|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import tempfile |
|
import unittest |
|
|
|
import pytest |
|
from datasets import load_dataset |
|
from parameterized import parameterized |
|
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer |
|
from transformers.testing_utils import require_peft, require_torch_accelerator |
|
from transformers.utils import is_peft_available |
|
|
|
from trl import OnlineDPOConfig, OnlineDPOTrainer |
|
|
|
from .testing_utils import RandomPairwiseJudge, require_llm_blender, require_vllm |
|
|
|
|
|
if is_peft_available(): |
|
from peft import LoraConfig, get_peft_model |
|
|
|
|
|
class TestOnlineDPOTrainer(unittest.TestCase): |
|
def setUp(self): |
|
self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" |
|
self.model = AutoModelForCausalLM.from_pretrained(self.model_id) |
|
self.ref_model = AutoModelForCausalLM.from_pretrained(self.model_id) |
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id) |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
|
|
self.reward_model_id = "trl-internal-testing/tiny-LlamaForCausalLM-3.2" |
|
self.reward_model = AutoModelForSequenceClassification.from_pretrained(self.reward_model_id, num_labels=1) |
|
self.reward_tokenizer = AutoTokenizer.from_pretrained(self.reward_model_id) |
|
self.reward_tokenizer.pad_token = self.reward_tokenizer.eos_token |
|
|
|
@parameterized.expand([("standard_prompt_only",), ("conversational_prompt_only",)]) |
|
def test_training(self, config_name): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = OnlineDPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
learning_rate=5.0e-7, |
|
eval_strategy="steps", |
|
report_to="none", |
|
) |
|
dummy_dataset = load_dataset("trl-internal-testing/zen", config_name) |
|
|
|
trainer = OnlineDPOTrainer( |
|
model=self.model, |
|
reward_model=self.reward_model, |
|
args=training_args, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
processing_class=self.tokenizer, |
|
reward_processing_class=self.reward_tokenizer, |
|
) |
|
trainer.train() |
|
|
|
|
|
self.assertIn("train_loss", trainer.state.log_history[-1]) |
|
|
|
def test_training_with_ref_model(self): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = OnlineDPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
learning_rate=5.0e-7, |
|
eval_strategy="steps", |
|
report_to="none", |
|
) |
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only") |
|
|
|
trainer = OnlineDPOTrainer( |
|
model=self.model, |
|
ref_model=self.ref_model, |
|
reward_model=self.reward_model, |
|
args=training_args, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
processing_class=self.tokenizer, |
|
reward_processing_class=self.reward_tokenizer, |
|
) |
|
trainer.train() |
|
|
|
|
|
self.assertIn("train_loss", trainer.state.log_history[-1]) |
|
|
|
def test_ref_model_is_model(self): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = OnlineDPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
report_to="none", |
|
) |
|
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only") |
|
|
|
with self.assertRaises(ValueError): |
|
OnlineDPOTrainer( |
|
model=self.model, |
|
ref_model=self.model, |
|
reward_model=self.reward_model, |
|
args=training_args, |
|
train_dataset=dummy_dataset["train"], |
|
processing_class=self.tokenizer, |
|
reward_processing_class=self.reward_tokenizer, |
|
) |
|
|
|
@require_peft |
|
def test_training_with_peft(self): |
|
lora_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM") |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = OnlineDPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
learning_rate=5.0e-7, |
|
eval_strategy="steps", |
|
report_to="none", |
|
) |
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only") |
|
|
|
trainer = OnlineDPOTrainer( |
|
model=self.model, |
|
reward_model=self.reward_model, |
|
args=training_args, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
processing_class=self.tokenizer, |
|
reward_processing_class=self.reward_tokenizer, |
|
peft_config=lora_config, |
|
) |
|
|
|
trainer.train() |
|
|
|
|
|
self.assertIn("train_loss", trainer.state.log_history[-1]) |
|
|
|
@require_peft |
|
def test_training_with_peft_and_ref_model(self): |
|
lora_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM") |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = OnlineDPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
learning_rate=5.0e-7, |
|
eval_strategy="steps", |
|
report_to="none", |
|
) |
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only") |
|
|
|
trainer = OnlineDPOTrainer( |
|
model=self.model, |
|
ref_model=self.ref_model, |
|
reward_model=self.reward_model, |
|
args=training_args, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
processing_class=self.tokenizer, |
|
reward_processing_class=self.reward_tokenizer, |
|
peft_config=lora_config, |
|
) |
|
|
|
trainer.train() |
|
|
|
|
|
self.assertIn("train_loss", trainer.state.log_history[-1]) |
|
|
|
@require_peft |
|
def test_training_with_peft_model_and_peft_config(self): |
|
model_lora_config = LoraConfig(r=8, lora_alpha=16, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM") |
|
model = get_peft_model(self.model, model_lora_config) |
|
|
|
lora_train_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM") |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = OnlineDPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
learning_rate=5.0e-7, |
|
eval_strategy="steps", |
|
report_to="none", |
|
) |
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only") |
|
|
|
trainer = OnlineDPOTrainer( |
|
model=model, |
|
reward_model=self.reward_model, |
|
args=training_args, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
processing_class=self.tokenizer, |
|
reward_processing_class=self.reward_tokenizer, |
|
peft_config=lora_train_config, |
|
) |
|
|
|
trainer.train() |
|
|
|
|
|
self.assertIn("train_loss", trainer.state.log_history[-1]) |
|
|
|
@require_llm_blender |
|
@parameterized.expand([("standard_prompt_only",), ("conversational_prompt_only",)]) |
|
def test_training_with_judge(self, config_name): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = OnlineDPOConfig( |
|
output_dir=tmp_dir, |
|
per_device_train_batch_size=2, |
|
max_steps=3, |
|
learning_rate=5.0e-7, |
|
eval_strategy="steps", |
|
report_to="none", |
|
) |
|
dummy_dataset = load_dataset("trl-internal-testing/zen", config_name) |
|
|
|
trainer = OnlineDPOTrainer( |
|
model=self.model, |
|
judge=RandomPairwiseJudge(), |
|
args=training_args, |
|
train_dataset=dummy_dataset["train"], |
|
eval_dataset=dummy_dataset["test"], |
|
processing_class=self.tokenizer, |
|
) |
|
trainer.train() |
|
|
|
|
|
self.assertIn("train_loss", trainer.state.log_history[-1]) |
|
|
|
@parameterized.expand([("standard_prompt_only",), ("conversational_prompt_only",)]) |
|
@require_torch_accelerator |
|
@require_vllm |
|
@pytest.mark.slow |
|
def test_training_with_vllm(self, config_name): |
|
model_id = "trl-internal-testing/small-Qwen2ForCausalLM-2.5" |
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
training_args = OnlineDPOConfig( |
|
output_dir=tmp_dir, |
|
use_vllm=True, |
|
gpu_memory_utilization=0.2, |
|
report_to="none", |
|
) |
|
dummy_dataset = load_dataset("trl-internal-testing/zen", config_name) |
|
|
|
trainer = OnlineDPOTrainer( |
|
model=model, |
|
reward_model=self.reward_model, |
|
args=training_args, |
|
train_dataset=dummy_dataset["train"], |
|
processing_class=tokenizer, |
|
reward_processing_class=self.reward_tokenizer, |
|
) |
|
trainer.train() |
|
|
|
|
|
self.assertIn("train_loss", trainer.state.log_history[-1]) |
|
|