Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import itertools | |
import tempfile | |
import unittest | |
import pytest | |
import torch | |
from accelerate.utils.memory import release_memory | |
from datasets import load_dataset | |
from parameterized import parameterized | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
from transformers.testing_utils import ( | |
backend_empty_cache, | |
require_liger_kernel, | |
require_peft, | |
require_torch_accelerator, | |
require_torch_multi_accelerator, | |
torch_device, | |
) | |
from transformers.utils import is_peft_available | |
from trl import SFTConfig, SFTTrainer | |
from trl.models.utils import setup_chat_format | |
from ..testing_utils import require_bitsandbytes | |
from .testing_constants import DEVICE_MAP_OPTIONS, GRADIENT_CHECKPOINTING_KWARGS, MODELS_TO_TEST, PACKING_OPTIONS | |
if is_peft_available(): | |
from peft import LoraConfig, PeftModel | |
class SFTTrainerSlowTester(unittest.TestCase): | |
def setUp(self): | |
self.train_dataset = load_dataset("stanfordnlp/imdb", split="train[:10%]") | |
self.eval_dataset = load_dataset("stanfordnlp/imdb", split="test[:10%]") | |
self.max_length = 128 | |
self.peft_config = LoraConfig( | |
lora_alpha=16, | |
lora_dropout=0.1, | |
r=8, | |
bias="none", | |
task_type="CAUSAL_LM", | |
) | |
def tearDown(self): | |
gc.collect() | |
backend_empty_cache(torch_device) | |
gc.collect() | |
def test_sft_trainer_str(self, model_name, packing): | |
""" | |
Simply tests if passing a simple str to `SFTTrainer` loads and runs the trainer | |
as expected. | |
""" | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = SFTConfig( | |
output_dir=tmp_dir, | |
logging_strategy="no", | |
report_to="none", | |
per_device_train_batch_size=2, | |
max_steps=10, | |
packing=packing, | |
max_length=self.max_length, | |
) | |
trainer = SFTTrainer( | |
model_name, | |
args=training_args, | |
train_dataset=self.train_dataset, | |
eval_dataset=self.eval_dataset, | |
) | |
trainer.train() | |
def test_sft_trainer_transformers(self, model_name, packing): | |
""" | |
Simply tests if passing a transformers model to `SFTTrainer` loads and runs the trainer | |
as expected. | |
""" | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = SFTConfig( | |
output_dir=tmp_dir, | |
logging_strategy="no", | |
report_to="none", | |
per_device_train_batch_size=2, | |
max_steps=10, | |
packing=packing, | |
max_length=self.max_length, | |
) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
trainer = SFTTrainer( | |
model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=self.train_dataset, | |
eval_dataset=self.eval_dataset, | |
) | |
trainer.train() | |
release_memory(model, trainer) | |
def test_sft_trainer_peft(self, model_name, packing): | |
""" | |
Simply tests if passing a transformers model + peft config to `SFTTrainer` loads and runs the trainer | |
as expected. | |
""" | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = SFTConfig( | |
output_dir=tmp_dir, | |
logging_strategy="no", | |
report_to="none", | |
per_device_train_batch_size=2, | |
max_steps=10, | |
fp16=True, | |
packing=packing, | |
max_length=self.max_length, | |
) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
trainer = SFTTrainer( | |
model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=self.train_dataset, | |
eval_dataset=self.eval_dataset, | |
peft_config=self.peft_config, | |
) | |
self.assertIsInstance(trainer.model, PeftModel) | |
trainer.train() | |
release_memory(model, trainer) | |
def test_sft_trainer_transformers_mp(self, model_name, packing): | |
""" | |
Simply tests if passing a transformers model to `SFTTrainer` loads and runs the trainer | |
as expected in mixed precision. | |
""" | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = SFTConfig( | |
output_dir=tmp_dir, | |
logging_strategy="no", | |
report_to="none", | |
per_device_train_batch_size=2, | |
max_steps=10, | |
fp16=True, # this is sufficient to enable amp | |
packing=packing, | |
max_length=self.max_length, | |
) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
trainer = SFTTrainer( | |
model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=self.train_dataset, | |
eval_dataset=self.eval_dataset, | |
) | |
trainer.train() | |
release_memory(model, trainer) | |
def test_sft_trainer_transformers_mp_gc(self, model_name, packing, gradient_checkpointing_kwargs): | |
""" | |
Simply tests if passing a transformers model to `SFTTrainer` loads and runs the trainer | |
as expected in mixed precision + different scenarios of gradient_checkpointing. | |
""" | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = SFTConfig( | |
output_dir=tmp_dir, | |
logging_strategy="no", | |
report_to="none", | |
per_device_train_batch_size=2, | |
max_steps=10, | |
packing=packing, | |
max_length=self.max_length, | |
fp16=True, # this is sufficient to enable amp | |
gradient_checkpointing=True, | |
gradient_checkpointing_kwargs=gradient_checkpointing_kwargs, | |
) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
trainer = SFTTrainer( | |
model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=self.train_dataset, | |
eval_dataset=self.eval_dataset, | |
) | |
trainer.train() | |
release_memory(model, trainer) | |
def test_sft_trainer_transformers_mp_gc_peft(self, model_name, packing, gradient_checkpointing_kwargs): | |
""" | |
Simply tests if passing a transformers model + PEFT to `SFTTrainer` loads and runs the trainer | |
as expected in mixed precision + different scenarios of gradient_checkpointing. | |
""" | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = SFTConfig( | |
output_dir=tmp_dir, | |
logging_strategy="no", | |
report_to="none", | |
per_device_train_batch_size=2, | |
max_steps=10, | |
packing=packing, | |
max_length=self.max_length, | |
fp16=True, # this is sufficient to enable amp | |
gradient_checkpointing=True, | |
gradient_checkpointing_kwargs=gradient_checkpointing_kwargs, | |
) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
trainer = SFTTrainer( | |
model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=self.train_dataset, | |
eval_dataset=self.eval_dataset, | |
peft_config=self.peft_config, | |
) | |
self.assertIsInstance(trainer.model, PeftModel) | |
trainer.train() | |
release_memory(model, trainer) | |
def test_sft_trainer_transformers_mp_gc_device_map( | |
self, model_name, packing, gradient_checkpointing_kwargs, device_map | |
): | |
""" | |
Simply tests if passing a transformers model to `SFTTrainer` loads and runs the trainer | |
as expected in mixed precision + different scenarios of gradient_checkpointing (single, multi-gpu, etc). | |
""" | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = SFTConfig( | |
output_dir=tmp_dir, | |
logging_strategy="no", | |
report_to="none", | |
per_device_train_batch_size=2, | |
max_steps=10, | |
packing=packing, | |
max_length=self.max_length, | |
fp16=True, # this is sufficient to enable amp | |
gradient_checkpointing=True, | |
gradient_checkpointing_kwargs=gradient_checkpointing_kwargs, | |
) | |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device_map) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
trainer = SFTTrainer( | |
model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=self.train_dataset, | |
eval_dataset=self.eval_dataset, | |
) | |
trainer.train() | |
release_memory(model, trainer) | |
def test_sft_trainer_transformers_mp_gc_peft_qlora(self, model_name, packing, gradient_checkpointing_kwargs): | |
""" | |
Simply tests if passing a transformers model + PEFT + bnb to `SFTTrainer` loads and runs the trainer | |
as expected in mixed precision + different scenarios of gradient_checkpointing. | |
""" | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = SFTConfig( | |
output_dir=tmp_dir, | |
logging_strategy="no", | |
report_to="none", | |
per_device_train_batch_size=2, | |
max_steps=10, | |
packing=packing, | |
max_length=self.max_length, | |
fp16=True, # this is sufficient to enable amp | |
gradient_checkpointing=True, | |
gradient_checkpointing_kwargs=gradient_checkpointing_kwargs, | |
) | |
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16) | |
model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=quantization_config) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
trainer = SFTTrainer( | |
model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=self.train_dataset, | |
eval_dataset=self.eval_dataset, | |
peft_config=self.peft_config, | |
) | |
self.assertIsInstance(trainer.model, PeftModel) | |
trainer.train() | |
release_memory(model, trainer) | |
def test_sft_trainer_with_chat_format_qlora(self, model_name, packing): | |
""" | |
Simply tests if using setup_chat_format with a transformers model + peft + bnb config to `SFTTrainer` loads and runs the trainer | |
as expected. | |
""" | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
train_dataset = load_dataset("trl-internal-testing/dolly-chatml-sft", split="train") | |
training_args = SFTConfig( | |
packing=packing, | |
max_length=self.max_length, | |
output_dir=tmp_dir, | |
logging_strategy="no", | |
report_to="none", | |
per_device_train_batch_size=2, | |
max_steps=10, | |
fp16=True, | |
) | |
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16) | |
model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=quantization_config) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
if tokenizer.chat_template is None: | |
model, tokenizer = setup_chat_format(model, tokenizer) | |
trainer = SFTTrainer( | |
model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=train_dataset, | |
peft_config=self.peft_config, | |
) | |
self.assertIsInstance(trainer.model, PeftModel) | |
trainer.train() | |
release_memory(model, trainer) | |
def test_sft_trainer_with_liger(self, model_name, packing): | |
""" | |
Tests if passing use_liger=True to SFTConfig loads and runs the trainer | |
with AutoLigerKernelForCausalLM as expected. | |
""" | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = SFTConfig( | |
output_dir=tmp_dir, | |
logging_strategy="no", | |
report_to="none", | |
per_device_train_batch_size=2, | |
max_steps=2, | |
packing=packing, | |
max_length=self.max_length, | |
use_liger_kernel=True, | |
) | |
trainer = SFTTrainer( | |
model_name, | |
args=training_args, | |
train_dataset=self.train_dataset, | |
eval_dataset=self.eval_dataset, | |
) | |
trainer.train() | |
release_memory(trainer.model, trainer) | |
def test_train_offloading(self, model_name, packing): | |
"""Test that activation offloading works with SFTTrainer.""" | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
# Initialize the trainer | |
training_args = SFTConfig( | |
output_dir=tmp_dir, | |
activation_offloading=True, | |
report_to="none", | |
per_device_train_batch_size=2, | |
max_steps=2, | |
packing=packing, | |
max_length=self.max_length, | |
) | |
trainer = SFTTrainer( | |
model=model_name, args=training_args, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset | |
) | |
# Save the initial parameters to compare them later | |
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} | |
# Train the model | |
trainer.train() | |
# Check that the training loss is not None | |
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) | |
# Check the params have changed | |
for n, param in previous_trainable_params.items(): | |
new_param = trainer.model.get_parameter(n) | |
self.assertFalse(torch.allclose(param, new_param), f"Parameter {n} has not changed") | |
release_memory(trainer.model, trainer) | |