Spaces:
Paused
Paused
File size: 79,082 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
import importlib.resources as pkg_resources
import json
import random
import warnings
from collections import deque
from dataclasses import dataclass, field
from importlib.metadata import version
from typing import Any, Literal, Optional, Union
import datasets
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
import torch.utils.data
from accelerate import Accelerator, PartialState
from accelerate.state import AcceleratorState
from huggingface_hub import ModelCard, ModelCardData
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import IterableDataset
from transformers import (
BitsAndBytesConfig,
DataCollatorForLanguageModeling,
EvalPrediction,
GenerationConfig,
PreTrainedTokenizerBase,
TrainerState,
TrainingArguments,
is_comet_available,
)
from transformers.utils import (
is_peft_available,
is_rich_available,
is_torch_mlu_available,
is_torch_npu_available,
is_torch_xpu_available,
)
from ..trainer.model_config import ModelConfig
if is_rich_available():
from rich.console import Console
from rich.panel import Panel
from rich.table import Table
from rich.text import Text
if is_comet_available():
import comet_ml
if is_peft_available():
from peft import LoraConfig, PeftConfig
class DataCollatorForCompletionOnlyLM(DataCollatorForLanguageModeling):
"""
Data collator used for completion tasks. It ensures that all the tokens of the labels are set to an 'ignore_index'
when they do not come from the assistant. This ensure that the loss is only
calculated on the completion made by the assistant.
Args:
response_template (`Union[str, list[int]]`): the template form that indicates the start of the response, typically something like
'### Response:\n'. It can also be passed as tokenized ids, which can be useful when using a tokenizer that encodes the response
differently if it does not have proper context.
instruction_template (`Union[str, list[int]]`): the template form that indicates the start of the human instruction, typically something like
'### Human:\n'. Useful for assistant-style conversation datasets. It can also be passed as tokenized ids.
mlm (`bool`, *optional*, defaults to `False`): Whether to use masked language modeling in the underlying
`DataCollatorForLanguageModeling` class. Note that this option currently has no effect but is present
for flexibility and backwards-compatibility.
ignore_index (`int`, *optional*, defaults to `-100`):
The index to use to ignore the initial tokens with
"""
def __init__(
self,
response_template: Union[str, list[int]],
instruction_template: Optional[Union[str, list[int]]] = None,
*args,
mlm: bool = False,
ignore_index: int = -100,
padding_free: bool = False,
**kwargs,
):
super().__init__(*args, mlm=mlm, **kwargs)
warnings.warn(
"This class is deprecated and will be removed in version 0.20.0. To train on completion only, please use "
"the parameter `completion_only_loss` of `SFTConfig` instead.",
DeprecationWarning,
)
self.instruction_template = instruction_template
if isinstance(instruction_template, str):
# The user provides a string, must tokenize
self.instruction_token_ids = self.tokenizer.encode(self.instruction_template, add_special_tokens=False)
else:
# The user already provides the token ids
self.instruction_token_ids = instruction_template
self.response_template = response_template
if isinstance(response_template, str):
# The user provides a string, must tokenize
self.response_token_ids = self.tokenizer.encode(self.response_template, add_special_tokens=False)
else:
# The user already provides the token ids
self.response_token_ids = response_template
if not self.mlm and self.instruction_template and self.tokenizer.pad_token_id == self.tokenizer.eos_token_id:
warnings.warn(
"The pad_token_id and eos_token_id values of this tokenizer are identical. "
"If you are planning for multi-turn training, "
"it can result in the model continuously generating questions and answers without eos token. "
"To avoid this, set the pad_token_id to a different value.",
UserWarning,
)
self.ignore_index = ignore_index
self.padding_free = padding_free
def torch_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]:
batch = super().torch_call(examples)
if self.instruction_template is None:
for i in range(len(examples)):
response_token_ids_start_idx = None
for idx in np.where(batch["labels"][i] == self.response_token_ids[0])[0]:
# `response_token_ids` is `'### Response:\n'`, here we are just making sure that the token IDs match
if (
self.response_token_ids
== batch["labels"][i][idx : idx + len(self.response_token_ids)].tolist()
):
response_token_ids_start_idx = idx
if response_token_ids_start_idx is None:
warnings.warn(
f"Could not find response key `{self.response_template}` in the following instance: "
f"{self.tokenizer.decode(batch['input_ids'][i])}. This instance will be ignored in loss "
"calculation. Note, if this happens often, consider increasing the `max_length`.",
UserWarning,
)
batch["labels"][i, :] = self.ignore_index
else:
response_token_ids_end_idx = response_token_ids_start_idx + len(self.response_token_ids)
# Make pytorch loss function ignore all tokens up through the end of the response key
batch["labels"][i, :response_token_ids_end_idx] = self.ignore_index
else:
for i in range(len(examples)):
response_token_ids_idxs = []
human_token_ids_idxs = []
for assistant_idx in np.where(batch["labels"][i] == self.response_token_ids[0])[0]:
# find the indexes of the start of a response.
if (
self.response_token_ids
== batch["labels"][i][assistant_idx : assistant_idx + len(self.response_token_ids)].tolist()
):
response_token_ids_idxs.append(assistant_idx + len(self.response_token_ids))
if len(response_token_ids_idxs) == 0:
warnings.warn(
f"Could not find response key `{self.response_template}` in the following instance: "
f"{self.tokenizer.decode(batch['input_ids'][i])}. This instance will be ignored in loss "
"calculation. Note, if this happens often, consider increasing the `max_length`.",
UserWarning,
)
batch["labels"][i, :] = self.ignore_index
human_token_ids = self.instruction_token_ids
for human_idx in np.where(batch["labels"][i] == human_token_ids[0])[0]:
# find the indexes of the start of a human answer.
if human_token_ids == batch["labels"][i][human_idx : human_idx + len(human_token_ids)].tolist():
human_token_ids_idxs.append(human_idx)
if len(human_token_ids_idxs) == 0:
warnings.warn(
f"Could not find instruction key `{self.instruction_template}` in the following instance: "
f"{self.tokenizer.decode(batch['input_ids'][i])}. This instance will be ignored in loss "
"calculation. Note, if this happens often, consider increasing the `max_length`.",
UserWarning,
)
batch["labels"][i, :] = self.ignore_index
if (
len(human_token_ids_idxs) > 0
and len(response_token_ids_idxs) > 0
and human_token_ids_idxs[0] > response_token_ids_idxs[0]
):
human_token_ids_idxs = [0] + human_token_ids_idxs
for idx, (start, end) in enumerate(zip(human_token_ids_idxs, response_token_ids_idxs)):
# Make pytorch loss function ignore all non response tokens
if idx != 0:
batch["labels"][i, start:end] = self.ignore_index
else:
batch["labels"][i, :end] = self.ignore_index
if len(response_token_ids_idxs) < len(human_token_ids_idxs):
batch["labels"][i, human_token_ids_idxs[-1] :] = self.ignore_index
if self.padding_free:
# remove padding, `attention_mask` and add `position_ids`
attn_mask = batch.pop("attention_mask")
batch["input_ids"] = batch["input_ids"][attn_mask.bool()].unsqueeze(0)
batch["position_ids"] = attn_mask.cumsum(1)[attn_mask.bool()].unsqueeze(0) - 1
batch["labels"] = batch["labels"][attn_mask.bool()].unsqueeze(0)
batch["labels"][batch["position_ids"] == 0] = self.ignore_index
# Calculate cumulative sequence lengths for queries and keys to prevent graph breaks during further computations.
flattened_position_ids = batch["position_ids"].flatten()
indices_q = torch.arange(
flattened_position_ids.size(0), device=flattened_position_ids.device, dtype=torch.int32
)
batch["cu_seq_lens_q"] = torch.cat(
(
indices_q[flattened_position_ids == 0],
torch.tensor(
flattened_position_ids.size(), device=flattened_position_ids.device, dtype=torch.int32
),
)
).unsqueeze(0)
batch["cu_seq_lens_k"] = batch["cu_seq_lens_q"]
# Determine maximum sequence lengths to prevent graph breaks during further computations.
batch["max_length_k"] = torch.tensor([flattened_position_ids.max().item() + 1])
batch["max_length_q"] = batch["max_length_k"]
return batch
@dataclass
class DataCollatorForChatML:
"""
Data collator for ChatML format datasets.
"""
tokenizer: PreTrainedTokenizerBase
ignore_index: int = -100
max_length: int = None
prompt_key: str = "prompt"
messages_key: str = "messages"
def __post_init__(self):
if self.tokenizer.pad_token_id is None:
raise ValueError("The tokenizer does not have a pad token. Please set `pad_token_id` in the tokenizer.")
if self.max_length is None:
# set a sensible default
self.max_length = min(self.tokenizer.model_max_length, 1024)
def __call__(self, examples: list[dict[str, Any]]) -> dict[str, torch.Tensor]:
input_ids = []
attention_mask = []
prompts_input_ids = []
prompt_attention_mask = []
labels = []
for example in examples:
formatted_prompt = example.get(self.prompt_key, None)
if formatted_prompt is None:
prompt = example[self.messages_key][:-1]
formatted_prompt = self.tokenizer.apply_chat_template(
prompt, tokenize=False, add_generation_prompt=True
)
if "input_ids" not in example:
message = example[self.messages_key]
formatted_message = self.tokenizer.apply_chat_template(
message, tokenize=False, add_generation_prompt=False
)
tokenized_message = self.tokenizer(
formatted_message,
truncation=True,
max_length=self.max_length,
padding=False,
return_tensors=None,
add_special_tokens=False,
)
input_ids.append(tokenized_message["input_ids"])
if "attention_mask" in example:
attention_mask.append(tokenized_message["attention_mask"])
else:
attention_mask.append([1] * len(tokenized_message["input_ids"]))
else:
input_ids.append(example["input_ids"])
if "attention_mask" in example:
attention_mask.append(example["attention_mask"])
else:
attention_mask.append([1] * len(example["input_ids"]))
tokenized_prompt = self.tokenizer(
formatted_prompt,
truncation=True,
max_length=len(input_ids[-1]),
padding=False,
return_tensors=None,
add_special_tokens=False,
)
prompts_input_ids.append(tokenized_prompt["input_ids"])
prompt_attention_mask.append(tokenized_prompt["attention_mask"])
# Create the labels that will have all but the completion tokens of the example["input_ids"] set to ignore_index
label = [self.ignore_index] * len(input_ids[-1])
completion_start_idx = len(tokenized_prompt["input_ids"])
label[completion_start_idx:] = input_ids[-1][completion_start_idx:]
labels.append(label)
# convert to list of tensors and pad
input_ids = [torch.tensor(ids, dtype=torch.long) for ids in input_ids]
attention_mask = [torch.tensor(mask, dtype=torch.long) for mask in attention_mask]
labels = [torch.tensor(label, dtype=torch.long) for label in labels]
input_ids = pad(input_ids, padding_side="left", padding_value=self.tokenizer.pad_token_id)
attention_mask = pad(attention_mask, padding_side="left", padding_value=0)
labels = pad(labels, padding_side="left", padding_value=self.ignore_index)
prompts_input_ids = [torch.tensor(ids, dtype=torch.long) for ids in prompts_input_ids]
prompt_attention_mask = [torch.tensor(mask, dtype=torch.long) for mask in prompt_attention_mask]
prompts_input_ids = pad(prompts_input_ids, padding_side="left", padding_value=self.tokenizer.pad_token_id)
prompt_attention_mask = pad(prompt_attention_mask, padding_side="left", padding_value=0)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels,
"prompts": prompts_input_ids,
"prompt_attention_mask": prompt_attention_mask,
}
@dataclass
class RewardDataCollatorWithPadding:
r"""
Reward DataCollator class that pads the inputs to the maximum length of the batch.
Args:
tokenizer (`PreTrainedTokenizerBase`):
The tokenizer used for encoding the data.
padding (`Union[bool, str, `PaddingStrategy`]`, `optional`, defaults to `True`):
padding_strategy to pass to the tokenizer.
pad_to_multiple_of (`int` or `None`, `optional`, defaults to `None`):
If set will pad the sequence to a multiple of the provided value.
return_tensors (`str`, `optional`, defaults to `"pt"`):
The tensor type to use.
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str] = True
pad_to_multiple_of: Optional[int] = None
return_tensors: str = "pt"
def __call__(self, features: list[dict[str, Any]]) -> dict[str, Any]:
features_chosen = []
features_rejected = []
margin = []
# check if we have a margin. If we do, we need to batch it as well
has_margin = "margin" in features[0]
for feature in features:
# check if the keys are named as expected
if (
"input_ids_chosen" not in feature
or "input_ids_rejected" not in feature
or "attention_mask_chosen" not in feature
or "attention_mask_rejected" not in feature
):
raise ValueError(
"The features should include `input_ids_chosen`, `attention_mask_chosen`, `input_ids_rejected` and `attention_mask_rejected`"
)
features_chosen.append(
{
"input_ids": feature["input_ids_chosen"],
"attention_mask": feature["attention_mask_chosen"],
}
)
features_rejected.append(
{
"input_ids": feature["input_ids_rejected"],
"attention_mask": feature["attention_mask_rejected"],
}
)
if has_margin:
margin.append(feature["margin"])
batch_chosen = self.tokenizer.pad(
features_chosen,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=self.return_tensors,
)
batch_rejected = self.tokenizer.pad(
features_rejected,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=self.return_tensors,
)
batch = {
"input_ids_chosen": batch_chosen["input_ids"],
"attention_mask_chosen": batch_chosen["attention_mask"],
"input_ids_rejected": batch_rejected["input_ids"],
"attention_mask_rejected": batch_rejected["attention_mask"],
"return_loss": True,
}
if has_margin:
margin = torch.tensor(margin, dtype=torch.float)
batch["margin"] = margin
return batch
def pad(
tensors: list[torch.Tensor],
padding_value: int = 0,
padding_side: str = "right",
pad_to_multiple_of: Optional[int] = None,
) -> torch.Tensor:
"""
Pads a list of tensors to the same shape along the first dimension.
Args:
tensors (`list[torch.Tensor]`):
List of input tensors to pad.
padding_value (`int`):
Value to use for padding. Default is 0.
padding_side (`str`):
Side on which to add padding. Must be 'left' or 'right'. Default is 'right'.
pad_to_multiple_of (`int`, *optional*, defaults to `None`):
If set will pad the sequence to a multiple of the provided value.
Returns:
`torch.Tensor`:
A single tensor containing the padded tensors.
Examples:
>>> import torch
>>> pad([torch.tensor([1, 2, 3]), torch.tensor([4, 5])])
tensor([[1, 2, 3],
[4, 5, 0]])
>>> pad([torch.tensor([[1, 2], [3, 4]]), torch.tensor([[5, 6]])])
tensor([[[1, 2],
[3, 4]],
[[5, 6],
[0, 0]]])
"""
# Determine the maximum shape for each dimension
output_shape = np.max([t.shape for t in tensors], 0).tolist()
# Apply pad_to_multiple_of to the first (sequence) dimension
if pad_to_multiple_of is not None:
remainder = output_shape[0] % pad_to_multiple_of
if remainder != 0:
output_shape[0] += pad_to_multiple_of - remainder
# Create an output tensor filled with the padding value
output = torch.full((len(tensors), *output_shape), padding_value, dtype=tensors[0].dtype, device=tensors[0].device)
for i, t in enumerate(tensors):
if padding_side == "left":
seq_start = output_shape[0] - t.shape[0]
elif padding_side == "right":
seq_start = 0
else:
raise ValueError("padding_side must be 'left' or 'right'")
# Define the slices
seq_slice = slice(seq_start, seq_start + t.shape[0])
slices = (seq_slice,) + tuple(slice(0, s) for s in t.shape[1:])
output[i][slices] = t
return output
@dataclass
class DPODataCollatorWithPadding:
r"""
DPO DataCollator class that pads the tokenized inputs to the maximum length of the batch.
Args:
pad_token_id (`int` defaults to 0):
The tokenizer's pad_token_id.
label_pad_token_id (`int`, defaults to -100):
The label used for masking.
is_encoder_decoder (`bool` or `None`, `optional`, defaults to `None`):
Whether you model has an encoder_decoder architecture.
"""
pad_token_id: int = 0
label_pad_token_id: int = -100
is_encoder_decoder: Optional[bool] = False
def __call__(self, features: list[dict[str, Any]]) -> dict[str, Any]:
# first, pad everything to the same length
padded_batch = {}
for k in features[0].keys():
if k.endswith(("_input_ids", "_attention_mask", "_labels", "_pixel_values")):
if self.is_encoder_decoder:
to_pad = [torch.LongTensor(ex[k]) for ex in features]
if (k.startswith("prompt")) and (k.endswith("input_ids")):
if self.pad_token_id is None:
raise ValueError(
"Padding is enabled, but the tokenizer is not configured with a padding token."
" Explicitly set `tokenizer.pad_token` (e.g. `tokenizer.pad_token = tokenizer.eos_token`)"
" before calling the trainer."
)
padding_value = self.pad_token_id
elif k.endswith("_attention_mask"):
padding_value = 0
elif k.startswith(("chosen", "rejected", "completion")) or ("decoder" in k):
padding_value = self.label_pad_token_id
else:
raise ValueError(f"Unexpected key in batch '{k}'")
padded_batch[k] = pad_sequence(to_pad, batch_first=True, padding_value=padding_value)
else:
# Set padding value based on the key
if k.endswith("_input_ids"):
if self.pad_token_id is None:
raise ValueError(
"Padding is enabled, but the tokenizer is not configured with a padding token."
" Explicitly set `tokenizer.pad_token` (e.g. `tokenizer.pad_token = tokenizer.eos_token`)"
" before calling the trainer."
)
padding_value = self.pad_token_id
elif k.endswith("_labels"):
padding_value = self.label_pad_token_id
elif k.endswith("_attention_mask"):
padding_value = 0
elif k.endswith("_pixel_values"):
padding_value = 0 # TODO: check if this is correct
else:
raise ValueError(f"Unexpected key in batch '{k}'")
# Set padding side based on the key
if k in ["prompt_input_ids", "prompt_attention_mask"]:
padding_side = "left"
else:
padding_side = "right"
# Set the dtype
if k.endswith("_pixel_values"):
dtype = torch.float32 # will be downcasted if necessary by the Trainer
else:
dtype = torch.int64
# Convert to tensor and pad
to_pad = [torch.tensor(ex[k], dtype=dtype) for ex in features]
padded_batch[k] = pad(to_pad, padding_value=padding_value, padding_side=padding_side)
elif k.endswith("_logps"):
# the cached reference model logprobs
padded_batch[k] = torch.tensor([ex[k] for ex in features])
else:
padded_batch[k] = [ex[k] for ex in features]
return padded_batch
class ConstantLengthDataset(IterableDataset):
"""
Iterable dataset that returns constant length chunks of tokens from stream of text files.
The dataset also formats the text before tokenization with a specific format that is provided
by the user.
Args:
tokenizer (`transformers.PreTrainedTokenizer`):
The processor used for processing the data.
dataset (`dataset.Dataset`):
Dataset with text files.
dataset_text_field (`str` or `None`, *optional*, defaults to `None`):
Name of the field in the dataset that contains the text. Only one of `dataset_text_field` and
`formatting_func` should be provided.
formatting_func (`Callable`, *optional*):
Function that formats the text before tokenization. Usually it is recommended to follow a certain
pattern such as `"### Question: {question} ### Answer: {answer}"`. Only one of `dataset_text_field` and
`formatting_func` should be provided.
infinite (`bool`, *optional*, defaults to `False`):
If True the iterator is reset after dataset reaches end else stops.
seq_length (`int`, *optional*, defaults to `1024`):
Length of token sequences to return.
num_of_sequences (`int`, *optional*, defaults to `1024`):
Number of token sequences to keep in buffer.
chars_per_token (`int`, *optional*, defaults to `3.6`):
Number of characters per token used to estimate number of tokens in text buffer.
eos_token_id (`int`, *optional*, defaults to `0`):
Id of the end of sequence token if the passed tokenizer does not have an EOS token.
shuffle (`bool`, *optional*, defaults to `True`)
Shuffle the examples before they are returned
append_concat_token (`bool`, *optional*, defaults to `True`)
If true, appends `eos_token_id` at the end of each sample being packed.
add_special_tokens (`bool`, *optional*, defaults to `True`)
If true, tokenizers adds special tokens to each sample being packed.
"""
def __init__(
self,
tokenizer,
dataset,
dataset_text_field=None,
formatting_func=None,
infinite=False,
seq_length=1024,
num_of_sequences=1024,
chars_per_token=3.6,
eos_token_id=0,
shuffle=True,
append_concat_token=True,
add_special_tokens=True,
):
warnings.warn(
"This class is deprecated and will be removed in version 0.20.0. To use packing, use the argument "
"`packing` of `SFTConfig` instead.",
DeprecationWarning,
)
self.tokenizer = tokenizer
self.concat_token_id = tokenizer.eos_token_id if tokenizer.eos_token_id else eos_token_id
self.dataset = dataset
self.seq_length = seq_length
self.infinite = infinite
self.current_size = 0
self.max_buffer_size = seq_length * chars_per_token * num_of_sequences
self.shuffle = shuffle
self.append_concat_token = append_concat_token
self.add_special_tokens = add_special_tokens
if dataset_text_field is not None and formatting_func is not None:
warnings.warn(
"Only one of `dataset_text_field` and `formatting_func` should be provided. "
"Ignoring `dataset_text_field` and using `formatting_func`.",
UserWarning,
)
if formatting_func is not None:
self.formatting_func = formatting_func
elif dataset_text_field is not None:
self.formatting_func = lambda x: x[dataset_text_field]
else: # neither is provided
raise ValueError("Either `dataset_text_field` or `formatting_func` should be provided.")
self.pretokenized = False
column_names = (
dataset.column_names if isinstance(dataset, (datasets.Dataset, datasets.IterableDataset)) else None
)
if column_names is not None and "input_ids" in column_names:
self.pretokenized = True
# since the dataset is tokenized, the unit of buffer size should be tokens
self.max_buffer_size = seq_length * num_of_sequences
def __len__(self):
return len(self.dataset)
def __iter__(self):
iterator = iter(self.dataset)
more_examples = True
while more_examples:
buffer, buffer_len = [], 0
while True:
if buffer_len >= self.max_buffer_size:
break
try:
buffer.append(self.formatting_func(next(iterator)))
buffer_len += len(buffer[-1])
except StopIteration:
if self.infinite:
iterator = iter(self.dataset)
else:
more_examples = False
break
if self.shuffle:
random.shuffle(buffer)
if self.pretokenized:
tokenized_inputs = buffer
else:
tokenized_inputs = self.tokenizer(
buffer, add_special_tokens=self.add_special_tokens, truncation=False
)["input_ids"]
all_token_ids = []
for tokenized_input in tokenized_inputs:
if self.append_concat_token:
tokenized_input = tokenized_input + [self.concat_token_id]
all_token_ids.extend(tokenized_input)
examples = []
for i in range(0, len(all_token_ids), self.seq_length):
input_ids = all_token_ids[i : i + self.seq_length]
if len(input_ids) == self.seq_length:
examples.append(input_ids)
if self.shuffle:
# Shuffle again, otherwise split examples occur in consecutive tensors.
random.shuffle(examples)
for example in examples:
self.current_size += 1
yield {
"input_ids": torch.LongTensor(example),
"labels": torch.LongTensor(example),
}
@dataclass
class RunningMoments:
"""
Calculates the running mean and standard deviation of a data stream. Reference:
https://github.com/OpenLMLab/MOSS-RLHF/blob/40b91eb2f2b71b16919addede0341d2bef70825d/utils.py#L75
"""
accelerator: Accelerator
mean: float = 0
std: float = 1
var: float = 1
count: float = 1e-24
@torch.no_grad()
def update(self, xs: torch.Tensor) -> tuple[float, float]:
"""
Updates running moments from batch's moments computed across ranks
"""
if self.accelerator.use_distributed:
xs_mean, xs_var, xs_count = get_global_statistics(self.accelerator, xs)
else:
xs_count = xs.numel()
xs_var, xs_mean = torch.var_mean(xs, unbiased=False)
xs_mean, xs_var = xs_mean.float(), xs_var.float()
delta = xs_mean - self.mean
tot_count = self.count + xs_count
new_sum = xs_var * xs_count
# correct old_sum deviation accounting for the new mean
old_sum = self.var * self.count + delta**2 * self.count * xs_count / tot_count
tot_sum = old_sum + new_sum
self.mean += (delta * xs_count / tot_count).item()
new_var = tot_sum / tot_count
self.std = (new_var * tot_count / (tot_count - 1)).float().sqrt().item()
self.var = new_var.item()
self.count = tot_count
return xs_mean.item(), (xs_var * xs_count / (xs_count - 1)).float().sqrt().item()
def save_to_json(self, json_path: str):
"""Save the content of this instance in JSON format inside `json_path`."""
# save everything except accelerator
if self.accelerator.is_main_process:
save_dict = dataclasses.asdict(self, dict_factory=lambda x: {k: v for (k, v) in x if k != "accelerator"})
json_string = json.dumps(save_dict, indent=2, sort_keys=True) + "\n"
with open(json_path, "w", encoding="utf-8") as f:
f.write(json_string)
@classmethod
def load_from_json(cls, accelerator: Accelerator, json_path: str):
"""Create an instance from the content of `json_path`."""
# load everything except accelerator
with open(json_path, encoding="utf-8") as f:
text = f.read()
return cls(accelerator=accelerator, **json.loads(text))
@torch.no_grad()
def get_global_statistics(
accelerator, xs: torch.Tensor, mask=None, device="cpu"
) -> tuple[torch.Tensor, torch.Tensor, int]:
"""
Computes element-wise mean and variance of the tensor across processes. Reference:
https://github.com/OpenLMLab/MOSS-RLHF/blob/40b91eb2f2b71b16919addede0341d2bef70825d/utils.py#L57C1-L73C75
"""
xs = xs.to(accelerator.device)
sum_and_count = torch.tensor([xs.sum(), (xs.numel() if mask is None else mask.sum())], device=xs.device)
sum_and_count = accelerator.reduce(sum_and_count)
global_sum, count = sum_and_count
global_mean = global_sum / count
sum_var = torch.sum(((xs - global_mean) ** 2).mul(1 if mask is None else mask))
sum_var = accelerator.reduce(sum_var)
global_var = sum_var / count
return global_mean.to(device), global_var.to(device), count.item()
def compute_accuracy(eval_pred: EvalPrediction) -> dict[str, float]:
predictions, labels = eval_pred
if predictions.ndim == 3:
# Token classification task. Shapes are (batch_size, seq_len, num_labels) and (batch_size, seq_len)
# Used to compute the accuracy in the prm_trainer.
predictions = np.argmax(predictions, axis=2)
# Flatten the predictions and labels to remove the ignored tokens.
predictions = np.array(
[p for prediction, label in zip(predictions, labels) for (p, lbl) in zip(prediction, label) if lbl != -100]
)
labels = np.array([lbl for label in labels for lbl in label if lbl != -100])
else:
# Here, predictions is rewards_chosen and rewards_rejected. Shapes are (batch_size, 2) and (batch_size,)
# We want to see how much of the time rewards_chosen > rewards_rejected.
equal_mask = predictions[:, 0] == predictions[:, 1]
equal_predictions_count = int(equal_mask.sum())
if equal_predictions_count > 0:
warnings.warn(
f"There are {equal_predictions_count} out of {len(predictions[:, 0])} instances where the predictions "
"for both options are equal. These instances are ignored in the accuracy computation.",
UserWarning,
)
# Filter out equal predictions
predictions = predictions[~equal_mask]
labels = labels[~equal_mask]
# Use the remaining predictions for accuracy calculation
predictions = np.argmax(predictions, axis=1)
accuracy = np.array(predictions == labels, dtype=float).mean().item()
return {"accuracy": accuracy}
def pad_to_length(tensor: torch.Tensor, length: int, pad_value: Union[int, float], dim: int = -1) -> torch.Tensor:
if tensor.size(dim) >= length:
return tensor
else:
pad_size = list(tensor.shape)
pad_size[dim] = length - tensor.size(dim)
return torch.cat(
[
tensor,
pad_value * torch.ones(*pad_size, dtype=tensor.dtype, device=tensor.device),
],
dim=dim,
)
def disable_dropout_in_model(model: torch.nn.Module) -> None:
for module in model.modules():
if isinstance(module, torch.nn.Dropout):
module.p = 0
def exact_div(a, b, custom_error_message=""):
q = a // b
if a != q * b:
raise ValueError(f"{custom_error_message}, inexact division: {a} / {b} = {a / b}")
return q
# copied from https://github.com/kvablack/ddpo-pytorch/blob/main/ddpo_pytorch/stat_tracking.py#L5
class PerPromptStatTracker:
r"""
Class for tracking statistics per prompt. Mainly used to calculate advantage for the DPPO algorithm
Args:
buffer_size (`int`):
Size of the buffer to keep for each prompt.
min_count (`int`):
Minimum number of samples to keep in the buffer before calculating the mean and std.
"""
def __init__(self, buffer_size, min_count):
self.buffer_size = buffer_size
self.min_count = min_count
self.stats = {}
def update(self, prompts, rewards):
prompts = np.array(prompts)
rewards = np.array(rewards)
unique = np.unique(prompts)
advantages = np.empty_like(rewards)
for prompt in unique:
prompt_rewards = rewards[prompts == prompt]
if prompt not in self.stats:
self.stats[prompt] = deque(maxlen=self.buffer_size)
self.stats[prompt].extend(prompt_rewards)
if len(self.stats[prompt]) < self.min_count:
mean = np.mean(rewards)
std = np.std(rewards) + 1e-6
else:
mean = np.mean(self.stats[prompt])
std = np.std(self.stats[prompt]) + 1e-6
advantages[prompts == prompt] = (prompt_rewards - mean) / std
return advantages
def get_stats(self):
return {k: {"mean": np.mean(v), "std": np.std(v), "count": len(v)} for k, v in self.stats.items()}
def peft_module_casting_to_bf16(model):
for name, module in model.named_modules():
if isinstance(module, torch.nn.LayerNorm) or "norm" in name:
module = module.to(torch.float32)
elif any(x in name for x in ["lm_head", "embed_tokens", "wte", "wpe"]):
if hasattr(module, "weight"):
if module.weight.dtype == torch.float32:
module = module.to(torch.bfloat16)
def get_quantization_config(model_args: ModelConfig) -> Optional[BitsAndBytesConfig]:
if model_args.load_in_4bit:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=model_args.torch_dtype, # For consistency with model weights, we use the same value as `torch_dtype`
bnb_4bit_quant_type=model_args.bnb_4bit_quant_type,
bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant,
bnb_4bit_quant_storage=model_args.torch_dtype,
)
elif model_args.load_in_8bit:
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
)
else:
quantization_config = None
return quantization_config
def get_kbit_device_map() -> Optional[dict[str, int]]:
if torch.cuda.is_available() or is_torch_xpu_available():
return {"": PartialState().local_process_index}
else:
return None
def get_peft_config(model_args: ModelConfig) -> "Optional[PeftConfig]":
if model_args.use_peft is False:
return None
if not is_peft_available():
raise ValueError(
"You need to have PEFT library installed in your environment, make sure to install `peft`. "
"Make sure to run `pip install -U peft`."
)
peft_config = LoraConfig(
task_type=model_args.lora_task_type,
r=model_args.lora_r,
target_modules=model_args.lora_target_modules,
lora_alpha=model_args.lora_alpha,
lora_dropout=model_args.lora_dropout,
bias="none",
use_rslora=model_args.use_rslora,
use_dora=model_args.use_dora,
modules_to_save=model_args.lora_modules_to_save,
)
return peft_config
def get_exp_cap(value, decimal=4):
"""
Get the exponent cap of a value. This is used to cap the exponent of a value to avoid overflow.
The formula is : log(value.dtype.max)
E.g.
For float32 data type, the maximum exponent value is 88.7228 to 4 decimal points.
```
Args:
value (`torch.Tensor`):
The input tensor to obtain the data type
decimal (`int`):
The number of decimal points of the output exponent cap.
eg: direct calling exp(log(torch.float32.max)) will result in inf
so we cap the exponent to 88.7228 to avoid overflow.
"""
vdtype_max = torch.zeros([1]).to(value.dtype) + torch.finfo(value.dtype).max
vdtype_log_max = torch.log(vdtype_max).to(value.device)
return torch.floor(vdtype_log_max * 10**decimal) / 10**decimal if decimal > 0 else vdtype_log_max
def cap_exp(value, cap=-1):
# Cap the exponent value below the upper-bound to avoid overflow, before calling torch.exp
cap = get_exp_cap(value) if cap < 0 else cap
return torch.exp(torch.clamp(value, max=cap))
def print_rich_table(df: pd.DataFrame) -> None:
if not is_rich_available():
raise ImportError(
"The function `print_rich_table` requires the `rich` library. Please install it with `pip install rich`."
)
console = Console()
table = Table(show_lines=True)
for column in df.columns:
table.add_column(column)
for _, row in df.iterrows():
table.add_row(*row.astype(str).tolist())
console.print(table)
SIMPLE_SFT_CHAT_TEMPLATE = "{% for message in messages %}{{' ' + message['content']}}{% endfor %}{{ eos_token }}"
# SIMPLE_SFT_CHAT_TEMPLATE simply ends things with an EOS token, this helps the SFT model learn to end the completions with EOS tokens
SIMPLE_CHAT_TEMPLATE = "{% for message in messages %}{{message['role'].capitalize() + ': ' + message['content'] + '\n\n'}}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}"
@dataclass
class OnlineTrainerState(TrainerState):
episode: int = 0
@dataclass
class OnPolicyConfig(TrainingArguments):
r"""
Base configuration class for on-policy trainers.
This class includes only the parameters that are specific to some on-policy training. For a full list of training
arguments, please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this
class may differ from those in [`~transformers.TrainingArguments`].
Using [`~transformers.HfArgumentParser`] we can turn this class into
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
command line.
Parameters:
run_name (`str` or `None`, *optional*, defaults to `None`):
Name of the run.
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
Number of processes to use for processing the dataset.
num_mini_batches (`int`, *optional*, defaults to `1`):
Number of minibatches to split a batch into.
total_episodes (`int` or `None`, *optional*, defaults to `None`):
Total number of episodes in the dataset.
local_rollout_forward_batch_size (`int`, *optional*, defaults to `64`):
Per rank no grad forward pass in the rollout phase.
num_sample_generations (`int`, *optional*, defaults to `10`):
Number of debugging samples generations (i.e., `generate_completions` calls) throughout training.
response_length (`int`, *optional*, defaults to `53`):
Length of the response.
stop_token (`str` or `None`, *optional*, defaults to `None`):
Specifies the stop token to use for text generation. This parameter is mutually exclusive with
`stop_token_id`.
- `None`: No stop token is applied, unless `stop_token_id` is specified.
- `'eos'`: Uses the tokenizer's `eos_token`.
stop_token_id (`int` or `None`, *optional*, defaults to `None`):
Specifies the ID of the stop token to use for text generation. If `None`, no stop token ID is applied,
unless `stop_token` is specified. This parameter is mutually exclusive with `stop_token`.
temperature (`float`, *optional*, defaults to `0.7`):
Sampling temperature.
missing_eos_penalty (`float` or `None`, *optional*, defaults to `None`):
Penalty applied to the score when the model fails to generate an EOS token. This is useful to encourage
to generate completions shorter than the maximum length (`max_new_tokens`). The penalty must be a positive
value.
sft_model_path (`str`, *optional*, defaults to `"EleutherAI/pythia-160m"`):
Path to the SFT model.
world_size (`int` or `None`, *optional*, defaults to `None`):
Number of processes (GPUs) to use for the training.
num_total_batches (`int` or `None`, *optional*, defaults to `None`):
Number of total batches to train.
micro_batch_size (`int` or `None`, *optional*, defaults to `None`):
Micro batch size across devices (HF's `per_device_train_batch_size` * `world_size`).
local_batch_size (`int` or `None`, *optional*, defaults to `None`):
Batch size per GPU (HF's `per_device_train_batch_size` * `gradient_accumulation_steps`).
batch_size (`int` or `None`, *optional*, defaults to `None`):
Batch size across devices (HF's `per_device_train_batch_size` * `world_size` * `gradient_accumulation_steps`).
local_mini_batch_size (`int` or `None`, *optional*, defaults to `None`):
Mini batch size per GPU.
mini_batch_size (`int` or `None`, *optional*, defaults to `None`):
Mini batch size across GPUs.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether to push the model to the Hub after training.
"""
# Parameters whose default values are overridden from TrainingArguments
logging_steps: float = field(
default=10,
metadata={
"help": (
"Log every X updates steps. Should be an integer or a float in range `[0,1)`. "
"If smaller than 1, will be interpreted as ratio of total training steps."
)
},
)
bf16: bool = field(
default=True,
metadata={
"help": (
"Whether to use bf16 (mixed) precision instead of 32-bit. Requires Ampere or higher NVIDIA "
"architecture or using CPU (use_cpu) or Ascend NPU. This is an experimental API and it may change."
)
},
)
run_name: Optional[str] = field(
default=None,
metadata={"help": "Name of the run."},
)
dataset_num_proc: Optional[int] = field(
default=None,
metadata={"help": "Number of processes to use for processing the dataset."},
)
num_mini_batches: int = field(
default=1,
metadata={"help": "Number of minibatches to split a batch into."},
)
total_episodes: Optional[int] = field(
default=None,
metadata={"help": "Total number of episodes in the dataset."},
)
local_rollout_forward_batch_size: int = field(
default=64,
metadata={"help": "Per rank no grad forward pass in the rollout phase."},
)
num_sample_generations: int = field(
default=10,
metadata={
"help": "Number of debugging samples generations (i.e., `generate_completions` calls) throughout training."
},
)
response_length: int = field(
default=53,
metadata={"help": "Length of the response."},
)
stop_token: Optional[Literal["eos"]] = field(
default=None,
metadata={
"help": "Specifies the stop token to use for text generation. This parameter is mutually exclusive with "
"`stop_token_id`."
},
)
stop_token_id: Optional[int] = field(
default=None,
metadata={
"help": "Specifies the ID of the stop token to use for text generation. If `None`, no stop token ID is "
"applied, unless `stop_token` is specified. This parameter is mutually exclusive with `stop_token`."
},
)
temperature: float = field(
default=0.7,
metadata={"help": "Sampling temperature."},
)
missing_eos_penalty: Optional[float] = field(
default=None,
metadata={
"help": "Penalty applied to the score when the model fails to generate an EOS token. This is useful to "
"encourage to generate completions shorter than the maximum length (`max_new_tokens`). The penalty must be "
"a positive value."
},
)
sft_model_path: str = field(
default="EleutherAI/pythia-160m",
metadata={"help": "Path to the SFT model."},
)
world_size: Optional[int] = field(
default=None,
metadata={"help": "Number of processes (GPUs) to use for the training."},
)
num_total_batches: Optional[int] = field(
default=None,
metadata={"help": "Number of total batches to train."},
)
micro_batch_size: Optional[int] = field(
default=None,
metadata={"help": "Micro batch size across devices (HF's `per_device_train_batch_size` * `world_size`)."},
)
local_batch_size: Optional[int] = field(
default=None,
metadata={"help": "Batch size per GPU (HF's `per_device_train_batch_size` * `gradient_accumulation_steps`)."},
)
batch_size: Optional[int] = field(
default=None,
metadata={
"help": "Batch size across devices (HF's `per_device_train_batch_size` * `world_size` * "
"`gradient_accumulation_steps`)."
},
)
local_mini_batch_size: Optional[int] = field(
default=None,
metadata={"help": "Mini batch size per GPU."},
)
mini_batch_size: Optional[int] = field(
default=None,
metadata={"help": "Mini batch size across GPUs."},
)
push_to_hub: bool = field(
default=False,
metadata={"help": "Whether to push the model to the Hub after training."},
)
def first_true_indices(bools: torch.Tensor, dtype=torch.long):
"""
Takes an N-dimensional bool tensor and returns an (N-1)-dimensional tensor of integers giving
the position of the first True in each "row".
Returns the length of the rows (bools.size(-1)) if no element is True in a given row.
Args:
bools (`torch.Tensor`):
An N-dimensional boolean tensor.
dtype (`torch.dtype`, optional):
The desired data type of the output tensor. Defaults to `torch.long`.
Returns:
`torch.Tensor`:
An (N-1)-dimensional tensor of integers indicating the position of the first True
in each row. If no True value is found in a row, returns the length of the row.
"""
row_len = bools.size(-1)
zero_or_index = row_len * (~bools).type(dtype) + torch.arange(row_len, dtype=dtype, device=bools.device)
return torch.min(zero_or_index, dim=-1).values
def get_reward(
model: torch.nn.Module, query_responses: torch.Tensor, pad_token_id: int, context_length: int
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Computes the reward logits and the rewards for a given model and query responses.
Args:
model (`torch.nn.Module`):
The model used to compute the reward logits.
query_responses (`torch.Tensor`):
The tensor containing the query responses.
pad_token_id (`int`):
The token ID representing the pad token.
context_length (`int`):
The length of the context in the query responses.
Returns:
tuple:
- `reward_logits` (`torch.Tensor`):
The logits for the reward model.
- `final_rewards` (`torch.Tensor`):
The final rewards for each query response.
- `sequence_lengths` (`torch.Tensor`):
The lengths of the sequences in the query responses.
"""
attention_mask = query_responses != pad_token_id
position_ids = attention_mask.cumsum(1) - attention_mask.long() # exclusive cumsum
lm_backbone = getattr(model, model.base_model_prefix)
input_ids = torch.masked_fill(query_responses, ~attention_mask, 0)
output = lm_backbone(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
return_dict=True,
output_hidden_states=True,
use_cache=False, # otherwise mistral-based RM would error out
)
reward_logits = model.score(output.hidden_states[-1])
sequence_lengths = first_true_indices(query_responses[:, context_length:] == pad_token_id) - 1 + context_length
# https://github.com/huggingface/transformers/blob/dc68a39c8111217683bf49a4912d0c9018bab33d/src/transformers/models/gpt2/modeling_gpt2.py#L1454
return (
reward_logits,
reward_logits[
torch.arange(reward_logits.size(0), device=reward_logits.device),
sequence_lengths,
].squeeze(-1),
sequence_lengths,
)
def forward(
model: torch.nn.Module,
query_responses: torch.Tensor,
pad_token_id: int,
) -> torch.nn.Module:
"""
Performs a forward pass through the model with the given query responses and pad token ID.
Args:
model (`torch.nn.Module`):
The model to perform the forward pass.
query_responses (`torch.Tensor`):
The tensor containing the query responses.
pad_token_id (`int`):
The token ID representing the pad token.
Returns:
`torch.nn.Module`:
The output of the model, including hidden states.
"""
attention_mask = query_responses != pad_token_id
position_ids = attention_mask.cumsum(1) - attention_mask.long()
input_ids = torch.masked_fill(query_responses, ~attention_mask, 0)
return model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
return_dict=True,
output_hidden_states=True,
)
def prepare_deepspeed(
model: torch.nn.Module, per_device_train_batch_size: int, fp16: bool = False, bf16: bool = False
):
"""
Prepares the model for training with DeepSpeed (both for stage 2 and 3), configuring the appropriate settings based on the model and
batch size.
Args:
model (`torch.nn.Module`):
The model to be prepared for DeepSpeed training.
per_device_train_batch_size (`int`):
The training batch size per device.
Returns:
`torch.nn.Module`:
The model initialized and configured with DeepSpeed for training.
"""
import deepspeed
deepspeed_plugin = AcceleratorState().deepspeed_plugin
config_kwargs = deepspeed_plugin.deepspeed_config
if config_kwargs["zero_optimization"]["stage"] != 3:
config_kwargs["train_micro_batch_size_per_gpu"] = per_device_train_batch_size
config_kwargs = {
"train_micro_batch_size_per_gpu": config_kwargs["train_micro_batch_size_per_gpu"],
"prescale_gradients": False,
"wall_clock_breakdown": False,
}
if bf16:
config_kwargs["bf16"] = {"enabled": True}
elif fp16:
config_kwargs["fp16"] = {"enabled": True}
else:
if hasattr(model, "config"):
hidden_size = (
max(model.config.hidden_sizes)
if getattr(model.config, "hidden_sizes", None)
else getattr(model.config, "hidden_size", None)
)
if hidden_size is not None and config_kwargs["zero_optimization"]["stage"] == 3:
# Note that `stage3_prefetch_bucket_size` can produce DeepSpeed messages like: `Invalidate trace cache @ step 0: expected module 1, but got module 0`
# This is expected and is not an error, see: https://github.com/microsoft/DeepSpeed/discussions/4081
config_kwargs.update(
{
"zero_optimization.reduce_bucket_size": hidden_size * hidden_size,
"zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size,
"zero_optimization.stage3_prefetch_bucket_size": 0,
}
)
model, *_ = deepspeed.initialize(model=model, config=config_kwargs)
model.eval()
return model
def truncate_response(stop_token_id: int, pad_token_id: int, responses: torch.Tensor):
"""
Truncates the responses at the first occurrence of the stop token, filling the rest with pad tokens.
Args:
stop_token_id (`int`):
The token ID representing the stop token where truncation occurs.
pad_token_id (`int`):
The token ID representing the pad token used to fill the truncated responses.
responses (`torch.Tensor`):
The tensor containing the responses to be truncated.
Returns:
`torch.Tensor`:
The truncated responses tensor with pad tokens filled after the stop token.
"""
trunc_idxs = first_true_indices(responses == stop_token_id).unsqueeze(-1)
new_size = [1] * (len(responses.size()) - 1) + [responses.shape[1]]
idxs = torch.arange(responses.shape[1], device=responses.device).view(*new_size)
postprocessed_responses = torch.masked_fill(responses, idxs > trunc_idxs, pad_token_id)
return postprocessed_responses
def generate(
lm_backbone: torch.nn.Module, queries: torch.Tensor, pad_token_id: int, generation_config: GenerationConfig
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Generates sequences from the language model backbone in a way that does not affect padding tokens.
Args:
lm_backbone (`torch.nn.Module`):
The language model backbone used for generation.
queries (`torch.Tensor`):
The tensor containing the input queries.
pad_token_id (`int`):
The token ID representing the pad token.
generation_config (`GenerationConfig`):
The configuration for the generation process.
Returns:
tuple:
- `generated_sequences` (`torch.Tensor`):
The concatenated tensor of input queries and generated sequences.
- `logits` (`torch.Tensor`):
The logits output from the generation process.
"""
context_length = queries.shape[1]
attention_mask = queries != pad_token_id
input_ids = torch.masked_fill(queries, ~attention_mask, 0)
output = lm_backbone.generate(
input_ids=input_ids,
attention_mask=attention_mask,
# position_ids=attention_mask.cumsum(1) - attention_mask.long(), # not needed: already adjusted in generations
# https://github.com/huggingface/transformers/blob/ac33aeeeee2a7a89b89c93c2962e6feb90daef0a/src/transformers/models/gpt2/modeling_gpt2.py#L1227-L1250
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
)
logits = torch.stack(output.scores, 1)
return torch.cat((queries, output.sequences[:, context_length:]), dim=1), logits
@torch.no_grad()
def batch_generation(
model: torch.nn.Module,
queries: torch.Tensor,
local_rollout_forward_batch_size: int,
pad_token_id: int,
generation_config: GenerationConfig,
):
query_responses = []
logitss = []
batch_size = queries.shape[0]
for i in range(0, batch_size, local_rollout_forward_batch_size):
query = queries[i : i + local_rollout_forward_batch_size]
query_response, logits = generate(
model,
query,
pad_token_id,
generation_config,
)
query_responses.append(query_response)
logitss.append(logits)
# padding tensors
padded_query_responses = pad(query_responses, padding_value=pad_token_id, padding_side="right")
padded_logitss = pad(logitss, padding_value=0, padding_side="right")
# reshaping
padded_query_responses = padded_query_responses.view(-1, padded_query_responses.shape[-1])[:batch_size]
padded_logitss = padded_logitss.view(-1, *padded_logitss.shape[2:])[:batch_size]
return padded_query_responses, padded_logitss
def add_bos_token_if_needed(
bos_token_id: Optional[int],
prompt_len_input_ids: int,
prompt_tokens: dict[str, list[int]],
chosen_prompt_len_input_ids: int,
chosen_tokens: dict[str, list[int]],
rejected_prompt_len_input_ids: int,
rejected_tokens: dict[str, list[int]],
):
if bos_token_id is not None:
if prompt_len_input_ids == 0 or bos_token_id != prompt_tokens["prompt_input_ids"][0]:
prompt_tokens["prompt_input_ids"] = [bos_token_id] + prompt_tokens["prompt_input_ids"]
prompt_tokens["prompt_attention_mask"] = [1] + prompt_tokens["prompt_attention_mask"]
if chosen_prompt_len_input_ids == 0 or bos_token_id != chosen_tokens["prompt_input_ids"][0]:
chosen_tokens["prompt_input_ids"] = [bos_token_id] + chosen_tokens["prompt_input_ids"]
chosen_tokens["prompt_attention_mask"] = [1] + chosen_tokens["prompt_attention_mask"]
if rejected_prompt_len_input_ids == 0 or bos_token_id != rejected_tokens["prompt_input_ids"][0]:
rejected_tokens["prompt_input_ids"] = [bos_token_id] + rejected_tokens["prompt_input_ids"]
rejected_tokens["prompt_attention_mask"] = [1] + rejected_tokens["prompt_attention_mask"]
return prompt_tokens, chosen_tokens, rejected_tokens
def add_eos_token_if_needed(
eos_token_id: int, chosen_tokens: dict[str, list[int]], rejected_tokens: dict[str, list[int]]
):
if len(chosen_tokens["input_ids"]) == 0 or eos_token_id != chosen_tokens["input_ids"][-1]:
chosen_tokens["input_ids"].append(eos_token_id)
chosen_tokens["attention_mask"].append(1)
if len(rejected_tokens["input_ids"]) == 0 or eos_token_id != rejected_tokens["input_ids"][-1]:
rejected_tokens["input_ids"].append(eos_token_id)
rejected_tokens["attention_mask"].append(1)
return chosen_tokens, rejected_tokens
def truncate_right(
input_ids: torch.Tensor, stop_token_id: int, pad_token_id: int
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Truncates the input tensor from the right side after the first occurrence of the stop token.
Args:
input_ids (`torch.Tensor`):
The tensor containing the responses to be truncated
stop_token_id (`int`):
The token ID representing the stop token where truncation occurs
pad_token_id (`int`):
The token ID representing the pad token used to fill the truncated responses
Returns:
tuple:
- `output_ids` (`torch.Tensor`):
The truncated responses tensor with pad tokens filled after the stop token
- `mask` (`torch.Tensor`):
The mask tensor to indicate the padding tokens
"""
trunc_idxs = first_true_indices(input_ids == stop_token_id).unsqueeze(-1)
new_size = [1] * (len(input_ids.size()) - 1) + [input_ids.shape[1]]
idxs = torch.arange(input_ids.shape[1], device=input_ids.device).view(*new_size)
output_ids = torch.masked_fill(input_ids, idxs > trunc_idxs, pad_token_id)
mask = torch.masked_fill(torch.ones_like(input_ids), idxs > trunc_idxs, 0)
return output_ids, mask
def empty_cache() -> None:
"""Empties the cache of the available torch device.
This function checks for the availability of different torch devices (XPU, MLU, NPU, CUDA)
and empties the cache of the first available device it finds.
If none of the specific devices are available, it defaults to emptying the CUDA cache.
"""
if is_torch_xpu_available():
torch.xpu.empty_cache()
elif is_torch_mlu_available():
torch.mlu.empty_cache()
elif is_torch_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
def decode_and_strip_padding(inputs: torch.Tensor, tokenizer: PreTrainedTokenizerBase) -> list[str]:
"""
Decodes the input tensor and strips the padding tokens.
Args:
inputs (`torch.Tensor`):
The input tensor to be decoded.
tokenizer (`transformers.PreTrainedTokenizerBase`):
The tokenizer used to decode the input tensor.
Returns:
`list[str]`:
The list of decoded strings with padding tokens stripped.
"""
decoded = tokenizer.batch_decode(inputs, skip_special_tokens=False)
return [d.replace(tokenizer.pad_token, "") for d in decoded]
def generate_model_card(
base_model: Optional[str],
model_name: str,
hub_model_id: str,
dataset_name: Optional[str],
tags: list[str],
wandb_url: Optional[str],
trainer_name: str,
trainer_citation: Optional[str] = None,
paper_title: Optional[str] = None,
paper_id: Optional[str] = None,
comet_url: Optional[str] = None,
) -> ModelCard:
"""
Generate a `ModelCard` from a template.
Args:
base_model (`str` or `None`):
Base model name.
model_name (`str`):
Model name.
hub_model_id (`str`):
Hub model ID as `username/model_id`.
dataset_name (`str` or `None`):
Dataset name.
tags (`list[str]`):
Tags.
wandb_url (`str` or `None`):
Weights & Biases run URL.
comet_url (`str` or `None`):
Comet experiment URL.
trainer_name (`str`):
Trainer name.
trainer_citation (`str` or `None`, defaults to `None`):
Trainer citation as a BibTeX entry.
paper_title (`str` or `None`, defaults to `None`):
Paper title.
paper_id (`str` or `None`, defaults to `None`):
ArXiv paper ID as `YYMM.NNNNN`.
Returns:
`ModelCard`:
A ModelCard object.
"""
card_data = ModelCardData(
base_model=base_model,
datasets=dataset_name,
library_name="transformers",
licence="license",
model_name=model_name,
tags=["generated_from_trainer", *tags],
)
card = ModelCard.from_template(
card_data,
template_path=str(pkg_resources.files("trl").joinpath("templates/lm_model_card.md")),
base_model=base_model,
model_name=model_name,
hub_model_id=hub_model_id,
dataset_name=dataset_name,
wandb_url=wandb_url,
comet_url=comet_url,
trainer_name=trainer_name,
trainer_citation=trainer_citation,
paper_title=paper_title,
paper_id=paper_id,
trl_version=version("trl"),
transformers_version=version("transformers"),
pytorch_version=version("torch"),
datasets_version=version("datasets"),
tokenizers_version=version("tokenizers"),
)
return card
def get_comet_experiment_url() -> Optional[str]:
"""
If Comet integration is enabled, return the URL of the current Comet experiment; otherwise, return `None`.
"""
if not is_comet_available():
return None
if comet_ml.get_running_experiment() is not None:
return comet_ml.get_running_experiment().url
return None
def log_table_to_comet_experiment(name: str, table: pd.DataFrame) -> None:
"""
If Comet integration is enabled logs a table to the Comet experiment if it is currently running.
Args:
name (`str`):
Table name.
table (`pd.DataFrame`):
The Pandas DataFrame containing the table to log.
"""
if not is_comet_available():
raise ModuleNotFoundError("The comet-ml is not installed. Please install it first: pip install comet-ml")
experiment = comet_ml.get_running_experiment()
if experiment is not None:
experiment.log_table(tabular_data=table, filename=name)
def flush_left(mask: torch.Tensor, *tensors: torch.Tensor) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]:
"""
Shift non-zero elements in the mask and corresponding tensors to the left.
This function operates on a binary mask and any number of additional tensors with the same dimensions as the mask.
For each row, non-zero values are shifted to the leftmost positions. Then, columns that contain only zeros across
all rows are truncated from the mask and tensors. Visually, this operation can be represented as follows:
```
[[0, 0, x, x, x, x], -> [[x, x, x, x],
[0, x, x, x, 0, 0]] [x, x, x, 0]]
```
Args:
mask (`torch.Tensor`):
2D tensor (binary mask) with shape `(N, M)`.
*tensors (`torch.Tensor`)
One or more 2D tensors with the same shape as `mask`. These tensors will be processed alongside `mask`,
with non-zero values shifted and excess zero columns truncated in the same manner.
Returns:
`torch.Tensor`:
Updated binary mask with non-zero values flushed to the left and trailing zero columns removed.
`*torch.Tensor`
Updated tensors, processed in the same way as the mask.
Example:
```python
>>> mask = torch.tensor([[0, 0, 1, 1, 1],
... [0, 1, 1, 0, 0]])
>>> tensor = torch.tensor([[9, 9, 2, 3, 4],
... [9, 5, 6, 9, 9]])
>>> new_mask, new_tensor = flush_left(mask, tensor)
>>> print(new_mask)
tensor([[1, 1, 1],
[1, 1, 0]])
>>> print(new_tensor)
tensor([[2, 3, 4],
[5, 6, 0]])
```
"""
_, M = mask.shape
# Create copy of mask and tensors
mask_copy = mask.clone()
tensors = [t.clone() for t in tensors]
# Shift non-zero values to the left
first_non_zero = mask_copy.argmax(dim=1)
pos = torch.arange(M, device=mask_copy.device).unsqueeze(0)
idx_roll = (pos + first_non_zero.unsqueeze(1)) % M
mask_roll = mask_copy.gather(1, idx_roll)
rolled_tensors = [t.gather(1, idx_roll) for t in tensors]
# Truncate trailing columns that are all zeros in mask_roll
col_sums = mask_roll.sum(dim=0)
empty_cols = col_sums == 0
first_empty_col = int(empty_cols.to(torch.int8).argmax()) if empty_cols.any() else M
flushed_mask = mask_roll[:, :first_empty_col]
flushed_tensors = [t[:, :first_empty_col] for t in rolled_tensors]
if not flushed_tensors:
return flushed_mask
return flushed_mask, *flushed_tensors
def flush_right(mask: torch.Tensor, *tensors: torch.Tensor) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]:
"""
Shift non-zero elements in the mask and corresponding tensors to the right. See `flush_left` for details.
"""
_, M = mask.shape
# Create copy of mask and tensors
mask_copy = mask.clone()
tensors = [t.clone() for t in tensors]
# Shift non-zero values to the right
flipped_mask = torch.fliplr(mask_copy)
first_non_zero = flipped_mask.argmax(dim=1)
pos = torch.arange(M, device=mask_copy.device).unsqueeze(0)
idx_roll = (pos - first_non_zero.unsqueeze(1)) % M
mask_roll = mask_copy.gather(1, idx_roll)
rolled_tensors = [t.gather(1, idx_roll) for t in tensors]
# Truncate leading columns that are all zeros in mask_roll
col_sums = mask_roll.sum(dim=0)
non_empty_cols = col_sums != 0
first_non_empty_col = int(non_empty_cols.to(torch.int8).argmax()) if non_empty_cols.any() else M
flushed_mask = mask_roll[:, first_non_empty_col:]
flushed_tensors = [t[:, first_non_empty_col:] for t in rolled_tensors]
if not flushed_tensors:
return flushed_mask
return flushed_mask, *flushed_tensors
def selective_log_softmax(logits, index):
"""
A memory-efficient implementation of the common `log_softmax -> gather` operation.
This function is equivalent to the following naive implementation:
```python
logps = torch.gather(logits.log_softmax(-1), dim=-1, index=index.unsqueeze(-1)).squeeze(-1)
```
Args:
logits (`torch.Tensor`):
Logits tensor of shape `(..., num_classes)`.
index (`torch.Tensor`):
Index tensor of shape `(...)`, specifying the positions to gather from the log-softmax output.
Returns:
`torch.Tensor`:
Gathered log probabilities with the same shape as `index`.
"""
if logits.dtype in [torch.float32, torch.float64]:
selected_logits = torch.gather(logits, dim=-1, index=index.unsqueeze(-1)).squeeze(-1)
# loop to reduce peak mem consumption
logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x)
else:
# logsumexp approach is unstable with bfloat16, fall back to slightly less efficent approach
per_token_logps = []
for row_logits, row_labels in zip(logits, index): # loop to reduce peak mem consumption
row_logps = F.log_softmax(row_logits, dim=-1)
row_per_token_logps = row_logps.gather(dim=-1, index=row_labels.unsqueeze(-1)).squeeze(-1)
per_token_logps.append(row_per_token_logps)
per_token_logps = torch.stack(per_token_logps)
return per_token_logps
def print_prompt_completions_sample(
prompts: list[str],
completions: list[str],
rewards: dict[str, list[float]],
advantages: list[float],
step: int,
num_samples: int = None,
) -> None:
"""
Print out a sample of model completions to the console with multiple reward metrics.
This function creates a nicely formatted table showing prompt-completion pairs, useful for monitoring model outputs
during training. It requires the `rich` library to be installed.
Args:
prompts (`list[str]`):
List of prompts.
completions (`list[str]`):
List of completions corresponding to the prompts.
rewards (`dict[str, list[float]]`):
Dictionary where keys are reward names and values are lists of rewards.
advantages (`list[float]`):
List of advantages corresponding to the prompts and completions.
step (`int`):
Current training step number, used in the output title.
num_samples (`int` or `None`, *optional*, defaults to `None`):
Number of random samples to display. If `None` (default), all items will be displayed.
Example:
```python
>>> from trl.trainer.utils import print_prompt_completions_sample
>>> prompts = ["The sky is", "The sun is"]
>>> completions = [" blue.", " in the sky."]
>>> rewards = {"Correctness": [0.123, 0.456], "Format": [0.789, 0.101]}
>>> advantages = [0.987, 0.654]
>>> print_prompt_completions_sample(prompts, completions, rewards, advantages, 42)
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโ Step 42 โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ โโโโโโโโโโโโโโณโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโณโโโโโโโโโณโโโโโโโโโโโโ โ
โ โ Prompt โ Completion โ Correctness โ Format โ Advantage โ โ
โ โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ โ
โ โ The sky is โ blue. โ 0.12 โ 0.79 โ 0.99 โ โ
โ โโโโโโโโโโโโโโผโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโผโโโโโโโโโผโโโโโโโโโโโโค โ
โ โ The sun is โ in the sky. โ 0.46 โ 0.10 โ 0.65 โ โ
โ โโโโโโโโโโโโโโดโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโดโโโโโโโโโดโโโโโโโโโโโโ โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
```
"""
if not is_rich_available():
raise ImportError(
"The function `print_prompt_completions_sample` requires the `rich` library. Please install it with "
"`pip install rich`."
)
console = Console()
table = Table(show_header=True, header_style="bold white", expand=True)
# Add columns
table.add_column("Prompt", style="bright_yellow")
table.add_column("Completion", style="bright_green")
for reward_name in rewards.keys():
table.add_column(reward_name, style="bold cyan", justify="right")
table.add_column("Advantage", style="bold magenta", justify="right")
# Some basic input validation
if num_samples is not None:
if num_samples >= len(prompts):
num_samples = None
elif num_samples <= 0:
return
# Subsample data if num_samples is specified
if num_samples is not None:
indices = random.sample(range(len(prompts)), num_samples)
prompts = [prompts[i] for i in indices]
completions = [completions[i] for i in indices]
rewards = {key: [val[i] for i in indices] for key, val in rewards.items()}
advantages = [advantages[i] for i in indices]
for i in range(len(prompts)):
reward_values = [f"{rewards[key][i]:.2f}" for key in rewards.keys()] # 2 decimals
table.add_row(Text(prompts[i]), Text(completions[i]), *reward_values, f"{advantages[i]:.2f}")
table.add_section() # Adds a separator between rows
panel = Panel(table, expand=False, title=f"Step {step}", border_style="bold white")
console.print(panel)
|