Spaces:
Paused
Paused
File size: 26,345 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import textwrap
from typing import Any, Callable, Optional, Union
import jinja2
import torch
import torch.nn as nn
import torch.nn.functional as F
from datasets import Dataset, IterableDataset
from transformers import (
BaseImageProcessor,
FeatureExtractionMixin,
PreTrainedModel,
PreTrainedTokenizerBase,
ProcessorMixin,
TrainerCallback,
is_apex_available,
is_wandb_available,
)
from transformers.trainer_utils import EvalPrediction
from transformers.training_args import OptimizerNames
from transformers.utils import is_peft_available
from ..data_utils import is_conversational, maybe_apply_chat_template
from ..models.utils import unwrap_model_for_generation
from .judges import BasePairwiseJudge
from .online_dpo_trainer import OnlineDPOTrainer
from .utils import (
SIMPLE_CHAT_TEMPLATE,
empty_cache,
generate_model_card,
get_comet_experiment_url,
get_reward,
selective_log_softmax,
truncate_right,
)
from .xpo_config import XPOConfig
if is_apex_available():
from apex import amp
if is_wandb_available():
import wandb
if is_peft_available():
from peft import PeftModel
class XPOTrainer(OnlineDPOTrainer):
r"""
Initialize XPOTrainer as a subclass of [`OnlineDPOConfig`].
Args:
model (`transformers.PreTrainedModel`):
The model to train, preferably an `AutoModelForCausalLM`.
ref_model (`PreTrainedModelWrapper`):
Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation and loss. If no
reference model is provided, the trainer will create a reference model with the same architecture as the model to be optimized.
reward_model (`transformers.PreTrainedModel`):
The reward model to score completions with, preferably an `AutoModelForSequenceClassification`.
judge (`BasePairwiseJudge`):
The judge to use for pairwise comparison of model completions.
args (`XPOConfig`):
The XPO config arguments to use for training.
data_collator (`transformers.DataCollator`):
The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences.
train_dataset (`datasets.Dataset`):
The dataset to use for training.
eval_dataset (`datasets.Dataset`):
The dataset to use for evaluation.
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*):
Processing class used to process the data. If provided, will be used to automatically process the inputs
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or
reuse the fine-tuned model.
peft_config (`dict`):
The peft config to use for training.
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*):
The function to use to compute the metrics. Must take a `EvalPrediction` and return
a dictionary string to metric values.
callbacks (`list[transformers.TrainerCallback]`):
The callbacks to use for training.
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`):
The optimizer and scheduler to use for training.
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`):
The function to use to preprocess the logits before computing the metrics.
"""
_tag_names = ["trl", "xpo"]
def __init__(
self,
model: Union[PreTrainedModel, nn.Module] = None,
ref_model: Union[PreTrainedModel, nn.Module] = None,
reward_model: Optional[nn.Module] = None,
judge: Optional[BasePairwiseJudge] = None,
args: Optional[XPOConfig] = None,
data_collator: Optional[Callable] = None,
train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
processing_class: Optional[
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
] = None,
peft_config: Optional[dict] = None,
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
callbacks: Optional[list[TrainerCallback]] = None,
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
) -> None:
super().__init__(
model=model,
ref_model=ref_model,
judge=judge,
reward_model=reward_model,
args=args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
processing_class=processing_class,
reward_processing_class=processing_class, # for now, XPOTrainer can't use any reward model
peft_config=peft_config,
compute_metrics=compute_metrics,
callbacks=callbacks,
optimizers=optimizers,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
)
self._alpha = self.args.alpha
# Overwrite the stats dictionary to include XPO specific statistics
self.stats = {
# Remove "non_score_reward", "rlhf_reward", "scores"
# Add "loss/dpo", "loss/xpo"
"loss/dpo": [],
"loss/xpo": [],
"objective/kl": [],
"objective/entropy": [],
"rewards/chosen": [],
"rewards/rejected": [],
"rewards/accuracies": [],
"rewards/margins": [],
"logps/chosen": [],
"logps/rejected": [],
# Replace "contain_eos_token" by "model_contain_eos_token" and "ref_contain_eos_token"
"val/model_contain_eos_token": [],
"val/ref_contain_eos_token": [],
"alpha": [],
"beta": [],
}
if self.reward_model is not None:
# Replace "scores" by "model_scores" and "ref_scores"
self.stats["objective/model_scores"] = []
self.stats["objective/ref_scores"] = []
self.stats["objective/scores_margin"] = []
@property
def alpha(self):
if isinstance(self._alpha, list):
epoch = self.state.epoch
return self._alpha[epoch] if epoch < len(self._alpha) else self._alpha[-1]
else:
return self._alpha
def _generate_completions(self, prompts, model):
with unwrap_model_for_generation(model, self.accelerator) as unwrapped_policy_model_for_gen:
model_output = unwrapped_policy_model_for_gen.generate(
input_ids=prompts["input_ids"],
attention_mask=prompts["attention_mask"],
generation_config=self.generation_config,
)
actual_model_for_ref_generation: torch.nn.Module
if self.ref_model is None:
unwrapped_main_model_for_ref_logic = self.accelerator.unwrap_model(model)
if is_peft_available() and isinstance(unwrapped_main_model_for_ref_logic, PeftModel):
actual_model_for_ref_generation = unwrapped_main_model_for_ref_logic.get_base_model()
else:
actual_model_for_ref_generation = unwrapped_main_model_for_ref_logic
else:
actual_model_for_ref_generation = self.accelerator.unwrap_model(self.ref_model)
with unwrap_model_for_generation(actual_model_for_ref_generation, self.accelerator) as final_ref_model_for_gen:
ref_output = final_ref_model_for_gen.generate(
input_ids=prompts["input_ids"],
attention_mask=prompts["attention_mask"],
generation_config=self.generation_config,
)
return model_output, ref_output
def _process_completions(self, model_output, ref_output, prompts):
context_length = prompts["input_ids"].shape[1]
# Process model completions
model_completion_ids = model_output[:, context_length:]
model_completion_ids, model_completion_mask = truncate_right(
model_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id
)
model_data = {
"input_ids": torch.cat((prompts["input_ids"], model_completion_ids), dim=1),
"attention_mask": torch.cat((prompts["attention_mask"], model_completion_mask), dim=1),
"raw": prompts["raw"],
}
# Process reference model completions
ref_completion_ids = ref_output[:, context_length:]
ref_completion_ids, ref_completion_mask = truncate_right(
ref_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id
)
ref_data = {
"input_ids": torch.cat((prompts["input_ids"], ref_completion_ids), dim=1),
"attention_mask": torch.cat((prompts["attention_mask"], ref_completion_mask), dim=1),
"raw": prompts["raw"],
}
return model_data, ref_data
def _compute_rewards(self, model_data, ref_data, context_length):
with torch.no_grad():
_, model_scores, _ = get_reward(
self.reward_model, model_data["input_ids"], self.processing_class.pad_token_id, context_length
)
_, ref_scores, _ = get_reward(
self.reward_model, ref_data["input_ids"], self.processing_class.pad_token_id, context_length
)
# Apply EOS penalty if needed
if self.args.missing_eos_penalty is not None:
model_contain_eos = torch.any(model_data["input_ids"] == self.processing_class.eos_token_id, dim=-1)
ref_contain_eos = torch.any(ref_data["input_ids"] == self.processing_class.eos_token_id, dim=-1)
model_scores[~model_contain_eos] -= self.args.missing_eos_penalty
ref_scores[~ref_contain_eos] -= self.args.missing_eos_penalty
return model_scores, ref_scores
def _compute_judge(self, model_data, ref_data, context_length):
prompts = model_data["raw"]
model_data_completions = self.processing_class.batch_decode(
model_data["input_ids"][:, context_length:], skip_special_tokens=True
)
model_data_completions = [completion.strip() for completion in model_data_completions]
ref_data_completions = self.processing_class.batch_decode(
ref_data["input_ids"][:, context_length:], skip_special_tokens=True
)
ref_data_completions = [completion.strip() for completion in ref_data_completions]
if is_conversational({"prompt": prompts[0]}):
model_data_completions = [
[{"role": "assistant", "content": completion}] for completion in model_data_completions
]
environment = jinja2.Environment()
template = environment.from_string(SIMPLE_CHAT_TEMPLATE)
prompts = [template.render(messages=message) for message in prompts]
model_data_completions = [template.render(messages=completion) for completion in model_data_completions]
ref_data_completions = [
[{"role": "assistant", "content": completion}] for completion in ref_data_completions
]
ref_data_completions = [template.render(messages=completion) for completion in ref_data_completions]
ranks_of_first_completion = self.judge.judge(
prompts,
list(zip(model_data_completions, ref_data_completions)),
)
# convert ranks to a True/False mask:
# when rank == 0, it means the first completion is the best
# when rank == 1, it means the second completion is the best
return torch.tensor([rank == 0 for rank in ranks_of_first_completion], device=model_data["input_ids"].device)
def _compute_logprobs(self, model, model_data, ref_data, context_length):
def compute_logprobs_for_data(m, data):
output = m(data["input_ids"], attention_mask=data["attention_mask"])
logits = output.logits[:, context_length - 1 : -1]
token_logprobs = selective_log_softmax(logits, data["input_ids"][:, context_length:])
return token_logprobs
# Compute logprobs for model completions
model_logprobs_model_data = compute_logprobs_for_data(model, model_data)
# Compute logprobs for model on reference completions (for XPO loss)
model_logprobs_ref_data = compute_logprobs_for_data(model, ref_data)
# Compute logprobs for reference model completions
with torch.no_grad():
if self.ref_model is None:
with model.disable_adapter():
ref_logprobs_model_data = compute_logprobs_for_data(model, model_data)
ref_logprobs_ref_data = compute_logprobs_for_data(model, ref_data)
else:
ref_logprobs_model_data = compute_logprobs_for_data(self.ref_model, model_data)
ref_logprobs_ref_data = compute_logprobs_for_data(self.ref_model, ref_data)
# Mask padding tokens
model_padding_mask = model_data["attention_mask"][:, context_length:] == 0
ref_padding_mask = ref_data["attention_mask"][:, context_length:] == 0
model_logprobs_model_data = model_logprobs_model_data.masked_fill(model_padding_mask, 0.0)
model_logprobs_ref_data = model_logprobs_ref_data.masked_fill(ref_padding_mask, 0.0)
ref_logprobs_ref_data = ref_logprobs_ref_data.masked_fill(ref_padding_mask, 0.0)
ref_logprobs_model_data = ref_logprobs_model_data.masked_fill(model_padding_mask, 0.0)
return model_logprobs_model_data, model_logprobs_ref_data, ref_logprobs_ref_data, ref_logprobs_model_data
def _compute_losses(
self,
model_logprobs_model_data,
model_logprobs_ref_data,
ref_logprobs_ref_data,
ref_logprobs_model_data,
chosen_mask,
):
# Compute log probs
model_logprobs_model_data_sum = model_logprobs_model_data.sum(1)
model_logprobs_ref_data_sum = model_logprobs_ref_data.sum(1)
ref_logprobs_ref_data_sum = ref_logprobs_ref_data.sum(1)
ref_logprobs_model_data_sum = ref_logprobs_model_data.sum(1)
chosen_model_logprobs = torch.where(chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum)
chosen_ref_logprobs = torch.where(chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum)
chosen_log_ratios = chosen_model_logprobs - chosen_ref_logprobs
rejected_model_logprobs = torch.where(~chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum)
rejected_ref_logprobs = torch.where(~chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum)
rejected_log_ratios = rejected_model_logprobs - rejected_ref_logprobs
# Compute logits as the difference between chosen and rejected log ratios
logits = chosen_log_ratios - rejected_log_ratios
if self.args.loss_type == "sigmoid":
dpo_losses = -F.logsigmoid(self.beta * logits)
elif self.args.loss_type == "ipo":
dpo_losses = (logits - 1 / (2 * self.beta)) ** 2
else:
raise NotImplementedError(f"invalid loss type {self.args.loss_type}")
# Compute XPO specific loss
xpo_losses = self.alpha * model_logprobs_ref_data_sum
# Total loss
loss = (dpo_losses + xpo_losses).mean()
return loss, dpo_losses, xpo_losses
def _log_statistics(
self,
model_data,
ref_data,
model_logprobs_model_data,
model_logprobs_ref_data,
ref_logprobs_ref_data,
ref_logprobs_model_data,
chosen_mask,
dpo_losses,
xpo_losses,
context_length,
model_scores=None,
ref_scores=None,
):
# Helper function to gather and compute mean
def gather_mean(tensor):
return self.accelerator.gather_for_metrics(tensor).mean().item()
# Log losses
self.stats["loss/dpo"].append(gather_mean(dpo_losses))
self.stats["loss/xpo"].append(gather_mean(xpo_losses))
# Log scores
if self.reward_model is not None:
self.stats["objective/model_scores"].append(gather_mean(model_scores))
self.stats["objective/ref_scores"].append(gather_mean(ref_scores))
self.stats["objective/scores_margin"].append(gather_mean(model_scores - ref_scores))
# Log logprobs
model_logprobs_model_data_sum = model_logprobs_model_data.sum(1)
model_logprobs_ref_data_sum = model_logprobs_ref_data.sum(1)
ref_logprobs_ref_data_sum = ref_logprobs_ref_data.sum(1)
ref_logprobs_model_data_sum = ref_logprobs_model_data.sum(1)
chosen_model_logprobs = torch.where(chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum)
chosen_ref_logprobs = torch.where(chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum)
chosen_log_ratios = chosen_model_logprobs - chosen_ref_logprobs
rejected_model_logprobs = torch.where(~chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum)
rejected_ref_logprobs = torch.where(~chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum)
rejected_log_ratios = rejected_model_logprobs - rejected_ref_logprobs
self.stats["logps/chosen"].append(gather_mean(chosen_model_logprobs.mean() + chosen_ref_logprobs.mean()))
self.stats["logps/rejected"].append(gather_mean(rejected_model_logprobs.mean() + rejected_ref_logprobs.mean()))
# Log rewards
# Compute various statistics
chosen_rewards = chosen_log_ratios * self.beta
rejected_rewards = rejected_log_ratios * self.beta
self.stats["rewards/chosen"].append(gather_mean(chosen_rewards.mean()))
self.stats["rewards/rejected"].append(gather_mean(rejected_rewards.mean()))
# Calculate KL divergence for model and ref data
kl_model_data = model_logprobs_model_data - ref_logprobs_model_data
kl_ref_data = model_logprobs_ref_data - ref_logprobs_ref_data
mean_kl = (kl_model_data.sum(1) + kl_ref_data.sum(1)).mean() / 2
self.stats["objective/kl"].append(gather_mean(mean_kl))
# Calculate entropy for model and ref data
entropy_model_data = -model_logprobs_model_data.sum(1)
entropy_ref_data = -model_logprobs_ref_data.sum(1)
mean_entropy = (entropy_model_data.mean() + entropy_ref_data.mean()) / 2
self.stats["objective/entropy"].append(gather_mean(mean_entropy))
# Calculate margins
margin = chosen_rewards - rejected_rewards
self.stats["rewards/margins"].append(gather_mean(margin.mean()))
# Calculate accuracy
accuracy = (margin > 0).float()
self.stats["rewards/accuracies"].append(gather_mean(accuracy.mean()))
# Log EOS token statistics
model_eos = (model_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1)
ref_eos = (ref_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1)
self.stats["val/model_contain_eos_token"].append(gather_mean(model_eos.float()))
self.stats["val/ref_contain_eos_token"].append(gather_mean(ref_eos.float()))
# Log alpha and beta
self.stats["alpha"].append(self.alpha)
self.stats["beta"].append(self.beta)
def training_step(
self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None
) -> torch.Tensor:
model.train()
# Apply chat template and tokenize the input
batch_size = len(next(iter(inputs.values())))
prompts = inputs["prompt"]
inputs = [{k: v[i] for k, v in inputs.items()} for i in range(batch_size)]
inputs = [maybe_apply_chat_template(x, self.processing_class) for x in inputs]
inputs = [self.tokenize_row(x, self.model.config.is_encoder_decoder, self.processing_class) for x in inputs]
inputs = self.data_collator(inputs)
# need the prompt_ only
inputs = self._prepare_inputs(inputs)
context_length = inputs["prompt_input_ids"].shape[1]
prompts = {
"input_ids": inputs["prompt_input_ids"],
"attention_mask": inputs["prompt_attention_mask"],
"raw": prompts,
}
del inputs
# Sample completions from both the model and the reference model
model_output, ref_output = self._generate_completions(prompts, model)
# Process model completions
model_data, ref_data = self._process_completions(model_output, ref_output, prompts)
# Compute rewards
if self.reward_model is not None:
model_scores, ref_scores = self._compute_rewards(model_data, ref_data, context_length)
chosen_mask = model_scores >= ref_scores
else:
model_scores, ref_scores = None, None
chosen_mask = self._compute_judge(model_data, ref_data, context_length)
# Compute logprobs
model_logprobs_model_data, model_logprobs_ref_data, ref_logprobs_ref_data, ref_logprobs_model_data = (
self._compute_logprobs(model, model_data, ref_data, context_length)
)
# Compute loss
loss, dpo_losses, xpo_losses = self._compute_losses(
model_logprobs_model_data,
model_logprobs_ref_data,
ref_logprobs_ref_data,
ref_logprobs_model_data,
chosen_mask,
)
# Log everything
self._log_statistics(
model_data,
ref_data,
model_logprobs_model_data.detach(),
model_logprobs_ref_data.detach(),
ref_logprobs_ref_data,
ref_logprobs_model_data,
chosen_mask,
dpo_losses.detach(),
xpo_losses.detach(),
context_length,
model_scores,
ref_scores,
)
if (
self.args.torch_empty_cache_steps is not None
and self.state.global_step % self.args.torch_empty_cache_steps == 0
):
empty_cache()
kwargs = {}
# For LOMO optimizers you need to explicitly use the learning rate
if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]:
kwargs["learning_rate"] = self._get_learning_rate()
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if self.use_apex:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
self.accelerator.backward(loss, **kwargs)
return loss.detach() / self.args.gradient_accumulation_steps
def create_model_card(
self,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None,
tags: Union[str, list[str], None] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
model_name (`str` or `None`, *optional*, defaults to `None`):
Name of the model.
dataset_name (`str` or `None`, *optional*, defaults to `None`):
Name of the dataset used for training.
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
Tags to be associated with the model card.
"""
if not self.is_world_process_zero():
return
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
base_model = self.model.config._name_or_path
else:
base_model = None
tags = tags or set()
if isinstance(tags, str):
tags = {tags}
if hasattr(self.model.config, "unsloth_version"):
tags.add("unsloth")
tags.update(self._tag_names)
citation = textwrap.dedent("""\
@article{jung2024binary,
title = {{Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF}},
author = {Tengyang Xie and Dylan J. Foster and Akshay Krishnamurthy and Corby Rosset and Ahmed Awadallah and Alexander Rakhlin},
year = 2024,
eprint = {arXiv:2405.21046}
}""")
model_card = generate_model_card(
base_model=base_model,
model_name=model_name,
hub_model_id=self.hub_model_id,
dataset_name=dataset_name,
tags=tags,
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
comet_url=get_comet_experiment_url(),
trainer_name="XPO",
trainer_citation=citation,
paper_title="Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF",
paper_id="2405.21046",
)
model_card.save(os.path.join(self.args.output_dir, "README.md"))
|