|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import torch |
|
|
|
from trl.trainer.dpo_trainer import DataCollatorForPreference |
|
|
|
|
|
class TestDataCollatorForPreference(unittest.TestCase): |
|
def setUp(self): |
|
self.collator = DataCollatorForPreference(pad_token_id=0) |
|
|
|
def assertTensorEqual(self, tensor1, tensor2): |
|
self.assertTrue(torch.equal(tensor1, tensor2), f"Tensors are not equal:\n{tensor1}\n{tensor2}") |
|
|
|
def test_padding_behavior(self): |
|
examples = [ |
|
{"prompt_input_ids": [1, 2, 3], "chosen_input_ids": [4, 5], "rejected_input_ids": [6]}, |
|
{"prompt_input_ids": [7, 8], "chosen_input_ids": [9, 10], "rejected_input_ids": [11, 12, 13]}, |
|
] |
|
output = self.collator.torch_call(examples) |
|
|
|
expected_prompt_input_ids = torch.tensor([[1, 2, 3], [0, 7, 8]]) |
|
expected_prompt_attention_mask = torch.tensor([[1, 1, 1], [0, 1, 1]]) |
|
expected_chosen_input_ids = torch.tensor([[4, 5], [9, 10]]) |
|
expected_chosen_attention_mask = torch.tensor([[1, 1], [1, 1]]) |
|
expected_rejected_input_ids = torch.tensor([[6, 0, 0], [11, 12, 13]]) |
|
expected_rejected_attention_mask = torch.tensor([[1, 0, 0], [1, 1, 1]]) |
|
|
|
self.assertTensorEqual(output["prompt_input_ids"], expected_prompt_input_ids) |
|
self.assertTensorEqual(output["prompt_attention_mask"], expected_prompt_attention_mask) |
|
self.assertTensorEqual(output["chosen_input_ids"], expected_chosen_input_ids) |
|
self.assertTensorEqual(output["chosen_attention_mask"], expected_chosen_attention_mask) |
|
self.assertTensorEqual(output["rejected_input_ids"], expected_rejected_input_ids) |
|
self.assertTensorEqual(output["rejected_attention_mask"], expected_rejected_attention_mask) |
|
|
|
def test_optional_fields(self): |
|
examples = [ |
|
{ |
|
"prompt_input_ids": [1], |
|
"chosen_input_ids": [2], |
|
"rejected_input_ids": [3], |
|
"pixel_values": [[[0.1, 0.2], [0.3, 0.4]]], |
|
}, |
|
{ |
|
"prompt_input_ids": [4], |
|
"chosen_input_ids": [5], |
|
"rejected_input_ids": [6], |
|
"pixel_values": [[[0.5, 0.6], [0.7, 0.8]]], |
|
}, |
|
] |
|
output = self.collator.torch_call(examples) |
|
|
|
expected_pixel_values = torch.tensor( |
|
[ |
|
[[[0.1, 0.2], [0.3, 0.4]]], |
|
[[[0.5, 0.6], [0.7, 0.8]]], |
|
] |
|
) |
|
|
|
self.assertTensorEqual(output["pixel_values"], expected_pixel_values) |
|
|