|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import tempfile |
|
import unittest |
|
|
|
import torch |
|
from transformers import AutoModelForCausalLM |
|
from transformers.testing_utils import ( |
|
require_peft, |
|
require_torch_gpu_if_bnb_not_multi_backend_enabled, |
|
) |
|
from transformers.utils import is_peft_available |
|
|
|
from trl import AutoModelForCausalLMWithValueHead |
|
|
|
|
|
if is_peft_available(): |
|
from peft import LoraConfig, get_peft_model |
|
|
|
|
|
@require_peft |
|
class PeftModelTester(unittest.TestCase): |
|
def setUp(self): |
|
self.causal_lm_model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" |
|
self.lora_config = LoraConfig( |
|
r=16, |
|
lora_alpha=32, |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
) |
|
|
|
def test_create_peft_model(self): |
|
r""" |
|
Simply creates a peft model and checks that it can be loaded. |
|
""" |
|
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) |
|
pretrained_model = get_peft_model(causal_lm_model, self.lora_config) |
|
|
|
_ = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) |
|
|
|
def test_peft_requires_grad(self): |
|
r""" |
|
Check that the value head of the returned model has requires_grad=True. |
|
""" |
|
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) |
|
pretrained_model = get_peft_model(causal_lm_model, self.lora_config) |
|
|
|
model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) |
|
|
|
|
|
self.assertTrue(model.v_head.summary.weight.requires_grad) |
|
|
|
def test_check_peft_model_nb_trainable_params(self): |
|
r""" |
|
Check that the number of trainable parameters is correct. |
|
""" |
|
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) |
|
pretrained_model = get_peft_model(causal_lm_model, self.lora_config) |
|
|
|
model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) |
|
|
|
|
|
nb_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
self.assertEqual(nb_trainable_params, 905) |
|
|
|
|
|
non_peft_model = AutoModelForCausalLMWithValueHead.from_pretrained(self.causal_lm_model_id) |
|
nb_trainable_params = sum(p.numel() for p in non_peft_model.parameters() if p.requires_grad) |
|
self.assertEqual(nb_trainable_params, 2428641) |
|
|
|
def test_create_peft_model_from_config(self): |
|
r""" |
|
Simply creates a peft model and checks that it can be loaded. |
|
""" |
|
trl_model = AutoModelForCausalLMWithValueHead.from_pretrained( |
|
self.causal_lm_model_id, peft_config=self.lora_config |
|
) |
|
|
|
nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad) |
|
self.assertEqual(nb_trainable_params, 905) |
|
|
|
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) |
|
trl_model = AutoModelForCausalLMWithValueHead.from_pretrained(causal_lm_model, peft_config=self.lora_config) |
|
|
|
nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad) |
|
self.assertEqual(nb_trainable_params, 905) |
|
|
|
@require_torch_gpu_if_bnb_not_multi_backend_enabled |
|
def test_create_bnb_peft_model_from_config(self): |
|
r""" |
|
Simply creates a peft model and checks that it can be loaded. |
|
""" |
|
from bitsandbytes.nn import Linear8bitLt |
|
|
|
trl_model = AutoModelForCausalLMWithValueHead.from_pretrained( |
|
self.causal_lm_model_id, peft_config=self.lora_config, load_in_8bit=True |
|
) |
|
|
|
nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad) |
|
self.assertEqual(nb_trainable_params, 905) |
|
self.assertIsInstance(trl_model.pretrained_model.model.model.layers[0].mlp.gate_proj, Linear8bitLt) |
|
|
|
causal_lm_model = AutoModelForCausalLM.from_pretrained( |
|
self.causal_lm_model_id, load_in_8bit=True, device_map="auto" |
|
) |
|
trl_model = AutoModelForCausalLMWithValueHead.from_pretrained(causal_lm_model, peft_config=self.lora_config) |
|
|
|
nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad) |
|
self.assertEqual(nb_trainable_params, 905) |
|
self.assertIsInstance(trl_model.pretrained_model.model.model.layers[0].mlp.gate_proj, Linear8bitLt) |
|
|
|
def test_save_pretrained_peft(self): |
|
r""" |
|
Check that the model can be saved and loaded properly. |
|
""" |
|
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) |
|
pretrained_model = get_peft_model(causal_lm_model, self.lora_config) |
|
|
|
model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir) |
|
|
|
|
|
self.assertTrue( |
|
os.path.isfile(f"{tmp_dir}/adapter_model.safetensors"), |
|
f"{tmp_dir}/adapter_model.safetensors does not exist", |
|
) |
|
self.assertTrue( |
|
os.path.exists(f"{tmp_dir}/adapter_config.json"), f"{tmp_dir}/adapter_config.json does not exist" |
|
) |
|
|
|
|
|
self.assertTrue( |
|
os.path.exists(f"{tmp_dir}/pytorch_model.bin"), f"{tmp_dir}/pytorch_model.bin does not exist" |
|
) |
|
|
|
|
|
maybe_v_head = torch.load(f"{tmp_dir}/pytorch_model.bin", weights_only=True) |
|
self.assertTrue( |
|
all(k.startswith("v_head") for k in maybe_v_head.keys()), |
|
f"keys in {tmp_dir}/pytorch_model.bin do not start with `v_head`", |
|
) |
|
|
|
model_from_pretrained = AutoModelForCausalLMWithValueHead.from_pretrained(tmp_dir) |
|
|
|
|
|
for p1, p2 in zip(model.named_parameters(), model_from_pretrained.named_parameters()): |
|
self.assertTrue(torch.allclose(p1[1], p2[1]), f"{p1[0]} != {p2[0]}") |
|
|
|
def test_load_pretrained_peft(self): |
|
r""" |
|
Check that the model saved with peft class interface can be loaded properly. |
|
""" |
|
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) |
|
pretrained_model = get_peft_model(causal_lm_model, self.lora_config) |
|
|
|
model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
pretrained_model.save_pretrained(tmp_dir) |
|
model_from_pretrained = AutoModelForCausalLMWithValueHead.from_pretrained(tmp_dir) |
|
|
|
|
|
self.assertTrue( |
|
os.path.isfile(f"{tmp_dir}/adapter_model.safetensors"), |
|
f"{tmp_dir}/adapter_model.safetensors does not exist", |
|
) |
|
self.assertTrue( |
|
os.path.exists(f"{tmp_dir}/adapter_config.json"), f"{tmp_dir}/adapter_config.json does not exist" |
|
) |
|
|
|
|
|
for p1, p2 in zip(model.named_parameters(), model_from_pretrained.named_parameters()): |
|
if p1[0] not in ["v_head.summary.weight", "v_head.summary.bias"]: |
|
self.assertTrue(torch.allclose(p1[1], p2[1]), f"{p1[0]} != {p2[0]}") |
|
|
|
def test_continue_training_peft_model(self): |
|
r""" |
|
Load peft and checks that it can continue training. |
|
""" |
|
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) |
|
pretrained_model = get_peft_model(causal_lm_model, self.lora_config) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
pretrained_model.save_pretrained(tmp_dir) |
|
|
|
model = AutoModelForCausalLMWithValueHead.from_pretrained(tmp_dir, is_trainable=True) |
|
|
|
nb_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
self.assertEqual(nb_trainable_params, 905) |
|
|