Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import importlib | |
import os | |
import sys | |
from dataclasses import dataclass, field | |
from typing import Optional | |
from datasets import load_dataset | |
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer | |
from trl import GRPOConfig, GRPOTrainer, ModelConfig, ScriptArguments, TrlParser, get_peft_config | |
from trl.rewards import think_format_reward | |
reward_funcs_registry = { | |
"think_format_reward": think_format_reward, | |
} | |
class GRPOScriptArguments(ScriptArguments): | |
""" | |
Script arguments for the GRPO training script. | |
Args: | |
reward_model_name_or_path (`str` or `None`, *optional*, defaults to `None`): | |
Reward model id of a pretrained model hosted inside a model repo on huggingface.co or local path to a | |
directory containing model weights saved using [`~transformers.PreTrainedModel.save_pretrained`]. | |
reward_funcs (`list[str]` or `None`, *optional*, defaults to `None`): | |
Reward functions to use. It can be either one of `"think_format_reward"`; or a dotted import path " | |
(e.g., `'my_lib.rewards.custom_reward'`). | |
""" | |
reward_model_name_or_path: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": "Reward model id of a pretrained model hosted inside a model repo on huggingface.co or " | |
"local path to a directory containing model weights saved using `PreTrainedModel.save_pretrained`." | |
}, | |
) | |
reward_funcs: Optional[list[str]] = field( | |
default=None, | |
metadata={ | |
"help": "Reward functions to use. It can be either one of 'think_format_reward'; or a dotted " | |
"import path. (e.g., 'my_lib.rewards.custom_reward')." | |
}, | |
) | |
def main(script_args, training_args, model_args): | |
# Load a pretrained model | |
model = AutoModelForCausalLM.from_pretrained( | |
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
) | |
# Get the reward models and functions | |
reward_funcs = [] | |
if script_args.reward_model_name_or_path: | |
reward_model = AutoModelForSequenceClassification.from_pretrained( | |
script_args.reward_model_name_or_path, trust_remote_code=model_args.trust_remote_code, num_labels=1 | |
) | |
reward_funcs.append(reward_model) | |
if script_args.reward_funcs: | |
for func_name in script_args.reward_funcs: | |
if func_name in reward_funcs_registry: | |
reward_funcs.append(reward_funcs_registry[func_name]) | |
elif "." in func_name: | |
module_path, func_name = func_name.rsplit(".", 1) | |
sys.path.insert(0, os.getcwd()) | |
module = importlib.import_module(module_path) | |
reward_func = getattr(module, func_name) | |
reward_funcs.append(reward_func) | |
else: | |
raise ValueError( | |
f"Could not load reward function '{func_name}'. Expected one of " | |
f"{list(reward_funcs_registry.keys())} or a valid import path." | |
) | |
# Load the dataset | |
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
# Initialize the GRPO trainer | |
trainer = GRPOTrainer( | |
model=model, | |
reward_funcs=reward_model, | |
args=training_args, | |
train_dataset=dataset[script_args.dataset_train_split], | |
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | |
processing_class=tokenizer, | |
peft_config=get_peft_config(model_args), | |
) | |
# Train and push the model to the Hub | |
trainer.train() | |
# Save and push to hub | |
trainer.save_model(training_args.output_dir) | |
if training_args.push_to_hub: | |
trainer.push_to_hub(dataset_name=script_args.dataset_name) | |
def make_parser(subparsers: argparse._SubParsersAction = None): | |
dataclass_types = (GRPOScriptArguments, GRPOConfig, ModelConfig) | |
if subparsers is not None: | |
parser = subparsers.add_parser("grpo", help="Run the GRPO training script", dataclass_types=dataclass_types) | |
else: | |
parser = TrlParser(dataclass_types) | |
return parser | |
if __name__ == "__main__": | |
parser = make_parser() | |
script_args, training_args, model_args = parser.parse_args_and_config() | |
main(script_args, training_args, model_args) | |