|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import sys |
|
import tempfile |
|
import unittest |
|
from unittest.mock import MagicMock |
|
|
|
import numpy as np |
|
import torch |
|
from datasets import Dataset, features, load_dataset |
|
from parameterized import parameterized |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoModelForSeq2SeqLM, |
|
AutoModelForVision2Seq, |
|
AutoProcessor, |
|
AutoTokenizer, |
|
PreTrainedTokenizerBase, |
|
is_vision_available, |
|
) |
|
from transformers.testing_utils import ( |
|
get_device_properties, |
|
require_liger_kernel, |
|
require_peft, |
|
require_torch_gpu_if_bnb_not_multi_backend_enabled, |
|
require_vision, |
|
) |
|
|
|
from trl import DPOConfig, DPOTrainer, FDivergenceType |
|
|
|
from .testing_utils import require_bitsandbytes, require_no_wandb |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
|
|
class TestTokenizeRow(unittest.TestCase): |
|
def setUp(self): |
|
|
|
self.tokenizer = MagicMock(spec=PreTrainedTokenizerBase) |
|
self.tokenizer.bos_token_id = 0 |
|
self.tokenizer.eos_token_id = 2 |
|
|
|
|
|
self.tokenizer.return_value = { |
|
"input_ids": {"The sky is": [464, 6766, 318], " blue": [4171], " green": [4077]} |
|
} |
|
|
|
|
|
def mock_tokenizer_call(text, add_special_tokens): |
|
token_map = { |
|
"The sky is": {"input_ids": [464, 6766, 318]}, |
|
" blue": {"input_ids": [4171]}, |
|
" green": {"input_ids": [4077]}, |
|
} |
|
return token_map[text] |
|
|
|
self.tokenizer.side_effect = mock_tokenizer_call |
|
|
|
def test_tokenize_row_no_truncation_no_special_tokens(self): |
|
|
|
features = {"prompt": "The sky is", "chosen": " blue", "rejected": " green"} |
|
|
|
|
|
result = DPOTrainer.tokenize_row( |
|
features=features, |
|
processing_class=self.tokenizer, |
|
max_prompt_length=None, |
|
max_completion_length=None, |
|
add_special_tokens=False, |
|
) |
|
|
|
|
|
self.assertEqual( |
|
result, |
|
{ |
|
"prompt_input_ids": [464, 6766, 318], |
|
"chosen_input_ids": [4171, 2], |
|
"rejected_input_ids": [4077, 2], |
|
}, |
|
) |
|
|
|
def test_tokenize_row_with_truncation(self): |
|
|
|
features = {"prompt": "The sky is", "chosen": " blue", "rejected": " green"} |
|
|
|
|
|
result = DPOTrainer.tokenize_row( |
|
features=features, |
|
processing_class=self.tokenizer, |
|
max_prompt_length=2, |
|
max_completion_length=1, |
|
add_special_tokens=False, |
|
) |
|
|
|
|
|
self.assertEqual( |
|
result, |
|
{ |
|
"prompt_input_ids": [6766, 318], |
|
"chosen_input_ids": [4171], |
|
"rejected_input_ids": [4077], |
|
}, |
|
) |
|
|
|
def test_tokenize_row_with_special_tokens(self): |
|
|
|
features = {"prompt": "The sky is", "chosen": " blue", "rejected": " green"} |
|
|
|
|
|
result = DPOTrainer.tokenize_row( |
|
features=features, |
|
processing_class=self.tokenizer, |
|
max_prompt_length=None, |
|
max_completion_length=None, |
|
add_special_tokens=True, |
|
) |
|
|
|
|
|
self.assertEqual( |
|
result, |
|
{ |
|
"prompt_input_ids": [0, 464, 6766, 318, 2], |
|
"chosen_input_ids": [4171, 2], |
|
"rejected_input_ids": [4077, 2], |
|
}, |
|
) |
|
|
|
def test_tokenize_row_with_truncation_and_special_tokens(self): |
|
|
|
features = {"prompt": "The sky is", "chosen": " blue", "rejected": " green"} |
|
|
|
|
|
result = DPOTrainer.tokenize_row( |
|
features=features, |
|
processing_class=self.tokenizer, |
|
max_prompt_length=4, |
|
max_completion_length=1, |
|
add_special_tokens=True, |
|
) |
|
|
|
|
|
self.assertEqual( |
|
result, |
|
{ |
|
"prompt_input_ids": [464, 6766, 318, 2], |
|
"chosen_input_ids": [4171], |
|
"rejected_input_ids": [4077], |
|
}, |
|
) |
|
|
|
|
|
class DPOTrainerTester(unittest.TestCase): |
|
def setUp(self): |
|
self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" |
|
self.model = AutoModelForCausalLM.from_pretrained(self.model_id) |
|
self.ref_model = AutoModelForCausalLM.from_pretrained(self.model_id) |
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id) |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
|
|
|
|
model_id = "trl-internal-testing/tiny-T5ForConditionalGeneration" |
|
self.t5_model = AutoModelForSeq2SeqLM.from_pretrained(model_id) |
|
self.t5_ref_model = AutoModelForSeq2SeqLM.from_pretrained(model_id) |
|
self.t5_tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
def test_train(self): |
|
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" |
|
dataset = load_dataset("trl-internal-testing/zen", "standard_preference", split="train") |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
learning_rate=9e-1, |
|
report_to="none", |
|
) |
|
trainer = DPOTrainer( |
|
model=model_id, |
|
args=training_args, |
|
processing_class=tokenizer, |
|
train_dataset=dataset, |
|
) |
|
|
|
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} |
|
|
|
trainer.train() |
|
|
|
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) |
|
|
|
|
|
for n, param in previous_trainable_params.items(): |
|
new_param = trainer.model.get_parameter(n) |
|
if param.sum() != 0: |
|
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12)) |
|
|
|
@parameterized.expand( |
|
[ |
|
("sigmoid",), |
|
("hinge",), |
|
("ipo",), |
|
("exo_pair",), |
|
("nca_pair",), |
|
("robust",), |
|
("bco_pair",), |
|
("sppo_hard",), |
|
("aot",), |
|
("aot_pair",), |
|
("discopop",), |
|
("apo_zero",), |
|
("apo_down",), |
|
] |
|
) |
|
def test_train_loss_types(self, loss_type): |
|
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" |
|
dataset = load_dataset("trl-internal-testing/zen", "standard_preference", split="train") |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
learning_rate=9e-1, |
|
loss_type=loss_type, |
|
report_to="none", |
|
) |
|
trainer = DPOTrainer( |
|
model=model_id, |
|
args=training_args, |
|
processing_class=tokenizer, |
|
train_dataset=dataset, |
|
) |
|
|
|
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} |
|
|
|
trainer.train() |
|
|
|
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) |
|
|
|
|
|
for n, param in previous_trainable_params.items(): |
|
new_param = trainer.model.get_parameter(n) |
|
if param.sum() != 0: |
|
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12)) |
|
|
|
def test_dpo_trainer_with_weighting(self): |
|
dataset = load_dataset("trl-internal-testing/zen", "standard_preference", split="train") |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
learning_rate=9e-1, |
|
use_weighting=True, |
|
report_to="none", |
|
) |
|
|
|
trainer = DPOTrainer( |
|
model=self.model, |
|
args=training_args, |
|
processing_class=self.tokenizer, |
|
train_dataset=dataset, |
|
) |
|
|
|
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} |
|
|
|
trainer.train() |
|
|
|
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) |
|
|
|
|
|
for n, param in previous_trainable_params.items(): |
|
new_param = trainer.model.get_parameter(n) |
|
if param.sum() != 0: |
|
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12)) |
|
|
|
@parameterized.expand( |
|
[ |
|
(None, "Test when rpo_alpha is set to None"), |
|
(0.5, "Test when rpo_alpha is set to 0.5"), |
|
] |
|
) |
|
def test_dpo_trainer_without_providing_ref_model(self, rpo_alpha, _): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
remove_unused_columns=False, |
|
gradient_accumulation_steps=4, |
|
learning_rate=9e-1, |
|
eval_strategy="steps", |
|
beta=0.1, |
|
precompute_ref_log_probs=True, |
|
rpo_alpha=rpo_alpha, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
trainer = DPOTrainer( |
|
model=self.model, |
|
ref_model=None, |
|
args=training_args, |
|
processing_class=self.tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
) |
|
|
|
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} |
|
|
|
trainer.train() |
|
|
|
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) |
|
|
|
|
|
for n, param in previous_trainable_params.items(): |
|
new_param = trainer.model.get_parameter(n) |
|
if param.sum() != 0: |
|
self.assertFalse(torch.equal(param, new_param)) |
|
|
|
def test_dpo_trainer_with_ref_model_is_model(self): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
with self.assertRaises(ValueError): |
|
DPOTrainer( |
|
model=self.model, |
|
ref_model=self.model, |
|
args=training_args, |
|
processing_class=self.tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
) |
|
|
|
def test_precompute_ref_batch_size(self): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
precompute_ref_log_probs=True, |
|
precompute_ref_batch_size=4, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
trainer = DPOTrainer( |
|
model=self.model, |
|
ref_model=self.ref_model, |
|
args=training_args, |
|
processing_class=self.tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
) |
|
|
|
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} |
|
|
|
trainer.train() |
|
|
|
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) |
|
|
|
|
|
for n, param in previous_trainable_params.items(): |
|
new_param = trainer.model.get_parameter(n) |
|
if param.sum() != 0: |
|
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12)) |
|
|
|
@require_peft |
|
def test_dpo_trainer_without_providing_ref_model_with_lora(self): |
|
from peft import LoraConfig |
|
|
|
lora_config = LoraConfig( |
|
r=16, |
|
lora_alpha=32, |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
remove_unused_columns=False, |
|
gradient_accumulation_steps=4, |
|
learning_rate=9e-1, |
|
eval_strategy="steps", |
|
beta=0.1, |
|
precompute_ref_log_probs=True, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
trainer = DPOTrainer( |
|
model=self.model, |
|
ref_model=None, |
|
args=training_args, |
|
processing_class=self.tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
peft_config=lora_config, |
|
) |
|
|
|
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} |
|
|
|
trainer.train() |
|
|
|
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) |
|
|
|
|
|
for n, param in previous_trainable_params.items(): |
|
if "lora" in n: |
|
new_param = trainer.model.get_parameter(n) |
|
if param.sum() != 0: |
|
self.assertFalse(torch.equal(param, new_param)) |
|
|
|
def test_dpo_trainer_padding_token_is_none(self): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
remove_unused_columns=False, |
|
gradient_accumulation_steps=1, |
|
learning_rate=9e-1, |
|
eval_strategy="steps", |
|
beta=0.1, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id) |
|
tokenizer.pad_token = None |
|
|
|
with self.assertRaisesRegex( |
|
ValueError, |
|
expected_regex=r"`padding_value` is not specified in `DPOConfig`, and `pad_token_id` is missing in " |
|
r"the `processing_class`. Please either set the `padding_value` argument in `DPOConfig`, or set " |
|
r"`tokenizer.pad_token` \(e.g., `tokenizer.pad_token = tokenizer.eos_token`\) before instantiating " |
|
r"the trainer.", |
|
): |
|
trainer = DPOTrainer( |
|
model=self.model, |
|
ref_model=None, |
|
args=training_args, |
|
processing_class=tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
) |
|
|
|
trainer.train() |
|
|
|
def test_dpo_trainer_w_dataset_num_proc(self): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
remove_unused_columns=False, |
|
gradient_accumulation_steps=1, |
|
learning_rate=9e-1, |
|
eval_strategy="steps", |
|
beta=0.1, |
|
dataset_num_proc=2, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id) |
|
|
|
trainer = DPOTrainer( |
|
model=self.model, |
|
args=training_args, |
|
processing_class=tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
) |
|
|
|
trainer.train() |
|
|
|
def test_tr_dpo_trainer(self): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
remove_unused_columns=False, |
|
gradient_accumulation_steps=4, |
|
learning_rate=9e-1, |
|
eval_strategy="steps", |
|
precompute_ref_log_probs=False, |
|
sync_ref_model=True, |
|
ref_model_mixup_alpha=0.5, |
|
ref_model_sync_steps=1, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
trainer = DPOTrainer( |
|
model=self.model, |
|
ref_model=self.ref_model, |
|
args=training_args, |
|
processing_class=self.tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
) |
|
|
|
|
|
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} |
|
|
|
trainer.train() |
|
|
|
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) |
|
|
|
|
|
for n, param in previous_trainable_params.items(): |
|
new_param = trainer.ref_model.get_parameter(n) |
|
if param.sum() != 0: |
|
self.assertFalse(torch.equal(param, new_param)) |
|
|
|
@require_no_wandb |
|
def test_dpo_trainer_generate_during_eval_no_wandb(self): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
remove_unused_columns=False, |
|
gradient_accumulation_steps=1, |
|
learning_rate=9e-1, |
|
eval_strategy="steps", |
|
beta=0.1, |
|
generate_during_eval=True, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
with self.assertRaisesRegex( |
|
ValueError, |
|
expected_regex="`generate_during_eval=True` requires Weights and Biases or Comet to be installed." |
|
" Please install `wandb` or `comet-ml` to resolve.", |
|
): |
|
DPOTrainer( |
|
model=self.model, |
|
ref_model=None, |
|
args=training_args, |
|
processing_class=self.tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
) |
|
|
|
@require_peft |
|
def test_dpo_lora_save(self): |
|
from peft import LoraConfig, get_peft_model |
|
|
|
lora_config = LoraConfig( |
|
r=16, |
|
lora_alpha=32, |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(self.model_id) |
|
model_peft = get_peft_model(model, lora_config) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
remove_unused_columns=False, |
|
gradient_accumulation_steps=4, |
|
learning_rate=9e-1, |
|
eval_strategy="steps", |
|
beta=0.1, |
|
precompute_ref_log_probs=True, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
|
|
trainer = DPOTrainer( |
|
model=model_peft, |
|
ref_model=None, |
|
args=training_args, |
|
processing_class=self.tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
peft_config=lora_config, |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
trainer.save_model() |
|
|
|
try: |
|
AutoModelForCausalLM.from_pretrained(tmp_dir) |
|
except OSError: |
|
self.fail("Loading the saved peft adapter failed") |
|
|
|
@require_peft |
|
@require_torch_gpu_if_bnb_not_multi_backend_enabled |
|
def test_dpo_lora_bf16_autocast_llama(self): |
|
|
|
from peft import LoraConfig |
|
|
|
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
lora_config = LoraConfig( |
|
r=16, |
|
lora_alpha=32, |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
remove_unused_columns=False, |
|
gradient_accumulation_steps=4, |
|
learning_rate=9e-1, |
|
eval_strategy="steps", |
|
bf16=True, |
|
beta=0.1, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
|
|
trainer = DPOTrainer( |
|
model=model, |
|
ref_model=None, |
|
args=training_args, |
|
processing_class=tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
peft_config=lora_config, |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
trainer.save_model() |
|
|
|
@parameterized.expand( |
|
[ |
|
("sigmoid", False, False), |
|
("sigmoid", False, True), |
|
("sigmoid", True, False), |
|
("sigmoid", True, True), |
|
("ipo", False, False), |
|
("ipo", False, True), |
|
("ipo", True, False), |
|
("ipo", True, True), |
|
("aot_pair", False, False), |
|
("aot_pair", False, True), |
|
("aot_pair", True, False), |
|
("aot_pair", True, True), |
|
("aot", False, False), |
|
("aot", False, True), |
|
("aot", True, False), |
|
("aot", True, True), |
|
("bco_pair", False, False), |
|
("bco_pair", False, True), |
|
("bco_pair", True, False), |
|
("bco_pair", True, True), |
|
("robust", False, False), |
|
("robust", False, True), |
|
("robust", True, False), |
|
("robust", True, True), |
|
] |
|
) |
|
@require_bitsandbytes |
|
@require_peft |
|
@unittest.skipIf( |
|
get_device_properties()[0] == "cuda" and get_device_properties()[1] < 8, |
|
"Skipping because bf16 not supported on CUDA GPU with capability < 8.0", |
|
) |
|
def test_dpo_lora_bf16_autocast(self, loss_type, pre_compute, gen_during_eval): |
|
from peft import LoraConfig |
|
|
|
lora_config = LoraConfig( |
|
r=16, |
|
lora_alpha=32, |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(self.model_id, load_in_4bit=True) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
remove_unused_columns=False, |
|
gradient_accumulation_steps=4, |
|
learning_rate=9e-1, |
|
eval_strategy="steps", |
|
bf16=True, |
|
beta=0.1, |
|
generate_during_eval=gen_during_eval, |
|
loss_type=loss_type, |
|
precompute_ref_log_probs=pre_compute, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
|
|
trainer = DPOTrainer( |
|
model=model, |
|
ref_model=None, |
|
args=training_args, |
|
processing_class=self.tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
peft_config=lora_config, |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
trainer.save_model() |
|
|
|
@require_peft |
|
def test_dpo_lora_tags(self): |
|
from peft import LoraConfig |
|
|
|
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
lora_config = LoraConfig( |
|
r=16, |
|
lora_alpha=32, |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
remove_unused_columns=False, |
|
gradient_accumulation_steps=4, |
|
learning_rate=9e-1, |
|
eval_strategy="steps", |
|
beta=0.1, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
|
|
trainer = DPOTrainer( |
|
model=model, |
|
ref_model=None, |
|
args=training_args, |
|
processing_class=tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
peft_config=lora_config, |
|
) |
|
|
|
for tag in ["dpo", "trl"]: |
|
self.assertIn(tag, trainer.model.model_tags) |
|
|
|
@require_peft |
|
def test_dpo_tags(self): |
|
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
remove_unused_columns=False, |
|
gradient_accumulation_steps=4, |
|
learning_rate=9e-1, |
|
eval_strategy="steps", |
|
beta=0.1, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
|
|
trainer = DPOTrainer( |
|
model=model, |
|
ref_model=None, |
|
args=training_args, |
|
processing_class=tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
) |
|
|
|
for tag in ["dpo", "trl"]: |
|
self.assertIn(tag, trainer.model.model_tags) |
|
|
|
@require_peft |
|
def test_dpo_lora_force_use_ref(self): |
|
from peft import LoraConfig, get_peft_model |
|
|
|
lora_config = LoraConfig( |
|
r=16, |
|
lora_alpha=32, |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(self.model_id) |
|
model_peft = get_peft_model(model, lora_config) |
|
|
|
ref_model = AutoModelForCausalLM.from_pretrained(self.model_id) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
remove_unused_columns=False, |
|
gradient_accumulation_steps=4, |
|
learning_rate=9e-1, |
|
eval_strategy="steps", |
|
beta=0.1, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
with self.assertRaises(ValueError): |
|
|
|
|
|
trainer = DPOTrainer( |
|
model=model_peft, |
|
ref_model=ref_model, |
|
args=training_args, |
|
processing_class=self.tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
peft_config=lora_config, |
|
) |
|
|
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
remove_unused_columns=False, |
|
gradient_accumulation_steps=4, |
|
learning_rate=9e-1, |
|
eval_strategy="steps", |
|
beta=0.1, |
|
force_use_ref_model=True, |
|
report_to="none", |
|
) |
|
|
|
trainer = DPOTrainer( |
|
model=model_peft, |
|
ref_model=ref_model, |
|
args=training_args, |
|
processing_class=self.tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
peft_config=lora_config, |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
def test_dpo_trainer_torch_dtype(self): |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=1, |
|
model_init_kwargs={"torch_dtype": "float16"}, |
|
ref_model_init_kwargs={"torch_dtype": "float16"}, |
|
report_to="none", |
|
) |
|
|
|
trainer = DPOTrainer( |
|
model=self.model_id, |
|
ref_model=self.model_id, |
|
processing_class=self.tokenizer, |
|
args=training_args, |
|
train_dataset=dummy_dataset["train"], |
|
) |
|
self.assertEqual(trainer.model.config.torch_dtype, torch.float16) |
|
self.assertEqual(trainer.ref_model.config.torch_dtype, torch.float16) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=1, |
|
model_init_kwargs={"torch_dtype": -1}, |
|
report_to="none", |
|
) |
|
|
|
with self.assertRaises(ValueError) as context: |
|
_ = DPOTrainer( |
|
model=self.model_id, |
|
processing_class=self.tokenizer, |
|
args=training_args, |
|
train_dataset=dummy_dataset["train"], |
|
) |
|
|
|
self.assertIn( |
|
"Invalid `torch_dtype` passed to `DPOConfig`. Expected either 'auto' or a string representing a `torch.dtype` (e.g., 'float32'), but got -1.", |
|
str(context.exception), |
|
) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=1, |
|
ref_model_init_kwargs={"torch_dtype": -1}, |
|
report_to="none", |
|
) |
|
|
|
with self.assertRaises(ValueError) as context: |
|
_ = DPOTrainer( |
|
model=self.model_id, |
|
ref_model=self.model_id, |
|
processing_class=self.tokenizer, |
|
args=training_args, |
|
train_dataset=dummy_dataset["train"], |
|
) |
|
|
|
self.assertIn( |
|
"Invalid `torch_dtype` passed to `DPOConfig`. Expected either 'auto' or a string representing a `torch.dtype` (e.g., 'float32'), but got -1.", |
|
str(context.exception), |
|
) |
|
|
|
def test_dpo_loss_alpha_div_f(self): |
|
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
remove_unused_columns=False, |
|
gradient_accumulation_steps=4, |
|
learning_rate=9e-1, |
|
eval_strategy="steps", |
|
f_divergence_type=FDivergenceType.ALPHA_DIVERGENCE.value, |
|
f_alpha_divergence_coef=0.5, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
|
|
trainer = DPOTrainer( |
|
model=model, |
|
ref_model=None, |
|
args=training_args, |
|
processing_class=tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
) |
|
|
|
|
|
policy_chosen_logps = torch.FloatTensor([410.0, 0.1]) |
|
policy_rejected_logps = torch.FloatTensor([810.5, 0.2]) |
|
reference_chosen_logps = torch.FloatTensor([-610.0, -0.1]) |
|
reference_rejected_logps = torch.FloatTensor([110.6, 0.5]) |
|
losses, _, _ = trainer.dpo_loss( |
|
policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps |
|
) |
|
self.assertTrue(torch.isfinite(losses).cpu().numpy().all()) |
|
|
|
def test_dpo_loss_js_div_f(self): |
|
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
remove_unused_columns=False, |
|
gradient_accumulation_steps=4, |
|
learning_rate=9e-1, |
|
eval_strategy="steps", |
|
f_divergence_type=FDivergenceType.JS_DIVERGENCE.value, |
|
f_alpha_divergence_coef=0.5, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
|
|
trainer = DPOTrainer( |
|
model=model, |
|
ref_model=None, |
|
args=training_args, |
|
processing_class=tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
) |
|
|
|
|
|
policy_chosen_logps = torch.FloatTensor([410.0, 0.1]) |
|
policy_rejected_logps = torch.FloatTensor([95.5, 0.2]) |
|
reference_chosen_logps = torch.FloatTensor([-610.0, -0.1]) |
|
reference_rejected_logps = torch.FloatTensor([5.5, 0.5]) |
|
losses, _, _ = trainer.dpo_loss( |
|
policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps |
|
) |
|
self.assertTrue(torch.isfinite(losses).cpu().numpy().all()) |
|
|
|
def test_dpo_trainer_use_logits_to_keep(self): |
|
model_id = "trl-internal-testing/tiny-LlamaForCausalLM-3.2" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
remove_unused_columns=False, |
|
gradient_accumulation_steps=1, |
|
learning_rate=9e-1, |
|
eval_strategy="steps", |
|
beta=0.1, |
|
use_logits_to_keep=True, |
|
rpo_alpha=0.5, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
|
|
trainer = DPOTrainer( |
|
model=model, |
|
ref_model=None, |
|
args=training_args, |
|
processing_class=tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
) |
|
|
|
training_args.use_logits_to_keep = False |
|
trainer2 = DPOTrainer( |
|
model=model, |
|
ref_model=None, |
|
args=training_args, |
|
processing_class=tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
) |
|
|
|
|
|
prompt_input_ids = torch.randint(1, 1000, (2, 10)) |
|
chosen_input_ids = torch.randint(1, 1000, (2, 5)) |
|
rejected_input_ids = torch.randint(1, 1000, (2, 7)) |
|
prompt_attention_mask = torch.ones_like(prompt_input_ids) |
|
chosen_attention_mask = torch.ones_like(chosen_input_ids) |
|
rejected_attention_mask = torch.ones_like(rejected_input_ids) |
|
|
|
batch = { |
|
"prompt_input_ids": prompt_input_ids.to(model.device), |
|
"chosen_input_ids": chosen_input_ids.to(model.device), |
|
"rejected_input_ids": rejected_input_ids.to(model.device), |
|
"prompt_attention_mask": prompt_attention_mask.to(model.device), |
|
"chosen_attention_mask": chosen_attention_mask.to(model.device), |
|
"rejected_attention_mask": rejected_attention_mask.to(model.device), |
|
} |
|
|
|
output = trainer.concatenated_forward(model, batch) |
|
output2 = trainer2.concatenated_forward(model, batch) |
|
|
|
np.testing.assert_allclose(output["nll_loss"].item(), output2["nll_loss"].item(), atol=1e-5) |
|
np.testing.assert_allclose( |
|
output["mean_chosen_logits"].item(), output2["mean_chosen_logits"].item(), atol=1e-5 |
|
) |
|
np.testing.assert_allclose( |
|
output["mean_rejected_logits"].item(), output2["mean_rejected_logits"].item(), atol=1e-5 |
|
) |
|
|
|
for i in range(output["chosen_logps"].shape[0]): |
|
np.testing.assert_allclose( |
|
output["chosen_logps"][i].item(), output2["chosen_logps"][i].item(), atol=1e-5 |
|
) |
|
np.testing.assert_allclose( |
|
output["rejected_logps"][i].item(), output2["rejected_logps"][i].item(), atol=1e-5 |
|
) |
|
|
|
trainer.train() |
|
|
|
def test_dpo_trainer_with_tools(self): |
|
model_id = "trl-internal-testing/tiny-LlamaForCausalLM-3.2" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
|
|
|
|
def get_current_temperature(location: str): |
|
""" |
|
Gets the temperature at a given location. |
|
|
|
Args: |
|
location: The location to get the temperature for |
|
""" |
|
return 22.0 |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
tools=[get_current_temperature], |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference") |
|
|
|
trainer = DPOTrainer( |
|
model=model, |
|
ref_model=None, |
|
args=training_args, |
|
processing_class=tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
) |
|
|
|
|
|
|
|
self.assertIn("get_current_temperature", tokenizer.decode(trainer.train_dataset["prompt_input_ids"][0])) |
|
|
|
def test_padding_free(self): |
|
model_id = "trl-internal-testing/tiny-LlamaForCausalLM-3.2" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
learning_rate=9e-1, |
|
per_device_train_batch_size=2, |
|
padding_free=True, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
trainer = DPOTrainer( |
|
model=model, |
|
args=training_args, |
|
processing_class=tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
) |
|
|
|
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} |
|
|
|
trainer.train() |
|
|
|
|
|
for n, param in previous_trainable_params.items(): |
|
new_param = trainer.model.get_parameter(n) |
|
if param.sum() != 0: |
|
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12)) |
|
|
|
def test_compute_metrics(self): |
|
model = AutoModelForCausalLM.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5") |
|
ref_model = AutoModelForCausalLM.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5") |
|
tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5") |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
def dummy_compute_metrics(*args, **kwargs): |
|
return {"test": 0.0} |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
do_eval=True, |
|
eval_strategy="steps", |
|
eval_steps=3, |
|
per_device_eval_batch_size=2, |
|
report_to="none", |
|
) |
|
|
|
trainer = DPOTrainer( |
|
model=model, |
|
ref_model=ref_model, |
|
args=training_args, |
|
processing_class=tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
compute_metrics=dummy_compute_metrics, |
|
) |
|
|
|
trainer.train() |
|
|
|
self.assertEqual(trainer.state.log_history[-2]["eval_test"], 0.0) |
|
|
|
def test_train_with_length_desensitization(self): |
|
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" |
|
dataset = load_dataset("trl-internal-testing/zen", "standard_preference", split="train") |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
learning_rate=9e-1, |
|
ld_alpha=0.5, |
|
report_to="none", |
|
) |
|
trainer = DPOTrainer( |
|
model=model_id, |
|
args=training_args, |
|
processing_class=tokenizer, |
|
train_dataset=dataset, |
|
) |
|
|
|
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} |
|
|
|
trainer.train() |
|
|
|
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) |
|
|
|
|
|
for n, param in previous_trainable_params.items(): |
|
new_param = trainer.model.get_parameter(n) |
|
if param.sum() != 0: |
|
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12)) |
|
|
|
@unittest.skipUnless(sys.version_info >= (3, 10), "Liger kernel is not supported on Python 3.9") |
|
@parameterized.expand([(0.1,), (0.5,)]) |
|
@require_liger_kernel |
|
def test_dpo_trainer_with_liger(self, beta): |
|
"""Test DPO trainer with Liger loss enabled. |
|
|
|
This test verifies that: |
|
1. Training runs successfully with Liger loss |
|
2. Model parameters update as expected |
|
3. Loss values are reasonable and finite |
|
4. Training works with both default and custom beta values |
|
""" |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
do_eval=True, |
|
eval_steps=1, |
|
learning_rate=9e-1, |
|
eval_strategy="steps", |
|
beta=beta, |
|
use_liger_loss=True, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference") |
|
|
|
trainer = DPOTrainer( |
|
model=self.model, |
|
ref_model=self.ref_model, |
|
args=training_args, |
|
processing_class=self.tokenizer, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
) |
|
|
|
|
|
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} |
|
|
|
|
|
train_output = trainer.train() |
|
|
|
|
|
self.assertIsNotNone(train_output) |
|
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) |
|
|
|
|
|
self.assertTrue(np.isfinite(trainer.state.log_history[-1]["train_loss"])) |
|
|
|
|
|
for n, param in previous_trainable_params.items(): |
|
new_param = trainer.model.get_parameter(n) |
|
|
|
if param.sum() != 0: |
|
self.assertFalse(torch.equal(param, new_param)) |
|
|
|
self.assertTrue(torch.isfinite(new_param).all()) |
|
|
|
|
|
dummy_batch = next(iter(trainer.get_train_dataloader())) |
|
model_inputs = { |
|
"input_ids": dummy_batch["prompt_input_ids"], |
|
"attention_mask": dummy_batch["prompt_attention_mask"], |
|
} |
|
with torch.no_grad(): |
|
output = trainer.model(**model_inputs) |
|
self.assertIsNotNone(output) |
|
self.assertFalse("loss" in output.keys()) |
|
|
|
def test_train_with_iterable_dataset(self): |
|
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" |
|
dataset = load_dataset( |
|
"trl-internal-testing/zen", |
|
"standard_preference", |
|
split="train", |
|
streaming=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
max_steps=3, |
|
report_to="none", |
|
) |
|
trainer = DPOTrainer( |
|
model=model_id, |
|
args=training_args, |
|
processing_class=tokenizer, |
|
train_dataset=dataset, |
|
) |
|
|
|
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} |
|
|
|
trainer.train() |
|
|
|
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) |
|
|
|
|
|
for n, param in previous_trainable_params.items(): |
|
new_param = trainer.model.get_parameter(n) |
|
if param.sum() != 0: |
|
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12)) |
|
|
|
|
|
@require_vision |
|
class DPOVisionTrainerTester(unittest.TestCase): |
|
@parameterized.expand( |
|
[ |
|
("trl-internal-testing/tiny-Idefics2ForConditionalGeneration",), |
|
|
|
("trl-internal-testing/tiny-LlavaForConditionalGeneration",), |
|
("trl-internal-testing/tiny-LlavaNextForConditionalGeneration",), |
|
] |
|
) |
|
def test_vdpo_trainer(self, model_id): |
|
|
|
dataset_dict = { |
|
"prompt": [ |
|
[{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Describe the image in great detail."}]}], |
|
[{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Is this bus in the USA?"}]}], |
|
[{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Give a thorough description of the image."}]}], |
|
[{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Who are the people in the image?"}]}], |
|
[{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What is written?"}]}], |
|
], |
|
"chosen": [ |
|
[{"role": "assistant", "content": [{"type": "text", "text": "The image features a modern, multi-colored train."}]}], |
|
[{"role": "assistant", "content": [{"type": "text", "text": "Yes, it can be assumed that this bus is in the USA."}]}], |
|
[{"role": "assistant", "content": [{"type": "text", "text": "The image features a forest path."}]}], |
|
[{"role": "assistant", "content": [{"type": "text", "text": "There are two individuals, possibly girls or women."}]}], |
|
[{"role": "assistant", "content": [{"type": "text", "text": '"ccpb".'}]}], |
|
], |
|
"rejected": [ |
|
[{"role": "assistant", "content": [{"type": "text", "text": "The image features a modern, colorful train."}]}], |
|
[{"role": "assistant", "content": [{"type": "text", "text": "No, it's not in the USA."}]}], |
|
[{"role": "assistant", "content": [{"type": "text", "text": "The image features a forest path surrounded by trees."}]}], |
|
[{"role": "assistant", "content": [{"type": "text", "text": "In the image, there are two individuals."}]}], |
|
[{"role": "assistant", "content": [{"type": "text", "text": '"ccpb".'}]}], |
|
], |
|
"images": [ |
|
[Image.fromarray(np.random.randint(0, 255, (92, 33, 3), dtype=np.uint8))], |
|
[Image.fromarray(np.random.randint(0, 255, (64, 48, 3), dtype=np.uint8))], |
|
[Image.fromarray(np.random.randint(0, 255, (80, 152, 3), dtype=np.uint8))], |
|
[Image.fromarray(np.random.randint(0, 255, (57, 24, 3), dtype=np.uint8))], |
|
[Image.fromarray(np.random.randint(0, 255, (102, 48, 3), dtype=np.uint8))], |
|
], |
|
} |
|
|
|
dataset = Dataset.from_dict(dataset_dict) |
|
dataset = dataset.cast_column("images", features.Sequence(features.Image())) |
|
|
|
|
|
model = AutoModelForVision2Seq.from_pretrained(model_id) |
|
ref_model = AutoModelForVision2Seq.from_pretrained(model_id) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = DPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
remove_unused_columns=False, |
|
learning_rate=0.01, |
|
max_prompt_length=None, |
|
max_length=None, |
|
report_to="none", |
|
) |
|
trainer = DPOTrainer( |
|
model=model, |
|
ref_model=ref_model, |
|
args=training_args, |
|
processing_class=processor, |
|
train_dataset=dataset, |
|
eval_dataset=dataset, |
|
) |
|
|
|
|
|
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} |
|
|
|
trainer.train() |
|
|
|
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) |
|
|
|
|
|
for n, param in previous_trainable_params.items(): |
|
new_param = trainer.model.get_parameter(n) |
|
if param.sum() != 0: |
|
if model_id in [ |
|
"trl-internal-testing/tiny-LlavaForConditionalGeneration", |
|
"trl-internal-testing/tiny-LlavaNextForConditionalGeneration", |
|
] and ( |
|
"vision_tower.vision_model.encoder.layers.1" in n |
|
or "vision_tower.vision_model.post_layernorm.weight" in n |
|
): |
|
|
|
|
|
continue |
|
self.assertFalse( |
|
torch.allclose(param, new_param, rtol=1e-12, atol=1e-12), f"Param {n} is not updated" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
unittest.main() |
|
|