index to use to ignore the initial tokens with
    """

    def __init__(
        self,
        response_template: Union[str, list[int]],
        instruction_template: Optional[Union[str, list[int]]] = None,
        *args,
        mlm: bool = False,
        ignore_index: int = -100,
        padding_free: bool = False,
        **kwargs,
    ):
        super().__init__(*args, mlm=mlm, **kwargs)
        warnings.warn(
            "This class is deprecated and will be removed in version 0.20.0. To train on completion only, please use "
            "the parameter `completion_only_loss` of `SFTConfig` instead.",
            DeprecationWarning,
        )

        self.instruction_template = instruction_template
        if isinstance(instruction_template, str):
            # The user provides a string, must tokenize
            self.instruction_token_ids = self.tokenizer.encode(self.instruction_template, add_special_tokens=False)
        else:
            # The user already provides the token ids
            self.instruction_token_ids = instruction_template

        self.response_template = response_template
        if isinstance(response_template, str):
            # The user provides a string, must tokenize
            self.response_token_ids = self.tokenizer.encode(self.response_template, add_special_tokens=False)
        else:
            # The user already provides the token ids
            self.response_token_ids = response_template

        if not self.mlm and self.instruction_template and self.tokenizer.pad_token_id == self.tokenizer.eos_token_id:
            warnings.warn(
                "The pad_token_id and eos_token_id values of this tokenizer are identical. "
                "If you are planning for multi-turn training, "
                "it can result in the model continuously generating questions and answers without eos token. "
                "To avoid this, set the pad_token_id to a different value.",
                UserWarning,
            )

        self.ignore_index = ignore_index
        self.padding_free = padding_free

    def torch_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]:
        batch = super().torch_call(examples)

        if self.instruction_template is None:
            for i in range(len(examples)):
                response_token_ids_start_idx = None

                for idx in np.where(batch["labels"][i] == self.response_token_ids[0])[0]:
                    # `response_token_ids` is `'### Response:\n'`, here we are just making sure that the token IDs match
                    if (
                        self.response_token_ids
                        == batch["labels"][i][idx : idx + len(self.response_token_ids)].tolist()
                    ):
                        response_token_ids_start_idx = idx

                if response_token_ids_start_idx is None:
                    warnings.warn(
                        f"Could not find response key `{self.response_template}` in the following instance: "
                        f"{self.tokenizer.decode(batch['input_ids'][i])}. This instance will be ignored in loss "
                        "calculation. Note, if this happens often, consider increasing the `max_length`.",
                        UserWarning,
                    )
                    batch["labels"][i, :] = self.ignore_index
                else:
                    response_token_ids_end_idx = response_token_ids_start_idx + len(self.response_token_ids)

                    # Make pytorch loss function ignore all tokens up through the end of the response key
                    batch["labels"][i, :response_token_ids_end_idx] = self.ignore_index

        else:
            for i in range(len(examples)):
                response_token_ids_idxs = []
                human_token_ids_idxs = []

                for assistant_idx in np.where(batch["labels"][i] == self.response_token_ids[0])[0]:
                    # find the indexes of the start of a response.
                    if (
                        self.response_token_ids
                        == batch["labels"][i][assistant_idx : assistant_idx + len(self.response_token_ids)].tolist()
                    ):
                        response_token_ids_idxs.append(assistant_idx + len(self.response_token_ids))

                if len(response_token_ids_idxs) == 0:
                    warnings.warn(
                        f"Could not find response key `{self.response_template}` in the following instance: "
                        f"{self.tokenizer.decode(batch['input_ids'][i])}. This instance will be ignored in loss "
                        "calculation. Note, if this happens often, consider increasing the `max_length`.",
                        UserWarning,
                    )
                    batch["labels"][i, :] = self.ignore_index

                human_token_ids = self.instruction_token_ids
                for human_idx in np.where(batch["labels"][i] == human_token_ids[0])[0]:
                    # find the indexes of the start of a human answer.
                    if human_token_ids == batch["labels"][i][human_idx : human_idx + len(human_token_ids)].tolist():
                        human_token_ids_idxs.append(human_idx)

                if len(human_token_ids_idxs) == 0:
                    warnings.warn(
                        f"Could not find instruction key `{self.instruction_template}` in the following instance: "
                        f"{self.tokenizer.decode(batch['input_ids'][i])}. This instance will be ignored in loss "
                        "calculation. Note, if this happens often, consider increasing the `max_length`.",
                        UserWarning,
                    )
                    batch["labels"][i, :] = self.ignore_index

                if (
                    len(human_token_ids_idxs) > 0
                    and len(response_token_ids_idxs) > 0
                    and human_token_ids_idxs[0] > response_token_ids_idxs[0]
                ):
                    human_token_ids_idxs = [0] + human_token_ids_idxs

                for idx, (start, end) in enumerate(zip(human_token_ids_idxs, response_token_ids_idxs)):
                    # Make pytorch loss function ignore all non response tokens
                    if idx != 0:
                        batch["labels"][i, start:end] = self.ignore_index
                    else:
                        batch["labels"][i, :end] = self.ignore_index

                if len(response_token_ids_idxs) < len(human_token_ids_idxs):
                    batch["labels"][i, human_token_ids_idxs[-1] :] = self.ignore_index

        if self.padding_free:
            # remove padding, `attention_mask` and add `position_ids`
            attn_mask = batch.pop("attention_mask")
            batch["input_ids"] = batch["input_ids"][attn_mask.bool()].unsqueeze(0)
            batch["position_ids"] = attn_mask.cumsum(1)[attn_mask.bool()].unsqueeze(0) - 1
            batch["labels"] = batch["labels"][attn_mask.bool()].unsqueeze(0)
            batch["labels"][batch["position_ids"] == 0] = self.ignore_index

            # Calculate cumulative sequence lengths for queries and keys to prevent graph breaks during further computations.
            flattened_position_ids = batch["position_ids"].flatten()
            indices_q = torch.arange(
                flattened_position_ids.size(0), device=flattened_position_ids.device, dtype=torch.int32
            )
            batch["cu_seq_lens_q"] = torch.cat(
                (
                    indices_q[flattened_position_ids == 0],
                    torch.tensor(
                        flattened_position_ids.size(), device=flattened_position_ids.device, dtype=torch.int32
                    ),
                )
            ).unsqueeze(0)
            batch["cu_seq_lens_k"] = batch["cu_seq_lens_q"]

            # Determine maximum sequence lengths to prevent graph breaks during further computations.
            batch["max_length_k"] = torch.tensor([flattened_position_ids.max().item() + 1])
            batch["max_length_q"] = batch["max_length_k"]

        return batch


@dataclass
class DataCollatorForChatML:
    """
    Data collator for ChatML format datasets.
    """

    tokenizer: PreTrainedTokenizerBase
    ignore_index: int = -100
    max_length: int = None
    prompt_key: str = "prompt"
    messages_key: str = "messages"

    def __post_init__(self):
        if self.tokenizer.pad_token_id is None:
            raise ValueError("The tokenizer does not have a pad token. Please set `pad_token_id` in the tokenizer.")
        if self.max_length is None:
            # set a sensible default
            self.max_length = min(self.tokenizer.model_max_length, 1024)

    def __call__(self, examples: list[dict[str, Any]]) -> dict[str, torch.Tensor]:
        input_ids = []
        attention_mask = []
        prompts_input_ids = []
        prompt_attention_mask = []
        labels = []

        for example in examples:
            formatted_prompt = example.get(self.prompt_key, None)
            if formatted_prompt is None:
                prompt = example[self.messages_key][:-1]
                formatted_prompt = self.tokenizer.apply_chat_template(
                    prompt, tokenize=False, add_generation_prompt=True
                )

            if "input_ids" not in example:
                message = example[self.messages_key]
                formatted_message = self.tokenizer.apply_chat_template(
                    message, tokenize=False, add_generation_prompt=False
                )
                tokenized_message = self.tokenizer(
                    formatted_message,
                    truncation=True,
                    max_length=self.max_length,
                    padding=False,
                    return_tensors=None,
                    add_special_tokens=False,
                )
                input_ids.append(tokenized_message["input_ids"])
                if "attention_mask" in example:
                    attention_mask.append(tokenized_message["attention_mask"])
                else:
                    attention_mask.append([1] * len(tokenized_message["input_ids"]))
            else:
                input_ids.append(example["input_ids"])
                if "attention_mask" in example:
                    attention_mask.append(example["attention_mask"])
                else:
                    attention_mask.append([1] * len(example["input_ids"]))

            tokenized_prompt = self.tokenizer(
                formatted_prompt,
                truncation=True,
                max_length=len(input_ids[-1]),
                padding=False,
                return_tensors=None,
                add_special_tokens=False,
            )

            prompts_input_ids.append(tokenized_prompt["input_ids"])
            prompt_attention_mask.append(tokenized_prompt["attention_mask"])

            # Create the labels that will have all but the completion tokens of the example["input_ids"] set to ignore_index
            label = [self.ignore_index] * len(input_ids[-1])
            completion_start_idx = len(tokenized_prompt["input_ids"])
            label[completion_start_idx:] = input_ids[-1][completion_start_idx:]
            labels.append(label)

        # convert to list of tensors and pad
        input_ids = [torch.tensor(ids, dtype=torch.long) for ids in input_ids]
        attention_mask = [torch.tensor(mask, dtype=torch.long) for mask in attention_mask]
        labels = [torch.tensor(label, dtype=torch.long) for label in labels]
        input_ids = pad(input_ids, padding_side="left", padding_value=self.tokenizer.pad_token_id)
        attention_mask = pad(attention_mask, padding_side="left", padding_value=0)
        labels = pad(labels, padding_side="left", padding_value=self.ignore_index)

        prompts_input_ids = [torch.tensor(ids, dtype=torch.long) for ids in prompts_input_ids]
        prompt_attention_mask = [torch.tensor(mask, dtype=torch.long) for mask in prompt_attention_mask]
        prompts_input_ids = pad(prompts_input_ids, padding_side="left", padding_value=self.tokenizer.pad_token_id)
        prompt_attention_mask = pad(prompt_attention_mask, padding_side="left", padding_value=0)

        return {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "labels": labels,
            "prompts": prompts_input_ids,
            "prompt_attention_mask": prompt_attention_mask,
        }


@dataclass
class RewardDataCollatorWithPadding:
    r"""
    Reward DataCollator class that pads the inputs to the maximum length of the batch.

    Args:
        tokenizer (`PreTrainedTokenizerBase`):
            The tokenizer used for encoding the data.
        padding (`Union[bool, str, `PaddingStrategy`]`, `optional`, defaults to `True`):
            padding_strategy to pass to the tokenizer.
        pad_to_multiple_of (`int` or `None`, `optional`, defaults to `None`):
            If set will pad the sequence to a multiple of the provided value.
        return_tensors (`str`, `optional`, defaults to `"pt"`):
            The tensor type to use.
    """

    tokenizer: PreTrainedTokenizerBase
    padding: Union[bool, str] = True
    pad_to_multiple_of: Optional[int] = None
    return_tensors: str = "pt"

    def __call__(self, features: list[dict[str, Any]]) -> dict[str, Any]:
        features_chosen = []
        features_rejected = []
        margin = []
        # check if we have a margin. If we do, we need to batch it as well
        has_margin = "margin" in features[0]
        for feature in features:
            # check if the keys are named as expected
            if (
                "input_ids_chosen" not in feature
                or "input_ids_rejected" not in feature
                or "attention_mask_chosen" not in feature
                or "attention_mask_rejected" not in feature
            ):
                raise ValueError(
                    "The features should include `input_ids_chosen`, `attention_mask_chosen`, `input_ids_rejected` and `attention_mask_rejected`"
                )

            features_chosen.append(
                {
                    "input_ids": feature["input_ids_chosen"],
                    "attention_mask": feature["attention_mask_chosen"],
                }
            )
            features_rejected.append(
                {
                    "input_ids": feature["input_ids_rejected"],
                    "attention_mask": feature["attention_mask_rejected"],
                }
            )
            if has_margin:
                margin.append(feature["margin"])
        batch_chosen = self.tokenizer.pad(
            features_chosen,
            padding=self.padding,
            pad_to_multiple_of=self.pad_to_multiple_of,
            return_tensors=self.return_tensors,
        )
        batch_rejected = self.tokenizer.pad(
            features_rejected,
            padding=self.padding,
            pad_to_multiple_of=self.pad_to_multiple_of,
            return_tensors=self.return_tensors,
        )
        batch = {
            "input_ids_chosen": batch_chosen["input_ids"],
            "attention_mask_chosen": batch_chosen["attention_mask"],
            "input_ids_rejected": batch_rejected["input_ids"],
            "attention_mask_rejected": batch_rejected["attention_mask"],
            "return_loss": True,
        }
        if has_margin:
            margin = torch.tensor(margin, dtype=torch.float)
            batch["margin"] = margin
        return batch


def pad(
    tensors: list[torch.Tensor],
    padding_value: int = 0,
    padding_side: str = "right",
    pad_to_multiple_of: Optional[int] = None,
) -> torch.Tensor:
    """
    Pads a list of tensors to the same shape along the first dimension.

    Args:
        tensors (`list[torch.Tensor]`):
            List of input tensors to pad.
        padding_value (`int`):
            Value to use for padding. Default is 0.
        padding_side (`str`):
            Side on which to add padding. Must be 'left' or 'right'. Default is 'right'.
        pad_to_multiple_of (`int`, *optional*, defaults to `None`):
            If set will pad the sequence to a multiple of the provided value.

    Returns:
        `torch.Tensor`:
            A single tensor containing the padded tensors.

    Examples:
        >>> import torch
        >>> pad([torch.tensor([1, 2, 3]), torch.tensor([4, 5])])
        tensor([[1, 2, 3],
                [4, 5, 0]])
        >>> pad([torch.tensor([[1, 2], [3, 4]]), torch.tensor([[5, 6]])])
        tensor([[[1, 2],
                [3, 4]],

                [[5, 6],
                [0, 0]]])
    """
    # Determine the maximum shape for each dimension
    output_shape = np.max([t.shape for t in tensors], 0).tolist()

    # Apply pad_to_multiple_of to the first (sequence) dimension
    if pad_to_multiple_of is not None:
        remainder = output_shape[0] % pad_to_multiple_of
        if remainder != 0:
            output_shape[0] += pad_to_multiple_of - remainder

    # Create an output tensor filled with the padding value
    output = torch.full((len(tensors), *output_shape), padding_value, dtype=tensors[0].dtype, device=tensors[0].device)

    for i, t in enumerate(tensors):
        if padding_side == "left":
            seq_start = output_shape[0] - t.shape[0]
        elif padding_side == "right":
            seq_start = 0
        else:
            raise ValueError("padding_side must be 'left' or 'right'")

        # Define the slices
        seq_slice = slice(seq_start, seq_start + t.shape[0])
        slices = (seq_slice,) + tuple(slice(0, s) for s in t.shape[1:])
        output[i][slices] = t

    return output


@dataclass
class DPODataCollatorWithPadding:
    r"""
    DPO DataCollator class that pads the tokenized inputs to the maximum length of the batch.

    Args:
        pad_token_id (`int` defaults to 0):
            The tokenizer's pad_token_id.
        label_pad_token_id (`int`, defaults to -100):
            The label used for masking.
        is_encoder_decoder (`bool` or `None`, `optional`, defaults to `None`):
            Whether you model has an encoder_decoder architecture.
    """

    pad_token_id: int = 0
    label_pad_token_id: int = -100
    is_encoder_decoder: Optional[bool] = False

    def __call__(self, features: list[dict[str, Any]]) -> dict[str, Any]:
        # first, pad everything to the same length
        padded_batch = {}
        for k in features[0].keys():
            if k.endswith(("_input_ids", "_attention_mask", "_labels", "_pixel_values")):
                if self.is_encoder_decoder:
                    to_pad = [torch.LongTensor(ex[k]) for ex in features]

                    if (k.startswith("prompt")) and (k.endswith("input_ids")):
                        if self.pad_token_id is None:
                            raise ValueError(
                                "Padding is enabled, but the tokenizer is not configured with a padding token."
                                " Explicitly set `tokenizer.pad_token` (e.g. `tokenizer.pad_token = tokenizer.eos_token`)"
                                " before calling the trainer."
                            )
                        padding_value = self.pad_token_id
                    elif k.endswith("_attention_mask"):
                        padding_value = 0
                    elif k.startswith(("chosen", "rejected", "completion")) or ("decoder" in k):
                        padding_value = self.label_pad_token_id
                    else:
                        raise ValueError(f"Unexpected key in batch '{k}'")
                    padded_batch[k] = pad_sequence(to_pad, batch_first=True, padding_value=padding_value)
                else:
                    # Set padding value based on the key
                    if k.endswith("_input_ids"):
                        if self.pad_token_id is None:
                            raise ValueError(
                                "Padding is enabled, but the tokenizer is not configured with a padding token."
                                " Explicitly set `tokenizer.pad_token` (e.g. `tokenizer.pad_token = tokenizer.eos_token`)"
                                " before calling the trainer."
                            )
                        padding_value = self.pad_token_id
                    elif k.endswith("_labels"):
                        padding_value = self.label_pad_token_id
                    elif k.endswith("_attention_mask"):
                        padding_value = 0
                    elif k.endswith("_pixel_values"):
                        padding_value = 0  # TODO: check if this is correct
                    else:
                        raise ValueError(f"Unexpected key in batch '{k}'")

                    # Set padding side based on the key
                    if k in ["prompt_input_ids", "prompt_attention_mask"]:
                        padding_side = "left"
                    else:
                        padding_side = "right"

                    # Set the dtype
                    if k.endswith("_pixel_values"):
                        dtype = torch.float32  # will be downcasted if necessary by the Trainer
                    else:
                        dtype = torch.int64

                    # Convert to tensor and pad
                    to_pad = [torch.tensor(ex[k], dtype=dtype) for ex in features]
                    padded_batch[k] = pad(to_pad, padding_value=padding_value, padding_side=padding_side)
            elif k.endswith("_logps"):
                # the cached reference model logprobs
                padded_batch[k] = torch.tensor([ex[k] for ex in features])
            else:
                padded_batch[k] = [ex[k] for ex in features]

        return padded_batch


class ConstantLengthDataset(IterableDataset):
    """
    Iterable dataset that returns constant length chunks of tokens from stream of text files.
    The dataset also formats the text before tokenization with a specific format that is provided
    by the user.

    Args:
        tokenizer (`transformers.PreTrainedTokenizer`):
            The processor used for processing the data.
        dataset (`dataset.Dataset`):
            Dataset with text files.
        dataset_text_field (`str` or `None`, *optional*, defaults to `None`):
            Name of the field in the dataset that contains the text. Only one of `dataset_text_field` and
            `formatting_func` should be provided.
        formatting_func (`Callable`, *optional*):
            Function that formats the text before tokenization. Usually it is recommended to follow a certain
            pattern such as `"### Question: {question} ### Answer: {answer}"`. Only one of `dataset_text_field` and
            `formatting_func` should be provided.
        infinite (`bool`, *optional*, defaults to `False`):
            If True the iterator is reset after dataset reaches end else stops.
        seq_length (`int`, *optional*, defaults to `1024`):
            Length of token sequences to return.
        num_of_sequences (`int`, *optional*, defaults to `1024`):
            Number of token sequences to keep in buffer.
        chars_per_token (`int`, *optional*, defaults to `3.6`):
            Number of characters per token used to estimate number of tokens in text buffer.
        eos_token_id (`int`, *optional*, defaults to `0`):
            Id of the end of sequence token if the passed tokenizer does not have an EOS token.
        shuffle (`bool`, *optional*, defaults to `True`)
            Shuffle the examples before they are returned
        append_concat_token (`bool`, *optional*, defaults to `True`)
            If true, appends `eos_token_id` at the end of each sample being packed.
        add_special_tokens (`bool`, *optional*, defaults to `True`)
            If true, tokenizers adds special tokens to each sample being packed.
    """

    def __init__(
        self,
        tokenizer,
        dataset,
        dataset_text_field=None,
        formatting_func=None,
        infinite=False,
        seq_length=1024,
        num_of_sequences=1024,
        chars_per_token=3.6,
        eos_token_id=0,
        shuffle=True,
        append_concat_token=True,
        add_special_tokens=True,
    ):
        warnings.warn(
            "This class is deprecated and will be removed in version 0.20.0. To use packing, use the argument "
            "`packing` of `SFTConfig` instead.",
            DeprecationWarning,
        )
        self.tokenizer = tokenizer
        self.concat_token_id = tokenizer.eos_token_id if tokenizer.eos_token_id else eos_token_id
        self.dataset = dataset
        self.seq_length = seq_length
        self.infinite = infinite
        self.current_size = 0
        self.max_buffer_size = seq_length * chars_per_token * num_of_sequences
        self.shuffle = shuffle
        self.append_concat_token = append_concat_token
        self.add_special_tokens = add_special_tokens

        if dataset_text_field is not None and formatting_func is not None:
            warnings.warn(
                "Only one of `dataset_text_field` and `formatting_func` should be provided. "
                "Ignoring `dataset_text_field` and using `formatting_func`.",
                UserWarning,
            )

        if formatting_func is not None:
            self.formatting_func = formatting_func
        elif dataset_text_field is not None:
            self.formatting_func = lambda x: x[dataset_text_field]
        else:  # neither is provided
            raise ValueError("Either `dataset_text_field` or `formatting_func` should be provided.")

        self.pretokenized = False
        column_names = (
            dataset.column_names if isinstance(dataset, (datasets.Dataset, datasets.IterableDataset)) else None
        )
        if column_names is not None and "input_ids" in column_names:
            self.pretokenized = True
            # since the dataset is tokenized, the unit of buffer size should be tokens
            self.max_buffer_size = seq_length * num_of_sequences

    def __len__(self):
        return len(self.dataset)

    def __iter__(self):
        iterator = iter(self.dataset)
        more_examples = True
        while more_examples:
            buffer, buffer_len = [], 0
            while True:
                if buffer_len >= self.max_buffer_size:
                    break
                try:
                    buffer.append(self.formatting_func(next(iterator)))
                    buffer_len += len(buffer[-1])
                except StopIteration:
                    if self.infinite:
                        iterator = iter(self.dataset)
                    else:
                        more_examples = False
                        break
            if self.shuffle:
                random.shuffle(buffer)
            if self.pretokenized:
                tokenized_inputs = buffer
            else:
                tokenized_inputs = self.tokenizer(
                    buffer, add_special_tokens=self.add_special_tokens, truncation=False
                )["input_ids"]
            all_token_ids = []
            for tokenized_input in tokenized_inputs:
                if self.append_concat_token:
                    tokenized_input = tokenized_input + [self.concat_token_id]
                all_token_ids.extend(tokenized_input)
            examples = []
            for i in range(0, len(all_token_ids), self.seq_length):
                input_ids = all_token_ids[i : i + self.seq_length]
                if len(input_ids) == self.seq_length:
                    examples.append(input_ids)
            if self.shuffle:
                # Shuffle again, otherwise split examples occur in consecutive tensors.
                random.shuffle(examples)
            for example in examples:
                self.current_size += 1
                yield {
                    "input_ids": torch.LongTensor(example),
                    "labels": torch.LongTensor(example),
                }


@dataclass
class RunningMoments:
    """
    Calculates the running mean and standard deviation of a data stream. Reference:
    https://github.com/OpenLMLab/MOSS-RLHF/blob/40b91eb2f2b71b16919addede0341d2bef70825d/utils.py#L75
    """

    accelerator: Accelerator
    mean: float = 0
    std: float = 1
    var: float = 1
    count: float = 1e-24

    @torch.no_grad()
    def update(self, xs: torch.Tensor) -> tuple[float, float]:
        """
        Updates running moments from batch's moments computed across ranks
        """
        if self.accelerator.use_distributed:
            xs_mean, xs_var, xs_count = get_global_statistics(self.accelerator, xs)
        else:
            xs_count = xs.numel()
            xs_var, xs_mean = torch.var_mean(xs, unbiased=False)
        xs_mean, xs_var = xs_mean.float(), xs_var.float()

        delta = xs_mean - self.mean
        tot_count = self.count + xs_count

        new_sum = xs_var * xs_count
        # correct old_sum deviation accounting for the new mean
        old_sum = self.var * self.count + delta**2 * self.count * xs_count / tot_count
        tot_sum = old_sum + new_sum

        self.mean += (delta * xs_count / tot_count).item()
        new_var = tot_sum / tot_count
        self.std = (new_var * tot_count / (tot_count - 1)).float().sqrt().item()
        self.var = new_var.item()
        self.count = tot_count

        return xs_mean.item(), (xs_var * xs_count / (xs_count - 1)).float().sqrt().item()

    def save_to_json(self, json_path: str):
        """Save the content of this instance in JSON format inside `json_path`."""
        # save everything except accelerator
        if self.accelerator.is_main_process:
            save_dict = dataclasses.asdict(self, dict_factory=lambda x: {k: v for (k, v) in x if k != "accelerator"})
            json_string = json.dumps(save_dict, indent=2, sort_keys=True) + "\n"
            with open(json_path, "w", encoding="utf-8") as f:
                f.write(json_string)

    @classmethod
    def load_from_json(cls, accelerator: Accelerator, json_path: str):
        """Create an instance from the content of `json_path`."""
        # load everything except accelerator
        with open(json_path, encoding="utf-8") as f:
            text = f.read()
        return cls(accelerator=accelerator, **json.loads(text))


@torch.no_grad()
def get_global_statistics(
    accelerator, xs: torch.Tensor, mask=None, device="cpu"
) -> tuple[torch.Tensor, torch.Tensor, int]:
    """
    Computes element-wise mean and variance of the tensor across processes. Reference:
    https://github.com/OpenLMLab/MOSS-RLHF/blob/40b91eb2f2b71b16919addede0341d2bef70825d/utils.py#L57C1-L73C75
    """
    xs = xs.to(accelerator.device)
    sum_and_count = torch.tensor([xs.sum(), (xs.numel() if mask is None else mask.sum())], device=xs.device)
    sum_and_count = accelerator.reduce(sum_and_count)
    global_sum, count = sum_and_count
    global_mean = global_sum / count

    sum_var = torch.sum(((xs - global_mean) ** 2).mul(1 if mask is None else mask))
    sum_var = accelerator.reduce(sum_var)
    global_var = sum_var / count

    return global_mean.to(device), global_var.to(device), count.item()


def compute_accuracy(eval_pred: EvalPrediction) -> dict[str, float]:
    predictions, labels = eval_pred
    if predictions.ndim == 3:
        # Token classification task. Shapes are (batch_size, seq_len, num_labels) and (batch_size, seq_len)
        # Used to compute the accuracy in the prm_trainer.
        predictions = np.argmax(predictions, axis=2)

        # Flatten the predictions and labels to remove the ignored tokens.
        predictions = np.array(
            [p for prediction, label in zip(predictions, labels) for (p, lbl) in zip(prediction, label) if lbl != -100]
        )
        labels = np.array([lbl for label in labels for lbl in label if lbl != -100])

    else:
        # Here, predictions is rewards_chosen and rewards_rejected. Shapes are (batch_size, 2) and (batch_size,)
        # We want to see how much of the time rewards_chosen > rewards_rejected.
        equal_mask = predictions[:, 0] == predictions[:, 1]
        equal_predictions_count = int(equal_mask.sum())

        if equal_predictions_count > 0:
            warnings.warn(
                f"There are {equal_predictions_count} out of {len(predictions[:, 0])} instances where the predictions "
                "for both options are equal. These instances are ignored in the accuracy computation.",
                UserWarning,
            )

        # Filter out equal predictions
        predictions = predictions[~equal_mask]
        labels = labels[~equal_mask]

        # Use the remaining predictions for accuracy calculation
        predictions = np.argmax(predictions, axis=1)

    accuracy = np.array(predictions == labels, dtype=float).mean().item()
    return {"accuracy": accuracy}


def pad_to_length(tensor: torch.Tensor, length: int, pad_value: Union[int, float], dim: int = -1) -> torch.Tensor:
    if tensor.size(dim) >= length:
        return tensor
    else:
        pad_size = list(tensor.shape)
        pad_size[dim] = length - tensor.size(dim)
        return torch.cat(
            [
                tensor,
                pad_value * torch.ones(*pad_size, dtype=tensor.dtype, device=tensor.device),
            ],
            dim=dim,
        )


def disable_dropout_in_model(model: torch.nn.Module) -> None:
    for module in model.modules():
        if isinstance(module, torch.nn.Dropout):
            module.p = 0


def exact_div(a, b, custom_error_message=""):
    q = a // b
    if a != q * b:
        raise ValueError(f"{custom_error_message}, inexact division: {a} / {b} = {a / b}")
    return q


# copied from https://github.com/kvablack/ddpo-pytorch/blob/main/ddpo_pytorch/stat_tracking.py#L5
class PerPromptStatTracker:
    r"""
    Class for tracking statistics per prompt. Mainly used to calculate advantage for the DPPO algorithm

    Args:
        buffer_size (`int`):
            Size of the buffer to keep for each prompt.
        min_count (`int`):
            Minimum number of samples to keep in the buffer before calculating the mean and std.
    """

    def __init__(self, buffer_size, min_count):
        self.buffer_size = buffer_size
        self.min_count = min_count
        self.stats = {}

    def update(self, prompts, rewards):
        prompts = np.array(prompts)
        rewards = np.array(rewards)
        unique = np.unique(prompts)
        advantages = np.empty_like(rewards)
        for prompt in unique:
            prompt_rewards = rewards[prompts == prompt]
            if prompt not in self.stats:
                self.stats[prompt] = deque(maxlen=self.buffer_size)
            self.stats[prompt].extend(prompt_rewards)

            if len(self.stats[prompt]) < self.min_count:
                mean = np.mean(rewards)
                std = np.std(rewards) + 1e-6
            else:
                mean = np.mean(self.stats[prompt])
                std = np.std(self.stats[prompt]) + 1e-6
            advantages[prompts == prompt] = (prompt_rewards - mean) / std

        return advantages

    def get_stats(self):
        return {k: {"mean": np.mean(v), "std": np.std(v), "count": len(v)} for k, v in self.stats.items()}


def peft_module_casting_to_bf16(model):
    for name, module in model.named_modules():
        if isinstance(module, torch.nn.LayerNorm) or "norm" in name:
            module = module.to(torch.float32)
        elif any(x in name for x in ["lm_head", "embed_tokens", "wte", "wpe"]):
            if hasattr(module, "weight"):
                if module.weight.dtype == torch.float32:
                    module = module.to(torch.bfloat16)


def get_quantization_config(model_args: ModelConfig) -> Optional[BitsAndBytesConfig]:
    if model_args.load_in_4bit:
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=model_args.torch_dtype,  # For consistency with model weights, we use the same value as `torch_dtype`
            bnb_4bit_quant_type=model_args.bnb_4bit_quant_type,
            bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant,
            bnb_4bit_quant_storage=model_args.torch_dtype,
        )
    elif model_args.load_in_8bit:
        quantization_config = BitsAndBytesConfig(
            load_in_8bit=True,
        )
    else:
        quantization_config = None

    return quantization_config


def get_kbit_device_map() -> Optional[dict[str, int]]:
    if torch.cuda.is_available() or is_torch_xpu_available():
        return {"": PartialState().local_process_index}
    else:
        return None


def get_peft_config(model_args: ModelConfig) -> "Optional[PeftConfig]":
    if model_args.use_peft is False:
        return None

    if not is_peft_available():
        raise ValueError(
            "You need to have PEFT library installed in your environment, make sure to install `peft`. "
            "Make sure to run `pip install -U peft`."
        )

    peft_config = LoraConfig(
        task_type=model_args.lora_task_type,
        r=model_args.lora_r,
        target_modules=model_args.lora_target_modules,
        lora_alpha=model_args.lora_alpha,
        lora_dropout=model_args.lora_dropout,
        bias="none",
        use_rslora=model_args.use_rslora,
        use_dora=model_args.use_dora,
        modules_to_save=model_args.lora_modules_to_save,
    )

    return peft_config


def get_exp_cap(value, decimal=4):
    """
    Get the exponent cap of a value. This is used to cap the exponent of a value to avoid overflow.
    The formula is : log(value.dtype.max)
    E.g.
      For float32 data type, the maximum exponent value is 88.7228 to 4 decimal points.
    ```

    Args:
        value (`torch.Tensor`):
            The input tensor to obtain the data type
        decimal (`int`):
            The number of decimal points of the output exponent cap.
            eg: direct calling exp(log(torch.float32.max)) will result in inf
            so we cap the exponent to 88.7228 to avoid overflow.
    """
    vdtype_max = torch.zeros([1]).to(value.dtype) + torch.finfo(value.dtype).max
    vdtype_log_max = torch.log(vdtype_max).to(value.device)
    return torch.floor(vdtype_log_max * 10**decimal) / 10**decimal if decimal > 0 else vdtype_log_max


def cap_exp(value, cap=-1):
    # Cap the exponent value below the upper-bound to avoid overflow, before calling torch.exp
    cap = get_exp_cap(value) if cap < 0 else cap
    return torch.exp(torch.clamp(value, max=cap))


def print_rich_table(df: pd.DataFrame) -> None:
    if not is_rich_available():
        raise ImportError(
            "The function `print_rich_table` requires the `rich` library. Please install it with `pip install rich`."
        )
    console = Console()
    table = Table(show_lines=True)
    for column in df.columns:
        table.add_column(column)
    for _, row in df.iterrows():
        table.add_row(*row.astype(str).tolist())
    console.print(table)


SIMPLE_SFT_CHAT_TEMPLATE = "{% for message in messages %}{{' ' + message['content']}}{% endfor %}{{ eos_token }}"
# SIMPLE_SFT_CHAT_TEMPLATE simply ends things with an EOS token, this helps the SFT model learn to end the completions with EOS tokens

SIMPLE_CHAT_TEMPLATE = "{% for message in messages %}{{message['role'].capitalize() + ': ' + message['content'] + '\n\n'}}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}"


@dataclass
class OnlineTrainerState(TrainerState):
    episode: int = 0


@dataclass
class OnPolicyConfig(TrainingArguments):
    r"""
    Base configuration class for on-policy trainers.

    This class includes only the parameters that are specific to some on-policy training. For a full list of training
    arguments, please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this
    class may differ from those in [`~transformers.TrainingArguments`].

    Using [`~transformers.HfArgumentParser`] we can turn this class into
    [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
    command line.

    Parameters:
        run_name (`str` or `None`, *optional*, defaults to `None`):
            Name of the run.
        dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
            Number of processes to use for processing the dataset.
        num_mini_batches (`int`, *optional*, defaults to `1`):
            Number of minibatches to split a batch into.
        total_episodes (`int` or `None`, *optional*, defaults to `None`):
            Total number of episodes in the dataset.
        local_rollout_forward_batch_size (`int`, *optional*, defaults to `64`):
            Per rank no grad forward pass in the rollout phase.
        num_sample_generations (`int`, *optional*, defaults to `10`):
            Number of debugging samples generations (i.e., `generate_completions` calls) throughout training.
        response_length (`int`, *optional*, defaults to `53`):
            Length of the response.
        stop_token (`str` or `None`, *optional*, defaults to `None`):
            Specifies the stop token to use for text generation. This parameter is mutually exclusive with
            `stop_token_id`.

            - `None`: No stop token is applied, unless `stop_token_id` is specified.
            - `'eos'`: Uses the tokenizer's `eos_token`.

        stop_token_id (`int` or `None`, *optional*, defaults to `None`):
            Specifies the ID of the stop token to use for text generation. If `None`, no stop token ID is applied,
            unless `stop_token` is specified. This parameter is mutually exclusive with `stop_token`.
        temperature (`float`, *optional*, defaults to `0.7`):
            Sampling temperature.
        missing_eos_penalty (`float` or `None`, *optional*, defaults to `None`):
            Penalty applied to the score when the model fails to generate an EOS token. This is useful to encourage
            to generate completions shorter than the maximum length (`max_new_tokens`). The penalty must be a positive
            value.
        sft_model_path (`str`, *optional*, defaults to `"EleutherAI/pythia-160m"`):
            Path to the SFT model.
        world_size (`int` or `None`, *optional*, defaults to `None`):
            Number of processes (GPUs) to use for the training.
        num_total_batches (`int` or `None`, *optional*, defaults to `None`):
            Number of total batches to train.
        micro_batch_size (`int` or `None`, *optional*, defaults to `None`):
            Micro batch size across devices (HF's `per_device_train_batch_size` * `world_size`).
        local_batch_size (`int` or `None`, *optional*, defaults to `None`):
            Batch size per GPU (HF's `per_device_train_batch_size` * `gradient_accumulation_steps`).
        batch_size (`int` or `None`, *optional*, defaults to `None`):
            Batch size across devices (HF's `per_device_train_batch_size` * `world_size` * `gradient_accumulation_steps`).
        local_mini_batch_size (`int` or `None`, *optional*, defaults to `None`):
            Mini batch size per GPU.
        mini_batch_size (`int` or `None`, *optional*, defaults to `None`):
            Mini batch size across GPUs.
        push_to_hub (`bool`, *optional*, defaults to `False`):
            Whether to push the model to the Hub after training.
    """

    # Parameters whose default values are overridden from TrainingArguments
    logging_steps: float = field(
        default=10,
        metadata={
            "help": (
                "Log every X updates steps. Should be an integer or a float in range `[0,1)`. "
                "If smaller than 1, will be interpreted as ratio of total training steps."
            )
        },
    )
    bf16: bool = field(
        default=True,
        metadata={
            "help": (
                "Whether to use bf16 (mixed) precision instead of 32-bit. Requires Ampere or higher NVIDIA "
                "architecture or using CPU (use_cpu) or Ascend NPU. This is an experimental API and it may change."
            )
        },
    )

    run_name: Optional[str] = field(
        default=None,
        metadata={"help": "Name of the run."},
    )
    dataset_num_proc: Optional[int] = field(
        default=None,
        metadata={"help": "Number of processes to use for processing the dataset."},
    )
    num_mini_batches: int = field(
        default=1,
        metadata={"help": "Number of minibatches to split a batch into."},
    )
    total_episodes: Optional[int] = field(
        default=None,
        metadata={"help": "Total number of episodes in the dataset."},
    )
    local_rollout_forward_batch_size: int = field(
        default=64,
        metadata={"help": "Per rank no grad forward pass in the rollout phase."},
    )
    num_sample_generations: int = field(
        default=10,
        metadata={
            "help": "Number of debugging samples generations (i.e., `generate_completions` calls) throughout training."
        },
    )
    response_length: int = field(
        default=53,
        metadata={"help": "Length of the response."},
    )
    stop_token: Optional[Literal["eos"]] = field(
        default=None,
        metadata={
            "help": "Specifies the stop token to use for text generation. This parameter is mutually exclusive with "
            "`stop_token_id`."
        },
    )
    stop_token_id: Optional[int] = field(
        default=None,
        metadata={
            "help": "Specifies the ID of the stop token to use for text generation. If `None`, no stop token ID is "
            "applied, unless `stop_token` is specified. This parameter is mutually exclusive with `stop_token`."
        },
    )
    temperature: float = field(
        default=0.7,
        metadata={"help": "Sampling temperature."},
    )
    missing_eos_penalty: Optional[float] = field(
        default=None,
        metadata={
            "help": "Penalty applied to the score when the model fails to generate an EOS token. This is useful to "
            "encourage to generate completions shorter than the maximum length (`max_new_tokens`). The penalty must be "
            "a positive value."
        },
    )
    sft_model_path: str = field(
        default="EleutherAI/pythia-160m",
        metadata={"help": "Path to the SFT model."},
    )
    world_size: Optional[int] = field(
        default=None,
        metadata={"help": "Number of processes (GPUs) to use for the training."},
    )
    num_total_batches: Optional[int] = field(
        default=None,
        metadata={"help": "Number of total batches to train."},
    )
    micro_batch_size: Optional[int] = field(
        default=None,
        metadata={"help": "Micro batch size across devices (HF's `per_device_train_batch_size` * `world_size`)."},
    )
    local_batch_size: Optional[int] = field(
        default=None,
        metadata={"help": "Batch size per GPU (HF's `per_device_train_batch_size` * `gradient_accumulation_steps`)."},
    )
    batch_size: Optional[int] = field(
        default=None,
        metadata={
            "help": "Batch size across devices (HF's `per_device_train_batch_size` * `world_size` * "
            "`gradient_accumulation_steps`)."
        },
    )
    local_mini_batch_size: Optional[int] = field(
        default=None,
        metadata={"help": "Mini batch size per GPU."},
    )
    mini_batch_size: Optional[int] = field(
        default=None,
        metadata={"help": "Mini batch size across GPUs."},
    )
    push_to_hub: bool = field(
        default=False,
        metadata={"help": "Whether to push the model to the Hub after training."},
    )


def first_true_indices(bools: torch.Tensor, dtype=torch.long):
    """
    Takes an N-dimensional bool tensor and returns an (N-1)-dimensional tensor of integers giving
    the position of the first True in each "row".

    Returns the length of the rows (bools.size(-1)) if no element is True in a given row.

    Args:
        bools (`torch.Tensor`):
            An N-dimensional boolean tensor.
        dtype (`torch.dtype`, optional):
            The desired data type of the output tensor. Defaults to `torch.long`.

    Returns:
        `torch.Tensor`:
            An (N-1)-dimensional tensor of integers indicating the position of the first True
            in each row. If no True value is found in a row, returns the length of the row.
    """
    row_len = bools.size(-1)
    zero_or_index = row_len * (~bools).type(dtype) + torch.arange(row_len, dtype=dtype, device=bools.device)
    return torch.min(zero_or_index, dim=-1).values


def get_reward(
    model: torch.nn.Module, query_responses: torch.Tensor, pad_token_id: int, context_length: int
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    """
    Computes the reward logits and the rewards for a given model and query responses.

    Args:
        model (`torch.nn.Module`):
            The model used to compute the reward logits.
        query_responses (`torch.Tensor`):
            The tensor containing the query responses.
        pad_token_id (`int`):
            The token ID representing the pad token.
        context_length (`int`):
            The length of the context in the query responses.

    Returns:
        tuple:
            - `reward_logits` (`torch.Tensor`):
                The logits for the reward model.
            - `final_rewards` (`torch.Tensor`):
                The final rewards for each query response.
            - `sequence_lengths` (`torch.Tensor`):
                The lengths of the sequences in the query responses.
    """
    attention_mask = query_responses != pad_token_id
    position_ids = attention_mask.cumsum(1) - attention_mask.long()  # exclusive cumsum
    lm_backbone = getattr(model, model.base_model_prefix)
    input_ids = torch.masked_fill(query_responses, ~attention_mask, 0)
    output = lm_backbone(
        input_ids=input_ids,
        attention_mask=attention_mask,
        position_ids=position_ids,
        return_dict=True,
        output_hidden_states=True,
        use_cache=False,  # otherwise mistral-based RM would error out
    )
    reward_logits = model.score(output.hidden_states[-1])
    sequence_lengths = first_true_indices(query_responses[:, context_length:] == pad_token_id) - 1 + context_length
    # https://github.com/huggingface/transformers/blob/dc68a39c8111217683bf49a4912d0c9018bab33d/src/transformers/models/gpt2/modeling_gpt2.py#L1454
    return (
        reward_logits,
        reward_logits[
            torch.arange(reward_logits.size(0), device=reward_logits.device),
            sequence_lengths,
        ].squeeze(-1),
        sequence_lengths,
    )


def forward(
    model: torch.nn.Module,
    query_responses: torch.Tensor,
    pad_token_id: int,
) -> torch.nn.Module:
    """
    Performs a forward pass through the model with the given query responses and pad token ID.

    Args:
        model (`torch.nn.Module`):
            The model to perform the forward pass.
        query_responses (`torch.Tensor`):
            The tensor containing the query responses.
        pad_token_id (`int`):
            The token ID representing the pad token.

    Returns:
        `torch.nn.Module`:
            The output of the model, including hidden states.
    """
    attention_mask = query_responses != pad_token_id
    position_ids = attention_mask.cumsum(1) - attention_mask.long()
    input_ids = torch.masked_fill(query_responses, ~attention_mask, 0)
    return model(
        input_ids=input_ids,
        attention_mask=attention_mask,
        position_ids=position_ids,
        return_dict=True,
        output_hidden_states=True,
    )


def prepare_deepspeed(
    model: torch.nn.Module, per_device_train_batch_size: int, fp16: bool = False, bf16: bool = False
):
    """
    Prepares the model for training with DeepSpeed (both for stage 2 and 3), configuring the appropriate settings based on the model and
    batch size.

    Args:
        model (`torch.nn.Module`):
            The model to be prepared for DeepSpeed training.
        per_device_train_batch_size (`int`):
            The training batch size per device.

    Returns:
        `torch.nn.Module`:
            The model initialized and configured with DeepSpeed for training.
    """
    import deepspeed

    deepspeed_plugin = AcceleratorState().deepspeed_plugin
    config_kwargs = deepspeed_plugin.deepspeed_config
    if config_kwargs["zero_optimization"]["stage"] != 3:
        config_kwargs["train_micro_batch_size_per_gpu"] = per_device_train_batch_size
        config_kwargs = {
            "train_micro_batch_size_per_gpu": config_kwargs["train_micro_batch_size_per_gpu"],
            "prescale_gradients": False,
            "wall_clock_breakdown": False,
        }
        if bf16:
            config_kwargs["bf16"] = {"enabled": True}
        elif fp16:
            config_kwargs["fp16"] = {"enabled": True}
    else:
        if hasattr(model, "config"):
            hidden_size = (
                max(model.config.hidden_sizes)
                if getattr(model.config, "hidden_sizes", None)
                else getattr(model.config, "hidden_size", None)
            )
            if hidden_size is not None and config_kwargs["zero_optimization"]["stage"] == 3:
                # Note that `stage3_prefetch_bucket_size` can produce DeepSpeed messages like: `Invalidate trace cache @ step 0: expected module 1, but got module 0`
                # This is expected and is not an error, see: https://github.com/microsoft/DeepSpeed/discussions/4081
                config_kwargs.update(
                    {
                        "zero_optimization.reduce_bucket_size": hidden_size * hidden_size,
                        "zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size,
                        "zero_optimization.stage3_prefetch_bucket_size": 0,
                    }
                )
    model, *_ = deepspeed.initialize(model=model, config=config_kwargs)
    model.eval()
    return model


def truncate_response(stop_token_id: int, pad_token_id: int, responses: torch.Tensor):
    """
    Truncates the responses at the first occurrence of the stop token, filling the rest with pad tokens.

    Args:
        stop_token_id (`int`):
            The token ID representing the stop token where truncation occurs.
        pad_token_id (`int`):
            The token ID representing the pad token used to fill the truncated responses.
        responses (`torch.Tensor`):
            The tensor containing the responses to be truncated.

    Returns:
        `torch.Tensor`:
            The truncated responses tensor with pad tokens filled after the stop token.
    """
    trunc_idxs = first_true_indices(responses == stop_token_id).unsqueeze(-1)
    new_size = [1] * (len(responses.size()) - 1) + [responses.shape[1]]
    idxs = torch.arange(responses.shape[1], device=responses.device).view(*new_size)
    postprocessed_responses = torch.masked_fill(responses, idxs > trunc_idxs, pad_token_id)
    return postprocessed_responses


def generate(
    lm_backbone: torch.nn.Module, queries: torch.Tensor, pad_token_id: int, generation_config: GenerationConfig
) -> tuple[torch.Tensor, torch.Tensor]:
    """
    Generates sequences from the language model backbone in a way that does not affect padding tokens.

    Args:
        lm_backbone (`torch.nn.Module`):
            The language model backbone used for generation.
        queries (`torch.Tensor`):
            The tensor containing the input queries.
        pad_token_id (`int`):
            The token ID representing the pad token.
        generation_config (`GenerationConfig`):
            The configuration for the generation process.

    Returns:
        tuple:
            - `generated_sequences` (`torch.Tensor`):
                The concatenated tensor of input queries and generated sequences.
            - `logits` (`torch.Tensor`):
                The logits output from the generation process.
    """
    context_length = queries.shape[1]
    attention_mask = queries != pad_token_id
    input_ids = torch.masked_fill(queries, ~attention_mask, 0)
    output = lm_backbone.generate(
        input_ids=input_ids,
        attention_mask=attention_mask,
        # position_ids=attention_mask.cumsum(1) - attention_mask.long(), # not needed: already adjusted in generations
        # https://github.com/huggingface/transformers/blob/ac33aeeeee2a7a89b89c93c2962e6feb90daef0a/src/transformers/models/gpt2/modeling_gpt2.py#L1227-L1250
        generation_config=generation_config,
        return_dict_in_generate=True,
        output_scores=True,
    )
    logits = torch.stack(output.scores, 1)
    return torch.cat((queries, output.sequences[:, context_length:]), dim=1), logits


@torch.no_grad()
def batch_generation(
    model: torch.nn.Module,
    queries: torch.Tensor,
    local_rollout_forward_batch_size: int,
    pad_token_id: int,
    generation_config: GenerationConfig,
):
    query_responses = []
    logitss = []
    batch_size = queries.shape[0]
    for i in range(0, batch_size, local_rollout_forward_batch_size):
        query = queries[i : i + local_rollout_forward_batch_size]
        query_response, logits = generate(
            model,
            query,
            pad_token_id,
            generation_config,
        )
        query_responses.append(query_response)
        logitss.append(logits)

    # padding tensors
    padded_query_responses = pad(query_responses, padding_value=pad_token_id, padding_side="right")
    padded_logitss = pad(logitss, padding_value=0, padding_side="right")

    # reshaping
    padded_query_responses = padded_query_responses.view(-1, padded_query_responses.shape[-1])[:batch_size]
    padded_logitss = padded_logitss.view(-1, *padded_logitss.shape[2:])[:batch_size]

    return padded_query_responses, padded_logitss


def add_bos_token_if_needed(
    bos_token_id: Optional[int],
    prompt_len_input_ids: int,
    prompt_tokens: dict[str, list[int]],
    chosen_prompt_len_input_ids: int,
    chosen_tokens: dict[str, list[int]],
    rejected_prompt_len_input_ids: int,
    rejected_tokens: dict[str, list[int]],
):
    if bos_token_id is not None:
        if prompt_len_input_ids == 0 or bos_token_id != prompt_tokens["prompt_input_ids"][0]:
            prompt_tokens["prompt_input_ids"] = [bos_token_id] + prompt_tokens["prompt_input_ids"]
            prompt_tokens["prompt_attention_mask"] = [1] + prompt_tokens["prompt_attention_mask"]
        if chosen_prompt_len_input_ids == 0 or bos_token_id != chosen_tokens["prompt_input_ids"][0]:
            chosen_tokens["prompt_input_ids"] = [bos_token_id] + chosen_tokens["prompt_input_ids"]
            chosen_tokens["prompt_attention_mask"] = [1] + chosen_tokens["prompt_attention_mask"]
        if rejected_prompt_len_input_ids == 0 or bos_token_id != rejected_tokens["prompt_input_ids"][0]:
            rejected_tokens["prompt_input_ids"] = [bos_token_id] + rejected_tokens["prompt_input_ids"]
            rejected_tokens["prompt_attention_mask"] = [1] + rejected_tokens["prompt_attention_mask"]
    return prompt_tokens, chosen_tokens, rejected_tokens


def add_eos_token_if_needed(
    eos_token_id: int, chosen_tokens: dict[str, list[int]], rejected_tokens: dict[str, list[int]]
):
    if len(chosen_tokens["input_ids"]) == 0 or eos_token_id != chosen_tokens["input_ids"][-1]:
        chosen_tokens["input_ids"].append(eos_token_id)
        chosen_tokens["attention_mask"].append(1)
    if len(rejected_tokens["input_ids"]) == 0 or eos_token_id != rejected_tokens["input_ids"][-1]:
        rejected_tokens["input_ids"].append(eos_token_id)
        rejected_tokens["attention_mask"].append(1)
    return chosen_tokens, rejected_tokens


def truncate_right(
    input_ids: torch.Tensor, stop_token_id: int, pad_token_id: int
) -> tuple[torch.Tensor, torch.Tensor]:
    """
    Truncates the input tensor from the right side after the first occurrence of the stop token.

    Args:
        input_ids (`torch.Tensor`):
            The tensor containing the responses to be truncated
        stop_token_id (`int`):
            The token ID representing the stop token where truncation occurs
        pad_token_id (`int`):
            The token ID representing the pad token used to fill the truncated responses

    Returns:
        tuple:
            - `output_ids` (`torch.Tensor`):
                The truncated responses tensor with pad tokens filled after the stop token
            - `mask` (`torch.Tensor`):
                The mask tensor to indicate the padding tokens
    """
    trunc_idxs = first_true_indices(input_ids == stop_token_id).unsqueeze(-1)
    new_size = [1] * (len(input_ids.size()) - 1) + [input_ids.shape[1]]
    idxs = torch.arange(input_ids.shape[1], device=input_ids.device).view(*new_size)
    output_ids = torch.masked_fill(input_ids, idxs > trunc_idxs, pad_token_id)
    mask = torch.masked_fill(torch.ones_like(input_ids), idxs > trunc_idxs, 0)
    return output_ids, mask


def empty_cache() -> None:
    """Empties the cache of the available torch device.

    This function checks for the availability of different torch devices (XPU, MLU, NPU, CUDA)
    and empties the cache of the first available device it finds.

    If none of the specific devices are available, it defaults to emptying the CUDA cache.
    """
    if is_torch_xpu_available():
        torch.xpu.empty_cache()
    elif is_torch_mlu_available():
        torch.mlu.empty_cache()
    elif is_torch_npu_available():
        torch.npu.empty_cache()
    else:
        torch.cuda.empty_cache()


def decode_and_strip_padding(inputs: torch.Tensor, tokenizer: PreTrainedTokenizerBase) -> list[str]:
    """
    Decodes the input tensor and strips the padding tokens.

    Args:
        inputs (`torch.Tensor`):
            The input tensor to be decoded.
        tokenizer (`transformers.PreTrainedTokenizerBase`):
            The tokenizer used to decode the input tensor.

    Returns:
        `list[str]`:
            The list of decoded strings with padding tokens stripped.
    """
    decoded = tokenizer.batch_decode(inputs, skip_special_tokens=False)
    return [d.replace(tokenizer.pad_token, "") for d in decoded]


def generate_model_card(
    base_model: Optional[str],
    model_name: str,
    hub_model_id: str,
    dataset_name: Optional[str],
    tags: list[str],
    wandb_url: Optional[str],
    trainer_name: str,
    trainer_citation: Optional[str] = None,
    paper_title: Optional[str] = None,
    paper_id: Optional[str] = None,
    comet_url: Optional[str] = None,
) -> ModelCard:
    """
    Generate a `ModelCard` from a template.

    Args:
        base_model (`str` or `None`):
            Base model name.
        model_name (`str`):
            Model name.
        hub_model_id (`str`):
            Hub model ID as `username/model_id`.
        dataset_name (`str` or `None`):
            Dataset name.
        tags (`list[str]`):
            Tags.
        wandb_url (`str` or `None`):
            Weights & Biases run URL.
        comet_url (`str` or `None`):
            Comet experiment URL.
        trainer_name (`str`):
            Trainer name.
        trainer_citation (`str` or `None`, defaults to `None`):
            Trainer citation as a BibTeX entry.
        paper_title (`str` or `None`, defaults to `None`):
            Paper title.
        paper_id (`str` or `None`, defaults to `None`):
            ArXiv paper ID as `YYMM.NNNNN`.

    Returns:
        `ModelCard`:
            A ModelCard object.
    """
    card_data = ModelCardData(
        base_model=base_model,
        datasets=dataset_name,
        library_name="transformers",
        licence="license",
        model_name=model_name,
        tags=["generated_from_trainer", *tags],
    )
    card = ModelCard.from_template(
        card_data,
        template_path=str(pkg_resources.files("trl").joinpath("templates/lm_model_card.md")),
        base_model=base_model,
        model_name=model_name,
        hub_model_id=hub_model_id,
        dataset_name=dataset_name,
        wandb_url=wandb_url,
        comet_url=comet_url,
        trainer_name=trainer_name,
        trainer_citation=trainer_citation,
        paper_title=paper_title,
        paper_id=paper_id,
        trl_version=version("trl"),
        transformers_version=version("transformers"),
        pytorch_version=version("torch"),
        datasets_version=version("datasets"),
        tokenizers_version=version("tokenizers"),
    )
    return card


def get_comet_experiment_url() -> Optional[str]:
    """
    If Comet integration is enabled, return the URL of the current Comet experiment; otherwise, return `None`.
    """
    if not is_comet_available():
        return None

    if comet_ml.get_running_experiment() is not None:
        return comet_ml.get_running_experiment().url

    return None


def log_table_to_comet_experiment(name: str, table: pd.DataFrame) -> None:
    """
    If Comet integration is enabled logs a table to the Comet experiment if it is currently running.

    Args:
        name (`str`):
            Table name.
        table (`pd.DataFrame`):
            The Pandas DataFrame containing the table to log.
    """
    if not is_comet_available():
        raise ModuleNotFoundError("The comet-ml is not installed. Please install it first: pip install comet-ml")

    experiment = comet_ml.get_running_experiment()
    if experiment is not None:
        experiment.log_table(tabular_data=table, filename=name)


def flush_left(mask: torch.Tensor, *tensors: torch.Tensor) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]:
    """
    Shift non-zero elements in the mask and corresponding tensors to the left.

    This function operates on a binary mask and any number of additional tensors with the same dimensions as the mask.
    For each row, non-zero values are shifted to the leftmost positions. Then, columns that contain only zeros across
    all rows are truncated from the mask and tensors. Visually, this operation can be represented as follows:

    ```
    [[0, 0, x, x, x, x],  ->  [[x, x, x, x],
     [0, x, x, x, 0, 0]]       [x, x, x, 0]]
    ```

    Args:

        mask (`torch.Tensor`):
            2D tensor (binary mask) with shape `(N, M)`.
        *tensors (`torch.Tensor`)
            One or more 2D tensors with the same shape as `mask`. These tensors will be processed alongside `mask`,
            with non-zero values shifted and excess zero columns truncated in the same manner.

    Returns:
        `torch.Tensor`:
            Updated binary mask with non-zero values flushed to the left and trailing zero columns removed.
        `*torch.Tensor`
            Updated tensors, processed in the same way as the mask.

    Example:
    ```python
    >>> mask = torch.tensor([[0, 0, 1, 1, 1],
    ...                      [0, 1, 1, 0, 0]])
    >>> tensor = torch.tensor([[9, 9, 2, 3, 4],
    ...                        [9, 5, 6, 9, 9]])
    >>> new_mask, new_tensor = flush_left(mask, tensor)
    >>> print(new_mask)
    tensor([[1, 1, 1],
            [1, 1, 0]])
    >>> print(new_tensor)
    tensor([[2, 3, 4],
            [5, 6, 0]])
    ```
    """
    _, M = mask.shape

    # Create copy of mask and tensors
    mask_copy = mask.clone()
    tensors = [t.clone() for t in tensors]

    # Shift non-zero values to the left
    first_non_zero = mask_copy.argmax(dim=1)
    pos = torch.arange(M, device=mask_copy.device).unsqueeze(0)
    idx_roll = (pos + first_non_zero.unsqueeze(1)) % M
    mask_roll = mask_copy.gather(1, idx_roll)
    rolled_tensors = [t.gather(1, idx_roll) for t in tensors]

    # Truncate trailing columns that are all zeros in mask_roll
    col_sums = mask_roll.sum(dim=0)
    empty_cols = col_sums == 0
    first_empty_col = int(empty_cols.to(torch.int8).argmax()) if empty_cols.any() else M
    flushed_mask = mask_roll[:, :first_empty_col]
    flushed_tensors = [t[:, :first_empty_col] for t in rolled_tensors]

    if not flushed_tensors:
        return flushed_mask
    return flushed_mask, *flushed_tensors


def flush_right(mask: torch.Tensor, *tensors: torch.Tensor) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]:
    """
    Shift non-zero elements in the mask and corresponding tensors to the right. See `flush_left` for details.
    """
    _, M = mask.shape

    # Create copy of mask and tensors
    mask_copy = mask.clone()
    tensors = [t.clone() for t in tensors]

    # Shift non-zero values to the right
    flipped_mask = torch.fliplr(mask_copy)
    first_non_zero = flipped_mask.argmax(dim=1)
    pos = torch.arange(M, device=mask_copy.device).unsqueeze(0)
    idx_roll = (pos - first_non_zero.unsqueeze(1)) % M
    mask_roll = mask_copy.gather(1, idx_roll)
    rolled_tensors = [t.gather(1, idx_roll) for t in tensors]

    # Truncate leading columns that are all zeros in mask_roll
    col_sums = mask_roll.sum(dim=0)
    non_empty_cols = col_sums != 0
    first_non_empty_col = int(non_empty_cols.to(torch.int8).argmax()) if non_empty_cols.any() else M
    flushed_mask = mask_roll[:, first_non_empty_col:]
    flushed_tensors = [t[:, first_non_empty_col:] for t in rolled_tensors]

    if not flushed_tensors:
        return flushed_mask
    return flushed_mask, *flushed_tensors


def selective_log_softmax(logits, index):
    """
    A memory-efficient implementation of the common `log_softmax -> gather` operation.

    This function is equivalent to the following naive implementation:
    ```python
    logps = torch.gather(logits.log_softmax(-1), dim=-1, index=index.unsqueeze(-1)).squeeze(-1)
    ```

    Args:
        logits (`torch.Tensor`):
            Logits tensor of shape `(..., num_classes)`.
        index (`torch.Tensor`):
            Index tensor of shape `(...)`, specifying the positions to gather from the log-softmax output.

    Returns:
        `torch.Tensor`:
            Gathered log probabilities with the same shape as `index`.
    """
    if logits.dtype in [torch.float32, torch.float64]:
        selected_logits = torch.gather(logits, dim=-1, index=index.unsqueeze(-1)).squeeze(-1)
        # loop to reduce peak mem consumption
        logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
        per_token_logps = selected_logits - logsumexp_values  # log_softmax(x_i) = x_i - logsumexp(x)
    else:
        # logsumexp approach is unstable with bfloat16, fall back to slightly less efficent approach
        per_token_logps = []
        for row_logits, row_labels in zip(logits, index):  # loop to reduce peak mem consumption
            row_logps = F.log_softmax(row_logits, dim=-1)
            row_per_token_logps = row_logps.gather(dim=-1, index=row_labels.unsqueeze(-1)).squeeze(-1)
            per_token_logps.append(row_per_token_logps)
        per_token_logps = torch.stack(per_token_logps)
    return per_token_logps


def print_prompt_completions_sample(
    prompts: list[str],
    completions: list[str],
    rewards: dict[str, list[float]],
    advantages: list[float],
    step: int,
    num_samples: int = None,
) -> None:
    """
    Print out a sample of model completions to the console with multiple reward metrics.

    This function creates a nicely formatted table showing prompt-completion pairs, useful for monitoring model outputs
    during training. It requires the `rich` library to be installed.

    Args:
        prompts (`list[str]`):
            List of prompts.
        completions (`list[str]`):
            List of completions corresponding to the prompts.
        rewards (`dict[str, list[float]]`):
            Dictionary where keys are reward names and values are lists of rewards.
        advantages (`list[float]`):
            List of advantages corresponding to the prompts and completions.
        step (`int`):
            Current training step number, used in the output title.
        num_samples (`int` or `None`, *optional*, defaults to `None`):
            Number of random samples to display. If `None` (default), all items will be displayed.

    Example:
    ```python
    >>> from trl.trainer.utils import print_prompt_completions_sample
    >>> prompts = ["The sky is", "The sun is"]
    >>> completions = [" blue.", " in the sky."]
    >>> rewards = {"Correctness": [0.123, 0.456], "Format": [0.789, 0.101]}
    >>> advantages = [0.987, 0.654]
    >>> print_prompt_completions_sample(prompts, completions, rewards, advantages, 42)
    โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Step 42 โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
    โ”‚ โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“ โ”‚
    โ”‚ โ”ƒ Prompt     โ”ƒ Completion   โ”ƒ Correctness โ”ƒ Format โ”ƒ Advantage โ”ƒ โ”‚
    โ”‚ โ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ โ”‚
    โ”‚ โ”‚ The sky is โ”‚  blue.       โ”‚        0.12 โ”‚   0.79 โ”‚      0.99 โ”‚ โ”‚
    โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚
    โ”‚ โ”‚ The sun is โ”‚  in the sky. โ”‚        0.46 โ”‚   0.10 โ”‚      0.65 โ”‚ โ”‚
    โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
    โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ
    ```
    """
    if not is_rich_available():
        raise ImportError(
            "The function `print_prompt_completions_sample` requires the `rich` library. Please install it with "
            "`pip install rich`."
        )
    console = Console()
    table = Table(show_header=True, header_style="bold white", expand=True)

    # Add columns
    table.add_column("Prompt", style="bright_yellow")
    table.add_column("Completion", style="bright_green")
    for reward_name in rewards.keys():
        table.add_column(reward_name, style="bold cyan", justify="right")
    table.add_column("Advantage", style="bold magenta", justify="right")

    # Some basic input validation
    if num_samples is not None:
        if num_samples >= len(prompts):
            num_samples = None
        elif num_samples <= 0:
            return

    # Subsample data if num_samples is specified
    if num_samples is not None:
        indices = random.sample(range(len(prompts)), num_samples)
        prompts = [prompts[i] for i in indices]
        completions = [completions[i] for i in indices]
        rewards = {key: [val[i] for i in indices] for key, val in rewards.items()}
        advantages = [advantages[i] for i in indices]

    for i in range(len(prompts)):
        reward_values = [f"{rewards[key][i]:.2f}" for key in rewards.keys()]  # 2 decimals
        table.add_row(Text(prompts[i]), Text(completions[i]), *reward_values, f"{advantages[i]:.2f}")
        table.add_section()  # Adds a separator between rows

    panel = Panel(table, expand=False, title=f"Step {step}", border_style="bold white")
    console.print(panel)