Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import tempfile | |
import unittest | |
import torch | |
from datasets import load_dataset | |
from parameterized import parameterized | |
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer | |
from transformers.testing_utils import require_liger_kernel, require_peft | |
from trl import KTOConfig, KTOTrainer | |
from trl.trainer.kto_trainer import _get_kl_dataset, _process_tokens, _tokenize | |
from .testing_utils import require_no_wandb | |
class KTOTrainerTester(unittest.TestCase): | |
def setUp(self): | |
self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
self.model = AutoModelForCausalLM.from_pretrained(self.model_id) | |
self.ref_model = AutoModelForCausalLM.from_pretrained(self.model_id) | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id) | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
# get t5 as seq2seq example: | |
model_id = "trl-internal-testing/tiny-T5ForConditionalGeneration" | |
self.t5_model = AutoModelForSeq2SeqLM.from_pretrained(model_id) | |
self.t5_ref_model = AutoModelForSeq2SeqLM.from_pretrained(model_id) | |
self.t5_tokenizer = AutoTokenizer.from_pretrained(model_id) | |
def test_kto_trainer(self, name, config_name, loss_type, pre_compute, eval_dataset): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = KTOConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=2, | |
max_steps=3, | |
remove_unused_columns=False, | |
gradient_accumulation_steps=1, | |
learning_rate=9e-1, | |
eval_strategy="steps" if eval_dataset else "no", | |
beta=0.1, | |
precompute_ref_log_probs=pre_compute, | |
loss_type=loss_type, | |
report_to="none", | |
) | |
dummy_dataset = load_dataset("trl-internal-testing/zen", config_name) | |
if name == "qwen": | |
model = self.model | |
ref_model = self.ref_model | |
tokenizer = self.tokenizer | |
elif name == "t5": | |
model = self.t5_model | |
ref_model = self.t5_ref_model | |
tokenizer = self.t5_tokenizer | |
trainer = KTOTrainer( | |
model=model, | |
ref_model=ref_model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=dummy_dataset["train"], | |
eval_dataset=dummy_dataset["test"] if eval_dataset else None, | |
) | |
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} | |
trainer.train() | |
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) | |
# Check that the parameters have changed | |
for n, param in previous_trainable_params.items(): | |
new_param = trainer.model.get_parameter(n) | |
if param.sum() != 0: # ignore 0 biases | |
self.assertFalse(torch.equal(param, new_param)) | |
def test_kto_trainer_with_ref_model_is_model(self): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = KTOConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=2, | |
max_steps=3, | |
report_to="none", | |
) | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference") | |
with self.assertRaises(ValueError): | |
KTOTrainer( | |
model=self.model, | |
ref_model=self.model, # ref_model can't be the same as model | |
args=training_args, | |
processing_class=self.tokenizer, | |
train_dataset=dummy_dataset["train"], | |
) | |
def test_tokenize_and_process_tokens(self): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = KTOConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=2, | |
max_steps=3, | |
remove_unused_columns=False, | |
gradient_accumulation_steps=1, | |
learning_rate=9e-1, | |
eval_strategy="steps", | |
beta=0.1, | |
report_to="none", | |
) | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference") | |
trainer = KTOTrainer( | |
model=self.model, | |
ref_model=self.ref_model, | |
args=training_args, | |
processing_class=self.tokenizer, | |
train_dataset=dummy_dataset["train"], | |
eval_dataset=dummy_dataset["test"], | |
) | |
train_dataset = dummy_dataset["train"] | |
tokenized_dataset = train_dataset.map( | |
_tokenize, | |
fn_kwargs={"tokenizer": trainer.tokenizer}, | |
batched=True, | |
batch_size=2, | |
) | |
self.assertListEqual(tokenized_dataset["prompt"], train_dataset["prompt"]) | |
self.assertListEqual(tokenized_dataset["completion"], train_dataset["completion"]) | |
self.assertListEqual(tokenized_dataset["label"], train_dataset["label"]) | |
self.assertListEqual(tokenized_dataset["prompt_input_ids"][0], [46518, 374, 2664, 1091]) | |
self.assertListEqual(tokenized_dataset["prompt_attention_mask"][0], [1, 1, 1, 1]) | |
self.assertListEqual(tokenized_dataset["answer_input_ids"][0], [27261, 13]) | |
self.assertListEqual(tokenized_dataset["answer_attention_mask"][0], [1, 1]) | |
# Test corruption of (prompt, completion) pairs for KL dataset | |
for batch_size in [2, 3]: | |
tokenized_kl_dataset = tokenized_dataset.map(_get_kl_dataset, batched=True, batch_size=batch_size) | |
# Verify that the "answer_input_ids" have been modified, meaning the new "answer_input_ids" differ | |
# from the original ones. However, when the length of the dataset modulo batch_size equals 1, | |
# the last batch remains unaltered. This is a rare scenario that does not impact the training | |
# process, so we exclude it from testing by iterating only up to len - 1. | |
for i in range(len(tokenized_kl_dataset["answer_input_ids"]) - 1): | |
self.assertListEqual( | |
tokenized_dataset["prompt_input_ids"][i], | |
tokenized_kl_dataset["prompt_input_ids"][i], | |
) | |
self.assertListEqual( | |
tokenized_dataset["prompt_attention_mask"][i], | |
tokenized_kl_dataset["prompt_attention_mask"][i], | |
) | |
self.assertNotEqual( | |
tokenized_dataset["answer_input_ids"][i], | |
tokenized_kl_dataset["answer_input_ids"][i], | |
) | |
fn_kwargs = { | |
"prefix": "", | |
"is_encoder_decoder": trainer.is_encoder_decoder, | |
"tokenizer": trainer.tokenizer, | |
"max_length": trainer.max_length, | |
"truncation_mode": trainer.truncation_mode, | |
"label_pad_token_id": trainer.label_pad_token_id, | |
"max_prompt_length": trainer.max_prompt_length, | |
} | |
processed_dataset = tokenized_dataset.map(_process_tokens, fn_kwargs=fn_kwargs, num_proc=2) | |
self.assertListEqual(processed_dataset["prompt"], train_dataset["prompt"]) | |
self.assertListEqual(processed_dataset["completion"], train_dataset["completion"]) | |
self.assertListEqual(processed_dataset["label"], train_dataset["label"]) | |
self.assertListEqual(processed_dataset["prompt_input_ids"][0], [46518, 374, 2664, 1091]) | |
self.assertListEqual(processed_dataset["prompt_attention_mask"][0], [1, 1, 1, 1]) | |
self.assertListEqual( | |
processed_dataset["completion_input_ids"][0], [46518, 374, 2664, 1091, 27261, 13, 151645] | |
) | |
self.assertListEqual(processed_dataset["completion_attention_mask"][0], [1, 1, 1, 1, 1, 1, 1]) | |
self.assertListEqual( | |
processed_dataset["completion_labels"][0], [-100, -100, -100, -100, 27261, 13, 151645] | |
) | |
def test_kto_trainer_without_providing_ref_model(self): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = KTOConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=2, | |
max_steps=3, | |
remove_unused_columns=False, | |
gradient_accumulation_steps=4, | |
learning_rate=9e-1, | |
eval_strategy="steps", | |
beta=0.1, | |
report_to="none", | |
) | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference") | |
trainer = KTOTrainer( | |
model=self.model, | |
ref_model=None, | |
args=training_args, | |
processing_class=self.tokenizer, | |
train_dataset=dummy_dataset["train"], | |
eval_dataset=dummy_dataset["test"], | |
) | |
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} | |
trainer.train() | |
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) | |
# Check that the parameters have changed | |
for n, param in previous_trainable_params.items(): | |
new_param = trainer.model.get_parameter(n) | |
if param.sum() != 0: # ignore 0 biases | |
self.assertFalse(torch.equal(param, new_param)) | |
def test_kto_trainer_without_providing_ref_model_with_lora(self): | |
from peft import LoraConfig | |
lora_config = LoraConfig( | |
r=16, | |
lora_alpha=32, | |
lora_dropout=0.05, | |
bias="none", | |
task_type="CAUSAL_LM", | |
) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = KTOConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=2, | |
max_steps=3, | |
remove_unused_columns=False, | |
gradient_accumulation_steps=4, | |
learning_rate=9e-1, | |
eval_strategy="steps", | |
beta=0.1, | |
report_to="none", | |
) | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference") | |
trainer = KTOTrainer( | |
model=self.model, | |
ref_model=None, | |
args=training_args, | |
processing_class=self.tokenizer, | |
train_dataset=dummy_dataset["train"], | |
eval_dataset=dummy_dataset["test"], | |
peft_config=lora_config, | |
) | |
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} | |
trainer.train() | |
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) | |
# Check that the parameters have changed | |
for n, param in previous_trainable_params.items(): | |
if "lora" in n: | |
new_param = trainer.model.get_parameter(n) | |
if param.sum() != 0: # ignore 0 biases | |
self.assertFalse(torch.equal(param, new_param)) | |
def test_kto_trainer_generate_during_eval_no_wandb(self): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = KTOConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=2, | |
max_steps=3, | |
remove_unused_columns=False, | |
gradient_accumulation_steps=1, | |
learning_rate=9e-1, | |
eval_strategy="steps", | |
beta=0.1, | |
generate_during_eval=True, | |
report_to="none", | |
) | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference") | |
with self.assertRaisesRegex( | |
ValueError, | |
expected_regex="`generate_during_eval=True` requires Weights and Biases or Comet to be installed." | |
" Please install `wandb` or `comet-ml` to resolve.", | |
): | |
KTOTrainer( | |
model=self.model, | |
ref_model=None, | |
args=training_args, | |
processing_class=self.tokenizer, | |
train_dataset=dummy_dataset["train"], | |
eval_dataset=dummy_dataset["test"], | |
) | |
def test_kto_lora_save(self): | |
from peft import LoraConfig, get_peft_model | |
lora_config = LoraConfig( | |
r=16, | |
lora_alpha=32, | |
lora_dropout=0.05, | |
bias="none", | |
task_type="CAUSAL_LM", | |
) | |
# lora model | |
model = AutoModelForCausalLM.from_pretrained(self.model_id) | |
model_peft = get_peft_model(model, lora_config) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = KTOConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=2, | |
max_steps=3, | |
remove_unused_columns=False, | |
gradient_accumulation_steps=4, | |
learning_rate=9e-1, | |
eval_strategy="steps", | |
beta=0.1, | |
report_to="none", | |
) | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference") | |
# kto train lora model with a lora config | |
trainer = KTOTrainer( | |
model=model_peft, | |
ref_model=None, | |
args=training_args, | |
processing_class=self.tokenizer, | |
train_dataset=dummy_dataset["train"], | |
eval_dataset=dummy_dataset["test"], | |
peft_config=lora_config, | |
) | |
# train the model | |
trainer.train() | |
# save peft adapter | |
trainer.save_model() | |
# assert that the model is loaded without giving OSError | |
try: | |
AutoModelForCausalLM.from_pretrained(tmp_dir) | |
except OSError: | |
self.fail("Loading the saved peft adapter failed") | |
def test_kto_trainer_with_liger(self): | |
"""Test KTO trainer with Liger loss enabled.""" | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = KTOConfig( | |
output_dir=tmp_dir, | |
report_to="none", | |
use_liger_loss=True, # Enable Liger loss | |
) | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference") | |
trainer = KTOTrainer( | |
model=self.model, | |
args=training_args, | |
processing_class=self.tokenizer, | |
train_dataset=dummy_dataset["train"], | |
) | |
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} | |
trainer.train() | |
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) | |
# check the params have changed | |
for n, param in previous_trainable_params.items(): | |
new_param = trainer.model.get_parameter(n) | |
# check the params have changed - ignore 0 biases | |
if param.sum() != 0: | |
self.assertFalse(torch.equal(param, new_param)) | |
def test_compute_metrics(self): | |
model = AutoModelForCausalLM.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5") | |
ref_model = AutoModelForCausalLM.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5") | |
tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5") | |
tokenizer.pad_token = tokenizer.eos_token | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference") | |
def dummy_compute_metrics(*args, **kwargs): | |
return {"test": 0.0} | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = KTOConfig( | |
output_dir=tmp_dir, | |
remove_unused_columns=False, | |
per_device_train_batch_size=2, | |
do_eval=True, | |
eval_strategy="steps", | |
eval_steps=1, | |
per_device_eval_batch_size=2, | |
report_to="none", | |
) | |
trainer = KTOTrainer( | |
model=model, | |
ref_model=ref_model, | |
args=training_args, | |
processing_class=tokenizer, | |
train_dataset=dummy_dataset["train"], | |
eval_dataset=dummy_dataset["test"], | |
compute_metrics=dummy_compute_metrics, | |
) | |
trainer.train() | |
self.assertEqual(trainer.state.log_history[-2]["eval_test"], 0.0) | |