Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import os | |
import random | |
import textwrap | |
import warnings | |
from collections import defaultdict | |
from contextlib import contextmanager, nullcontext | |
from operator import itemgetter | |
from pathlib import Path | |
from typing import TYPE_CHECKING, Any, Callable, Literal, Optional, Union | |
import numpy as np | |
import pandas as pd | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from accelerate import PartialState | |
from accelerate.logging import get_logger | |
from accelerate.utils import tqdm | |
from datasets import Dataset | |
from torch import autocast | |
from torch.utils.data import DataLoader, SequentialSampler | |
from transformers import ( | |
AutoModelForCausalLM, | |
BaseImageProcessor, | |
DataCollator, | |
FeatureExtractionMixin, | |
PreTrainedModel, | |
PreTrainedTokenizerBase, | |
ProcessorMixin, | |
Trainer, | |
TrainingArguments, | |
is_comet_available, | |
is_sklearn_available, | |
is_wandb_available, | |
) | |
from transformers.trainer_callback import TrainerCallback | |
from transformers.trainer_utils import EvalLoopOutput, has_length | |
from transformers.utils import is_peft_available | |
from ..data_utils import maybe_apply_chat_template | |
from ..import_utils import is_joblib_available | |
from ..models import create_reference_model, prepare_deepspeed | |
from .bco_config import BCOConfig | |
from .utils import ( | |
DPODataCollatorWithPadding, | |
RunningMoments, | |
disable_dropout_in_model, | |
generate_model_card, | |
get_comet_experiment_url, | |
log_table_to_comet_experiment, | |
pad_to_length, | |
peft_module_casting_to_bf16, | |
selective_log_softmax, | |
) | |
if is_peft_available(): | |
from peft import PeftModel, get_peft_model, prepare_model_for_kbit_training | |
if is_wandb_available(): | |
import wandb | |
if is_sklearn_available(): | |
from sklearn.linear_model import LogisticRegression | |
if is_joblib_available(): | |
import joblib | |
if TYPE_CHECKING: | |
from transformers import PreTrainedModel, PreTrainedTokenizer | |
logger = get_logger(__name__) | |
RUNNING_NAME = "running.json" | |
CLF_NAME = "clf.pkl" | |
def _tokenize( | |
batch: dict[str, list[Any]], | |
tokenizer: "PreTrainedTokenizer", | |
embedding_tokenizer: Optional["PreTrainedTokenizer"] = None, | |
) -> dict[str, list[Any]]: | |
"""Tokenize a batch from a BCO specific dataset.""" | |
prompt_tokenized = tokenizer(batch["prompt"], add_special_tokens=False) | |
prompt_input_ids = prompt_tokenized["input_ids"] | |
prompt_attention_mask = prompt_tokenized["attention_mask"] | |
prompt_and_completion = [prompt + completion for prompt, completion in zip(batch["prompt"], batch["completion"])] | |
full_tokenized = tokenizer(prompt_and_completion, add_special_tokens=False) | |
full_input_ids = full_tokenized["input_ids"] | |
full_attention_mask = full_tokenized["attention_mask"] | |
answer_input_ids = [f[len(p) :] for f, p in zip(full_input_ids, prompt_input_ids)] | |
answer_attention_mask = [f[len(p) :] for f, p in zip(full_attention_mask, prompt_attention_mask)] | |
# Concat tokens to form `enc(a) + enc(a + b)[len(enc(a)):]` | |
full_concat_input_ids = [np.concatenate([p, a]) for p, a in zip(prompt_input_ids, answer_input_ids)] | |
# Prepare input tokens for token by token comparison | |
full_input_ids = [np.array(f) for f in full_input_ids] | |
for full, concat in zip(full_input_ids, full_concat_input_ids): | |
if len(full) != len(concat): | |
raise ValueError( | |
"The elements in 'full_input_ids' and 'full_concat_input_ids' must have the same pairwise length." | |
) | |
# On some tokenizers, like Llama-2 tokenizer, there are occasions where tokens | |
# can be merged together when tokenizing prompt+answer. This could result | |
# on the last token from the prompt being different when tokenized on its own | |
# vs when done as prompt+answer. | |
response_token_ids_start_idx = [len(p) for p in prompt_input_ids] | |
# If tokenized prompt is different than both prompt+answer, then it means the | |
# last token has changed due to merging. | |
for idx, (p, f, r) in enumerate(zip(prompt_input_ids, full_input_ids, response_token_ids_start_idx)): | |
if not np.array_equal(p, f[:r]): | |
response_token_ids_start_idx[idx] -= 1 | |
prompt_input_ids = [f[:r] for f, r in zip(full_input_ids, response_token_ids_start_idx)] | |
prompt_attention_mask = [f[:r] for f, r in zip(full_attention_mask, response_token_ids_start_idx)] | |
for p, m in zip(prompt_input_ids, prompt_attention_mask): | |
if len(p) != len(m): | |
raise ValueError("Prompt input ids and attention mask should have the same length.") | |
answer_input_ids = [f[r:] for f, r in zip(full_input_ids, response_token_ids_start_idx)] | |
answer_attention_mask = [f[r:] for f, r in zip(full_attention_mask, response_token_ids_start_idx)] | |
output = dict( | |
prompt_input_ids=prompt_input_ids, | |
prompt_attention_mask=prompt_attention_mask, | |
answer_input_ids=answer_input_ids, | |
answer_attention_mask=answer_attention_mask, | |
) | |
if embedding_tokenizer is not None: | |
embedding_tokenized = embedding_tokenizer(batch["prompt"], truncation=True, add_special_tokens=False) | |
output.update( | |
{ | |
"embedding_input_ids": embedding_tokenized["input_ids"], | |
"embedding_attention_mask": embedding_tokenized["attention_mask"], | |
} | |
) | |
return output | |
def _process_tokens(example: dict[str, Any], model: "PreTrainedModel" = None, **kwargs) -> dict: | |
"""Process tokens of a BCO specific dataset. | |
At this stage, we don't convert to PyTorch tensors yet; we just handle the truncation | |
in case the prompt + completion responses is/are too long. First | |
we truncate the prompt; if we're still too long, we truncate the completion. | |
We also create the labels for the completion responses, which are of length equal to | |
the sum of the length of the prompt and the completion response, with | |
label_pad_token_id for the prompt tokens. | |
""" | |
prompt = example["prompt"] | |
completion = example["completion"] | |
batch = { | |
f"{kwargs['prefix']}prompt": prompt, | |
f"{kwargs['prefix']}completion": completion, | |
f"{kwargs['prefix']}label": example["label"], | |
} | |
if not kwargs["is_encoder_decoder"]: | |
# Check issues below for more details | |
# 1. https://github.com/huggingface/trl/issues/907 | |
# 2. https://github.com/EleutherAI/lm-evaluation-harness/pull/531#issuecomment-1595586257 | |
# 3. https://github.com/LianjiaTech/BELLE/issues/337 | |
if not isinstance(prompt, str): | |
raise ValueError(f"prompt should be an str but got {type(prompt)}") | |
if not isinstance(completion, str): | |
raise ValueError(f"completion should be an str but got {type(completion)}") | |
# keys of format prompt_* refers to just the prompt and answer_* refers to just the answer | |
all_tokens = { | |
"prompt_input_ids": example["prompt_input_ids"], | |
"prompt_attention_mask": example["prompt_attention_mask"], | |
"answer_input_ids": example["answer_input_ids"], | |
"answer_attention_mask": example["answer_attention_mask"], | |
} | |
# calculate max length by checking if BOS/EOS is already there | |
max_length = kwargs["max_length"] | |
bos_token_id = kwargs["tokenizer"].bos_token_id | |
eos_token_id = kwargs["tokenizer"].eos_token_id | |
if bos_token_id != all_tokens["prompt_input_ids"][0]: | |
max_length -= 1 | |
if eos_token_id != all_tokens["answer_input_ids"][-1]: | |
max_length -= 1 | |
# if combined sequence is too long (> max_length - 1 for BOS token - 1 for EOS), truncate the prompt | |
if len(all_tokens["prompt_input_ids"]) + len(all_tokens["answer_input_ids"]) > max_length: | |
for k in ["prompt_input_ids", "prompt_attention_mask"]: | |
if kwargs["truncation_mode"] == "keep_start": | |
all_tokens[k] = all_tokens[k][: kwargs["max_prompt_length"]] | |
elif kwargs["truncation_mode"] == "keep_end": | |
all_tokens[k] = all_tokens[k][-kwargs["max_prompt_length"] :] | |
else: | |
raise ValueError(f"Unknown truncation mode: {kwargs['truncation_mode']}") | |
# if that's still too long, truncate the response | |
if len(all_tokens["prompt_input_ids"]) + len(all_tokens["answer_input_ids"]) > max_length: | |
for k in ["answer_input_ids", "answer_attention_mask"]: | |
all_tokens[k] = all_tokens[k][: max_length - kwargs["max_prompt_length"]] | |
# all input_ids and attention mask as is. We then check if we need to add BOS/EOS tokens | |
batch[f"{kwargs['prefix']}prompt_input_ids"] = all_tokens["prompt_input_ids"] | |
batch[f"{kwargs['prefix']}prompt_attention_mask"] = all_tokens["prompt_attention_mask"] | |
batch[f"{kwargs['prefix']}completion_input_ids"] = ( | |
all_tokens["prompt_input_ids"] + all_tokens["answer_input_ids"] | |
) | |
batch[f"{kwargs['prefix']}completion_attention_mask"] = ( | |
all_tokens["prompt_attention_mask"] + all_tokens["answer_attention_mask"] | |
) | |
# add BOS, which affects both prompt and the full completion | |
if bos_token_id is not None: | |
if len(all_tokens["prompt_input_ids"]) == 0 or bos_token_id != all_tokens["prompt_input_ids"][0]: | |
batch[f"{kwargs['prefix']}prompt_input_ids"] = [bos_token_id] + batch[ | |
f"{kwargs['prefix']}prompt_input_ids" | |
] | |
batch[f"{kwargs['prefix']}prompt_attention_mask"] = [1] + batch[ | |
f"{kwargs['prefix']}prompt_attention_mask" | |
] | |
batch[f"{kwargs['prefix']}completion_input_ids"] = [bos_token_id] + batch[ | |
f"{kwargs['prefix']}completion_input_ids" | |
] | |
batch[f"{kwargs['prefix']}completion_attention_mask"] = [1] + batch[ | |
f"{kwargs['prefix']}completion_attention_mask" | |
] | |
# add EOS, which affects only the full completion | |
if len(all_tokens["answer_input_ids"]) == 0 or eos_token_id != all_tokens["answer_input_ids"][-1]: | |
batch[f"{kwargs['prefix']}completion_input_ids"] = batch[f"{kwargs['prefix']}completion_input_ids"] + [ | |
eos_token_id | |
] | |
batch[f"{kwargs['prefix']}completion_attention_mask"] = batch[ | |
f"{kwargs['prefix']}completion_attention_mask" | |
] + [1] | |
batch[f"{kwargs['prefix']}completion_labels"] = batch[f"{kwargs['prefix']}completion_input_ids"][:] | |
batch[f"{kwargs['prefix']}completion_labels"][: len(batch[f"{kwargs['prefix']}prompt_input_ids"])] = [ | |
kwargs["label_pad_token_id"] | |
] * len(batch[f"{kwargs['prefix']}prompt_input_ids"]) | |
else: | |
completion_tokens = kwargs["tokenizer"]( | |
completion, truncation=True, max_length=kwargs["max_completion_length"], add_special_tokens=True | |
) | |
prompt_tokens = kwargs["tokenizer"]( | |
prompt, truncation=True, max_length=kwargs["max_prompt_length"], add_special_tokens=True | |
) | |
batch[f"{kwargs['prefix']}prompt_input_ids"] = prompt_tokens["input_ids"] | |
batch[f"{kwargs['prefix']}prompt_attention_mask"] = prompt_tokens["attention_mask"] | |
batch[f"{kwargs['prefix']}completion_labels"] = completion_tokens["input_ids"] | |
batch[f"{kwargs['prefix']}completion_attention_mask"] = completion_tokens["attention_mask"] | |
if model is not None and hasattr(model, "prepare_decoder_input_ids_from_labels"): | |
batch[f"{kwargs['prefix']}completion_decoder_input_ids"] = model.prepare_decoder_input_ids_from_labels( | |
labels=torch.tensor(batch["completion_labels"]) | |
) | |
return batch | |
class BCOTrainer(Trainer): | |
r""" | |
Initialize BCOTrainer from [BCO](https://huggingface.co/papers/2404.04656) paper. | |
Args: | |
model (`transformers.PreTrainedModel`): | |
The model to train, preferably an `AutoModelForSequenceClassification`. | |
ref_model (`PreTrainedModelWrapper`): | |
Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation and loss. If no | |
reference model is provided, the trainer will create a reference model with the same architecture as the model to be optimized. | |
args (`BCOConfig`): | |
The arguments to use for training. | |
train_dataset (`datasets.Dataset`): | |
The dataset to use for training. | |
eval_dataset (`datasets.Dataset`): | |
The dataset to use for evaluation. | |
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*): | |
Processing class used to process the data. If provided, will be used to automatically process the inputs | |
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or | |
reuse the fine-tuned model. | |
data_collator (`transformers.DataCollator`, *optional*, defaults to `None`): | |
The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used | |
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. | |
model_init (`Callable[[], transformers.PreTrainedModel]`): | |
The model initializer to use for training. If None is specified, the default model initializer will be used. | |
callbacks (`list[transformers.TrainerCallback]`): | |
The callbacks to use for training. | |
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): | |
The optimizer and scheduler to use for training. | |
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): | |
The function to use to preprocess the logits before computing the metrics. | |
peft_config (`dict`, defaults to `None`): | |
The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in a PEFT model. | |
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): | |
The function to use to compute the metrics. Must take a `EvalPrediction` and return | |
a dictionary string to metric values. | |
model_adapter_name (`str`, defaults to `None`): | |
Name of the train target PEFT adapter, when using LoRA with multiple adapters. | |
ref_adapter_name (`str`, defaults to `None`): | |
Name of the reference PEFT adapter, when using LoRA with multiple adapters. | |
""" | |
_tag_names = ["trl", "bco"] | |
def __init__( | |
self, | |
model: Union[PreTrainedModel, nn.Module, str] = None, | |
ref_model: Optional[Union[PreTrainedModel, nn.Module, str]] = None, | |
args: BCOConfig = None, | |
train_dataset: Optional[Dataset] = None, | |
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, | |
processing_class: Optional[ | |
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] | |
] = None, | |
data_collator: Optional[DataCollator] = None, | |
model_init: Optional[Callable[[], PreTrainedModel]] = None, | |
callbacks: Optional[list[TrainerCallback]] = None, | |
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), | |
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, | |
peft_config: Optional[dict] = None, | |
compute_metrics: Optional[Callable[[EvalLoopOutput], dict]] = None, | |
model_adapter_name: Optional[str] = None, | |
ref_adapter_name: Optional[str] = None, | |
embedding_func: Optional[Callable] = None, | |
embedding_tokenizer: Optional[PreTrainedTokenizerBase] = None, | |
): | |
if embedding_func is not None and not (is_sklearn_available() and is_joblib_available()): | |
raise ImportError( | |
"BCOTrainer with UDM requires the scikit-learn and joblib libraries. Please install it with `pip install scikit-learn joblib`." | |
) | |
if type(args) is TrainingArguments: | |
raise ValueError("Please use `BCOConfig` instead `TrainingArguments`.") | |
if not isinstance(model, str) and model is not None and ref_model is model: | |
raise ValueError( | |
"`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the " | |
"same as `model`, you must mass a copy of it, or `None` if you use peft." | |
) | |
if args.model_init_kwargs is None: | |
model_init_kwargs = {} | |
elif not isinstance(model, str): | |
raise ValueError("You passed model_kwargs to the BCOTrainer. But your model is already instantiated.") | |
else: | |
model_init_kwargs = args.model_init_kwargs | |
torch_dtype = model_init_kwargs.get("torch_dtype") | |
if torch_dtype is not None: | |
# Convert to `torch.dtype` if an str is passed | |
if isinstance(torch_dtype, str) and torch_dtype != "auto": | |
torch_dtype = getattr(torch, torch_dtype) | |
if torch_dtype != "auto" and not isinstance(torch_dtype, torch.dtype): | |
raise ValueError( | |
f"Invalid `torch_dtype` passed to the BCOConfig. Expected a string with either `torch.dtype` or 'auto', but got {torch_dtype}." | |
) | |
model_init_kwargs["torch_dtype"] = torch_dtype | |
if args.ref_model_init_kwargs is None: | |
ref_model_init_kwargs = {} | |
elif not isinstance(ref_model, str): | |
raise ValueError( | |
"You passed ref_model_kwargs to the BCOTrainer. But your ref_model is already instantiated." | |
) | |
else: | |
ref_model_init_kwargs = args.ref_model_init_kwargs | |
torch_dtype = ref_model_init_kwargs.get("torch_dtype") | |
if torch_dtype is not None: | |
# Convert to `torch.dtype` if an str is passed | |
if isinstance(torch_dtype, str) and torch_dtype != "auto": | |
torch_dtype = getattr(torch, torch_dtype) | |
if torch_dtype != "auto" and not isinstance(torch_dtype, torch.dtype): | |
raise ValueError( | |
f"Invalid `torch_dtype` passed to the BCOConfig. Expected a string with either `torch.dtype` or 'auto', but got {torch_dtype}." | |
) | |
ref_model_init_kwargs["torch_dtype"] = torch_dtype | |
if isinstance(model, str): | |
model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs) | |
if isinstance(ref_model, str): | |
ref_model = AutoModelForCausalLM.from_pretrained(ref_model, **ref_model_init_kwargs) | |
# Initialize this variable to False. This helps tracking the case when `peft_module_casting_to_bf16` | |
# has been called in order to properly call autocast if needed. | |
self._peft_has_been_casted_to_bf16 = False | |
if not is_peft_available() and peft_config is not None: | |
raise ValueError( | |
"PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it with `pip install peft` to use the PEFT models" | |
) | |
elif is_peft_available() and peft_config is not None: | |
# if model is a peft model and we have a peft_config, we merge and unload it first | |
if isinstance(model, PeftModel): | |
model = model.merge_and_unload() | |
if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False): | |
_support_gc_kwargs = hasattr( | |
args, "gradient_checkpointing_kwargs" | |
) and "gradient_checkpointing_kwargs" in list( | |
inspect.signature(prepare_model_for_kbit_training).parameters | |
) | |
prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing} | |
if _support_gc_kwargs: | |
prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs | |
model = prepare_model_for_kbit_training(model, **prepare_model_kwargs) | |
elif args.gradient_checkpointing: | |
# For backward compatibility with older versions of transformers | |
if hasattr(model, "enable_input_require_grads"): | |
model.enable_input_require_grads() | |
else: | |
def make_inputs_require_grad(module, input, output): | |
output.requires_grad_(True) | |
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
# get peft model with the given config | |
model = get_peft_model(model, peft_config) | |
if args.bf16 and getattr(model, "is_loaded_in_4bit", False): | |
peft_module_casting_to_bf16(model) | |
# If args.bf16 we need to explicitly call `generate` with torch amp autocast context manager | |
self._peft_has_been_casted_to_bf16 = True | |
# For models that use gradient_checkpointing, we need to attach a hook that enables input | |
# to explicitly have `requires_grad=True`, otherwise training will either silently | |
# fail or completely fail. | |
elif args.gradient_checkpointing: | |
# For backward compatibility with older versions of transformers | |
if hasattr(model, "enable_input_require_grads"): | |
model.enable_input_require_grads() | |
else: | |
def make_inputs_require_grad(module, input, output): | |
output.requires_grad_(True) | |
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
if args.generate_during_eval and not (is_wandb_available() or is_comet_available()): | |
raise ValueError( | |
"`generate_during_eval=True` requires Weights and Biases or Comet to be installed." | |
" Please install `wandb` or `comet-ml` to resolve." | |
) | |
if model is not None: | |
self.is_encoder_decoder = model.config.is_encoder_decoder | |
elif args.is_encoder_decoder is None: | |
raise ValueError("When no model is provided, you need to pass the parameter is_encoder_decoder.") | |
else: | |
self.is_encoder_decoder = args.is_encoder_decoder | |
self.is_peft_model = is_peft_available() and isinstance(model, PeftModel) | |
self.model_adapter_name = model_adapter_name | |
self.ref_adapter_name = ref_adapter_name | |
if ref_model: | |
self.ref_model = ref_model | |
elif self.is_peft_model or args.precompute_ref_log_probs: | |
# The `model` with adapters turned off will be used as the reference model | |
self.ref_model = None | |
else: | |
self.ref_model = create_reference_model(model) | |
if processing_class is None: | |
raise ValueError( | |
"max_length or a processing_class must be specified when using the default DPODataCollatorWithPadding" | |
) | |
if args.max_length is None: | |
warnings.warn( | |
"When using DPODataCollatorWithPadding, you should set `max_length` in the `BCOConfig`. " | |
"It will be set to `512` by default, but you should do it yourself in the future.", | |
UserWarning, | |
) | |
max_length = 512 | |
if args.max_length is not None: | |
max_length = args.max_length | |
if args.max_prompt_length is None: | |
warnings.warn( | |
"When using DPODataCollatorWithPadding, you should set `max_prompt_length` in the `BCOConfig`. " | |
"It will be set to `128` by default, but you should do it yourself in the future.", | |
UserWarning, | |
) | |
max_prompt_length = 128 | |
if args.max_prompt_length is not None: | |
max_prompt_length = args.max_prompt_length | |
max_completion_length = None | |
if args.max_completion_length is None and self.is_encoder_decoder: | |
warnings.warn( | |
"When using DPODataCollatorWithPadding with an encoder decoder architecture, you should set `max_completion_length` in the BCOTrainer's init" | |
" it will be set to `128` by default, but you should do it yourself in the future.", | |
UserWarning, | |
) | |
max_completion_length = 128 | |
if args.max_completion_length is not None and self.is_encoder_decoder: | |
max_completion_length = args.max_completion_length | |
if data_collator is None: | |
data_collator = DPODataCollatorWithPadding( | |
pad_token_id=processing_class.pad_token_id, | |
label_pad_token_id=args.label_pad_token_id, | |
is_encoder_decoder=self.is_encoder_decoder, | |
) | |
if args.remove_unused_columns: | |
args.remove_unused_columns = False | |
# warn users | |
warnings.warn( | |
"When using DPODataCollatorWithPadding, you should set `remove_unused_columns=False` in your BCOConfig" | |
" we have set it for you, but you should do it yourself in the future.", | |
UserWarning, | |
) | |
self.use_dpo_data_collator = True | |
else: | |
self.use_dpo_data_collator = False | |
# Disable dropout in the model and reference model | |
if args.disable_dropout: | |
disable_dropout_in_model(model) | |
if self.ref_model is not None: | |
disable_dropout_in_model(self.ref_model) | |
self.max_length = max_length | |
self.generate_during_eval = args.generate_during_eval | |
self.label_pad_token_id = args.label_pad_token_id | |
self.padding_value = args.padding_value if args.padding_value is not None else processing_class.pad_token_id | |
self.max_prompt_length = max_prompt_length | |
self.truncation_mode = args.truncation_mode | |
self.max_completion_length = max_completion_length | |
self.precompute_ref_log_probs = args.precompute_ref_log_probs | |
# Since ref_logs are precomputed on the first call to get_train/eval_dataloader | |
# keep track of first called to avoid computation of future calls | |
self._precomputed_train_ref_log_probs = False | |
self._precomputed_eval_ref_log_probs = False | |
# metric | |
self._stored_metrics = defaultdict(lambda: defaultdict(list)) | |
# BCO parameter | |
self.beta = args.beta | |
self.aux_loss_enabled = getattr(model.config, "output_router_logits", False) | |
self.aux_loss_coef = getattr(model.config, "router_aux_loss_coef", 0.0) | |
if self.aux_loss_enabled and self.aux_loss_coef == 0.0: | |
warnings.warn( | |
"You set `output_router_logits` to `True` in the model config, but `router_aux_loss_coef` is set to " | |
"`0.0`, meaning the auxiliary loss will not be used. Either set `router_aux_loss_coef` to a value " | |
"greater than `0.0`, or set `output_router_logits` to `False` if you don't want to use the auxiliary " | |
"loss.", | |
UserWarning, | |
) | |
# Underlying Distribution Matching argument | |
self.embedding_func = embedding_func | |
self.embedding_tokenizer = embedding_tokenizer | |
# The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the | |
# input tensor associated with the key "input_ids". However, in BCO, the sampled data does not include the | |
# "input_ids" key. Instead, the available keys are "prompt_input_ids" and "completion_input_ids". As a result, | |
# the trainer issues the warning: "Could not estimate the number of tokens of the input, floating-point | |
# operations will not be computed." To suppress this warning, we set the "estimate_tokens" key in the model's | |
# "warnings_issued" dictionary to True. This acts as a flag to indicate that the warning has already been | |
# issued. | |
model.warnings_issued["estimate_tokens"] = True | |
with PartialState().main_process_first(): | |
# Apply the chat template if needed | |
train_dataset = train_dataset.map( | |
maybe_apply_chat_template, fn_kwargs={"tokenizer": processing_class}, num_proc=args.dataset_num_proc | |
) | |
if eval_dataset is not None: | |
eval_dataset = eval_dataset.map( | |
maybe_apply_chat_template, | |
fn_kwargs={"tokenizer": processing_class}, | |
num_proc=args.dataset_num_proc, | |
) | |
# Tokenize and prepare the training datasets | |
train_dataset = train_dataset.map( | |
_tokenize, | |
batched=True, | |
fn_kwargs={"tokenizer": processing_class, "embedding_tokenizer": self.embedding_tokenizer}, | |
num_proc=args.dataset_num_proc, | |
desc="Tokenizing train dataset", | |
) | |
# Prepare the datasets | |
fn_kwargs = { | |
"prefix": "", | |
"is_encoder_decoder": self.is_encoder_decoder, | |
"tokenizer": processing_class, | |
"max_length": self.max_length, | |
"truncation_mode": self.truncation_mode, | |
"label_pad_token_id": self.label_pad_token_id, | |
"max_prompt_length": self.max_prompt_length, | |
"max_completion_length": self.max_completion_length, | |
} | |
train_dataset = train_dataset.map( | |
_process_tokens, | |
fn_kwargs=fn_kwargs, | |
num_proc=args.dataset_num_proc, | |
desc="Processing tokenized train dataset", | |
) | |
if eval_dataset is not None: | |
# Tokenize | |
eval_dataset = eval_dataset.map( | |
_tokenize, | |
fn_kwargs={"tokenizer": processing_class, "embedding_tokenizer": self.embedding_tokenizer}, | |
batched=True, | |
num_proc=args.dataset_num_proc, | |
desc="Tokenizing eval dataset", | |
) | |
# Process | |
fn_kwargs = { | |
"prefix": "", | |
"is_encoder_decoder": self.is_encoder_decoder, | |
"tokenizer": processing_class, | |
"max_length": self.max_length, | |
"truncation_mode": self.truncation_mode, | |
"label_pad_token_id": self.label_pad_token_id, | |
"max_prompt_length": self.max_prompt_length, | |
"max_completion_length": self.max_completion_length, | |
} | |
eval_dataset = eval_dataset.map( | |
_process_tokens, | |
fn_kwargs=fn_kwargs, | |
num_proc=args.dataset_num_proc, | |
desc="Processing tokenized eval dataset", | |
) | |
desirable = train_dataset.filter( | |
lambda x: x["label"], num_proc=args.dataset_num_proc, desc="Filtering desirable examples" | |
) | |
undesirable = train_dataset.filter( | |
lambda x: not x["label"], num_proc=args.dataset_num_proc, desc="Filtering undesirable examples" | |
) | |
super().__init__( | |
model=model, | |
args=args, | |
data_collator=data_collator, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
processing_class=processing_class, | |
model_init=model_init, | |
compute_metrics=compute_metrics, | |
callbacks=callbacks, | |
optimizers=optimizers, | |
preprocess_logits_for_metrics=preprocess_logits_for_metrics, | |
) | |
# Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the | |
# model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set | |
# self.model_accepts_loss_kwargs to False to enable scaling. | |
self.model_accepts_loss_kwargs = False | |
# Add tags for models that have been loaded with the correct transformers version | |
if hasattr(self.model, "add_model_tags"): | |
self.model.add_model_tags(self._tag_names) | |
if not hasattr(self, "accelerator"): | |
raise AttributeError( | |
"Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`." | |
) | |
# Deepspeed Zero-3 does not support precompute_ref_log_probs | |
if self.is_deepspeed_enabled: | |
if self.accelerator.state.deepspeed_plugin.zero_stage == 3 and self.precompute_ref_log_probs: | |
raise ValueError( | |
"You cannot use `precompute_ref_log_probs=True` with Deepspeed ZeRO-3. Please set `precompute_ref_log_probs=False`." | |
) | |
if self.ref_model is None: | |
if not (self.is_peft_model or self.precompute_ref_log_probs): | |
raise ValueError( | |
"No reference model and model is not a Peft model. Try setting `precompute_ref_log_probs=True`" | |
) | |
else: | |
if self.is_deepspeed_enabled: | |
self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator) | |
else: | |
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) | |
self.running = RunningMoments(accelerator=self.accelerator) | |
if self.embedding_func is None or args.resume_from_checkpoint: | |
return | |
chosen_embeddings = self._get_sample_prompt_embeddings(desirable, sample_size=self.args.prompt_sample_size) | |
rejected_embeddings = self._get_sample_prompt_embeddings(undesirable, sample_size=self.args.prompt_sample_size) | |
embeddings = torch.cat((chosen_embeddings, rejected_embeddings), dim=0) | |
labels = torch.cat( | |
(torch.ones_like(chosen_embeddings[:, 0]), torch.zeros_like(rejected_embeddings[:, 0])), dim=0 | |
) | |
self.clf = LogisticRegression(class_weight="balanced").fit( | |
embeddings.cpu().float().numpy(), labels.cpu().numpy() | |
) | |
chosen_mean = self.clf.score( | |
chosen_embeddings.cpu().float().numpy(), torch.ones_like(chosen_embeddings[:, 0]).cpu().numpy() | |
) | |
rejected_mean = self.clf.score( | |
rejected_embeddings.cpu().float().numpy(), torch.zeros_like(rejected_embeddings[:, 0]).cpu().numpy() | |
) | |
logger.info(f"UDM classifier training scores: chosen: {chosen_mean}, rejected: {rejected_mean}") | |
def match_underlying_distribution(self): | |
return self.embedding_func is not None and self.embedding_tokenizer is not None | |
def _get_chosen_prob(self, prompt_embeddings: torch.FloatTensor) -> torch.FloatTensor: | |
""" | |
Calculates the probability if the given prompt embedding is from desirable dataset. | |
This function calculates the probability in the process and ensemble across processes. | |
""" | |
dtype = prompt_embeddings.dtype | |
device = prompt_embeddings.device | |
rank = self.accelerator.process_index | |
padded_prompt_embeddings = self.accelerator.pad_across_processes( | |
prompt_embeddings, pad_index=self.embedding_tokenizer.pad_token_id | |
) | |
sample_size = padded_prompt_embeddings.shape[0] | |
nonzero = padded_prompt_embeddings.mean(dim=1) != self.embedding_tokenizer.pad_token_id | |
prompt_embeddings = self.accelerator.gather(padded_prompt_embeddings) | |
# cannot predict for all empty values | |
if prompt_embeddings.shape[0] == 0: | |
return torch.tensor([], device=device, dtype=dtype) | |
prob = self.clf.predict_proba(prompt_embeddings.cpu().float().numpy())[:, 1] | |
prob = torch.as_tensor(prob, dtype=dtype, device=device) | |
prob = self.accelerator.reduce(prob, reduction="mean") | |
prob = prob[sample_size * rank : sample_size * (rank + 1)] | |
prob = prob[nonzero] | |
return prob | |
def _vectorize_prompt(self, input_ids: torch.LongTensor, attention_mask: torch.LongTensor) -> torch.FloatTensor: | |
""" | |
Replaces processing_class.pad_token_id to embedding_tokenizer.pad_token_id | |
and applies self.embedding_func | |
""" | |
input_ids = torch.where( | |
input_ids == self.processing_class.pad_token_id, | |
self.embedding_tokenizer.pad_token_id, | |
input_ids, | |
) | |
with torch.no_grad(): | |
embeddings = self.embedding_func( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
) | |
return embeddings | |
def _get_prompt_embeddings( | |
self, batch: dict[str, Union[list, torch.LongTensor]] | |
) -> tuple[torch.FloatTensor, torch.FloatTensor]: | |
"""Extract embeddings from frozen embedding model""" | |
if not self.match_underlying_distribution: | |
return None, None | |
embeddings = self._vectorize_prompt( | |
input_ids=batch["embedding_input_ids"], | |
attention_mask=batch["embedding_attention_mask"], | |
) | |
chosen_idx = [i for i in range(len(batch["label"])) if batch["label"][i] is True] | |
rejected_idx = [i for i in range(len(batch["label"])) if batch["label"][i] is False] | |
chosen_embeddings = embeddings[chosen_idx, ...] | |
rejected_embeddings = embeddings[rejected_idx, ...] | |
return (chosen_embeddings, rejected_embeddings) | |
def _get_sample_prompt_embeddings(self, dataset: Dataset, sample_size: int = 512) -> torch.FloatTensor: | |
""" | |
Sample instances from dataset and get prompt embeddings. | |
Used for density ratio classifier training. | |
""" | |
n_samples = min(len(dataset), sample_size) | |
rand_indices = np.random.choice(len(dataset), size=(n_samples,)) | |
embedding_dataset = dataset.select(rand_indices) | |
dataloader_params = { | |
"batch_size": self.args.per_device_train_batch_size, | |
"collate_fn": self.data_collator, | |
"num_workers": self.args.dataloader_num_workers, | |
"pin_memory": self.args.dataloader_pin_memory, | |
"shuffle": False, | |
} | |
# prepare dataloader | |
data_loader = self.accelerator.prepare(DataLoader(embedding_dataset, **dataloader_params)) | |
with torch.no_grad(): | |
all_embeddings = torch.empty(0) | |
for padded_batch in tqdm(iterable=data_loader, desc="Building sample prompt embeddings"): | |
embeddings = self._vectorize_prompt( | |
input_ids=padded_batch["embedding_input_ids"], | |
attention_mask=padded_batch["embedding_attention_mask"], | |
) | |
embeddings = self.accelerator.gather_for_metrics(embeddings) | |
all_embeddings = torch.cat((all_embeddings, embeddings.cpu())) | |
return all_embeddings | |
def _save_optimizer_and_scheduler(self, output_dir): | |
output_dir = output_dir if output_dir is not None else self.args.output_dir | |
super()._save_optimizer_and_scheduler(output_dir) | |
if self.accelerator.is_main_process: | |
# When saving optimizer and scheduler to checkpoint, save also the running delta object. | |
self.running.save_to_json(os.path.join(output_dir, RUNNING_NAME)) | |
if self.match_underlying_distribution: | |
joblib.dump(self.clf, os.path.join(output_dir, CLF_NAME), compress=True) | |
def _load_optimizer_and_scheduler(self, checkpoint): | |
if checkpoint is None: | |
logger.warning_once(f"Missing Checkpoint {checkpoint}") | |
return | |
super()._load_optimizer_and_scheduler(checkpoint) | |
# when loading optimizer and scheduler from checkpoint, also load the running delta object. | |
running_file = os.path.join(checkpoint, RUNNING_NAME) | |
if os.path.isfile(running_file): | |
self.running = RunningMoments.load_from_json(self.accelerator, running_file) | |
if self.match_underlying_distribution: | |
clf_file = os.path.join(checkpoint, CLF_NAME) | |
if os.path.isfile(clf_file): | |
self.clf = joblib.load(clf_file) | |
def null_ref_context(self): | |
"""Context manager for handling null reference model (that is, peft adapter manipulation).""" | |
with ( | |
self.accelerator.unwrap_model(self.model).disable_adapter() | |
if self.is_peft_model and not self.ref_adapter_name | |
else nullcontext() | |
): | |
if self.ref_adapter_name: | |
self.model.set_adapter(self.ref_adapter_name) | |
yield | |
if self.ref_adapter_name: | |
self.model.set_adapter(self.model_adapter_name or "default") | |
def get_train_dataloader(self) -> DataLoader: | |
""" | |
Returns the training [`~torch.utils.data.DataLoader`]. | |
Subclass of transformers.src.transformers.trainer.get_train_dataloader to precompute `ref_log_probs`. | |
""" | |
if self.precompute_ref_log_probs and not self._precomputed_train_ref_log_probs: | |
dataloader_params = { | |
"batch_size": self.args.per_device_train_batch_size, | |
"collate_fn": self.data_collator, | |
"num_workers": self.args.dataloader_num_workers, | |
"pin_memory": self.args.dataloader_pin_memory, | |
"shuffle": False, | |
} | |
# prepare dataloader | |
data_loader = self.accelerator.prepare(DataLoader(self.train_dataset, **dataloader_params)) | |
reference_completion_logps = [] | |
for padded_batch in tqdm(iterable=data_loader, desc="Train dataset reference log probs"): | |
reference_completion_logp = self.compute_reference_log_probs(padded_batch) | |
reference_completion_logp = self.accelerator.gather_for_metrics(reference_completion_logp) | |
reference_completion_logps.append(reference_completion_logp.cpu()) | |
self.train_dataset = self.train_dataset.add_column( | |
name="reference_logps", column=torch.cat(reference_completion_logps).float().numpy() | |
) | |
self._precomputed_train_ref_log_probs = True | |
return super().get_train_dataloader() | |
def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader: | |
""" | |
Returns the evaluation [`~torch.utils.data.DataLoader`]. | |
Subclass of transformers.src.transformers.trainer.get_eval_dataloader to precompute `ref_log_probs`. | |
Args: | |
eval_dataset (`torch.utils.data.Dataset`, *optional*): | |
If provided, will override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns not accepted | |
by the `model.forward()` method are automatically removed. It must implement `__len__`. | |
""" | |
if eval_dataset is None and self.eval_dataset is None: | |
raise ValueError("Trainer: evaluation requires an eval_dataset.") | |
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset | |
if self.precompute_ref_log_probs and not self._precomputed_eval_ref_log_probs: | |
dataloader_params = { | |
"batch_size": self.args.per_device_eval_batch_size, | |
"collate_fn": self.data_collator, | |
"num_workers": self.args.dataloader_num_workers, | |
"pin_memory": self.args.dataloader_pin_memory, | |
"shuffle": False, | |
} | |
# prepare dataloader | |
data_loader = self.accelerator.prepare(DataLoader(eval_dataset, **dataloader_params)) | |
reference_completion_logps = [] | |
for padded_batch in tqdm(iterable=data_loader, desc="Eval dataset reference log probs"): | |
reference_completion_logp = self.compute_reference_log_probs(padded_batch) | |
reference_completion_logp = self.accelerator.gather_for_metrics(reference_completion_logp) | |
reference_completion_logps.append(reference_completion_logp.cpu()) | |
eval_dataset = eval_dataset.add_column( | |
name="reference_logps", column=torch.cat(reference_completion_logps).float().numpy() | |
) | |
# Save calculated reference_chosen_logps and reference_rejected_logps to the eval_dataset for subsequent runs | |
if self.eval_dataset is not None: | |
self.eval_dataset = eval_dataset | |
self._precomputed_eval_ref_log_probs = True | |
return super().get_eval_dataloader(eval_dataset=eval_dataset) | |
def compute_reference_log_probs(self, padded_batch: dict) -> dict: | |
"""Computes log probabilities of the reference model for a single padded batch of a BCO specific dataset.""" | |
with torch.no_grad(): | |
if self.ref_model is None: | |
with self.null_ref_context(): | |
if self.is_encoder_decoder: | |
completion_logits = self.model( | |
padded_batch["prompt_input_ids"], | |
attention_mask=padded_batch["prompt_attention_mask"], | |
decoder_input_ids=padded_batch.get("completion_decoder_input_ids"), | |
labels=padded_batch["completion_labels"], | |
).logits | |
else: | |
completion_logits = self.model( | |
padded_batch["completion_input_ids"], | |
attention_mask=padded_batch["completion_attention_mask"], | |
).logits | |
else: | |
if self.is_encoder_decoder: | |
completion_logits = self.ref_model( | |
padded_batch["prompt_input_ids"], | |
attention_mask=padded_batch["prompt_attention_mask"], | |
decoder_input_ids=padded_batch.get("completion_decoder_input_ids"), | |
labels=padded_batch["completion_labels"], | |
).logits | |
else: | |
completion_logits = self.ref_model( | |
padded_batch["completion_input_ids"], attention_mask=padded_batch["completion_attention_mask"] | |
).logits | |
completion_logps = self.get_batch_logps( | |
completion_logits, | |
padded_batch["completion_labels"], | |
average_log_prob=False, | |
is_encoder_decoder=self.is_encoder_decoder, | |
label_pad_token_id=self.label_pad_token_id, | |
) | |
return completion_logps | |
def get_batch_logps( | |
logits: torch.FloatTensor, | |
labels: torch.LongTensor, | |
average_log_prob: bool = False, | |
label_pad_token_id: int = -100, | |
is_encoder_decoder: bool = False, | |
) -> torch.FloatTensor: | |
"""Compute the log probabilities of the given labels under the given logits. | |
Args: | |
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, vocab_size) | |
labels: Labels for which to compute the log probabilities. Label tokens with a value of label_pad_token_id are ignored. Shape: (batch_size, sequence_length) | |
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens. | |
Returns: | |
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits. | |
""" | |
if logits.shape[:-1] != labels.shape: | |
raise ValueError("Logits (batch and sequence length dim) and labels must have the same shape.") | |
if not is_encoder_decoder: | |
labels = labels[:, 1:].clone() | |
logits = logits[:, :-1, :] | |
else: | |
# Fixes end-dec RuntimeError | |
labels = labels.clone() | |
loss_mask = labels != label_pad_token_id | |
# dummy token; we'll ignore the losses on these tokens later | |
labels[labels == label_pad_token_id] = 0 | |
per_token_logps = selective_log_softmax(logits, labels) | |
if average_log_prob: | |
return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1) | |
else: | |
return (per_token_logps * loss_mask).sum(-1) | |
def forward( | |
self, model: nn.Module, batch: dict[str, Union[list, torch.LongTensor]] | |
) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: | |
model_kwargs = ( | |
{ | |
"labels": batch["completion_labels"], | |
"decoder_input_ids": batch.get("completion_decoder_input_ids"), | |
} | |
if self.is_encoder_decoder | |
else {} | |
) | |
if self.aux_loss_enabled: | |
model_kwargs["output_router_logits"] = True | |
outputs = model( | |
batch["completion_input_ids"], | |
attention_mask=batch["completion_attention_mask"], | |
**model_kwargs, | |
) | |
completion_logits = outputs.logits | |
completion_logps = self.get_batch_logps( | |
completion_logits, | |
batch["completion_labels"], | |
average_log_prob=False, | |
is_encoder_decoder=self.is_encoder_decoder, | |
label_pad_token_id=self.label_pad_token_id, | |
) | |
if completion_logps.shape[0] != len(batch["label"]): | |
raise ValueError( | |
"There is a mismatch between the number of examples in this batch and the number of " | |
"examples for which an output sequence was predicted." | |
) | |
chosen_idx = [i for i in range(completion_logps.shape[0]) if batch["label"][i] is True] | |
rejected_idx = [i for i in range(completion_logps.shape[0]) if batch["label"][i] is False] | |
chosen_logps = completion_logps[chosen_idx, ...] | |
rejected_logps = completion_logps[rejected_idx, ...] | |
chosen_logits = completion_logits[chosen_idx, ...] | |
rejected_logits = completion_logits[rejected_idx, ...] | |
if self.aux_loss_enabled: | |
return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, outputs.aux_loss) | |
else: | |
return (chosen_logps, rejected_logps, chosen_logits, rejected_logits) | |
def _get_udm_weight(self, rejected_embeddings: torch.FloatTensor) -> torch.FloatTensor: | |
prob_desirable = self._get_chosen_prob(rejected_embeddings) | |
min_ratio = self.args.min_density_ratio | |
max_ratio = self.args.max_density_ratio | |
weight = (prob_desirable / (1 - prob_desirable + 1e-8)).clamp(min=min_ratio, max=max_ratio) | |
return weight | |
def bco_loss( | |
self, | |
policy_chosen_logps: torch.FloatTensor, | |
policy_rejected_logps: torch.FloatTensor, | |
reference_chosen_logps: torch.FloatTensor, | |
reference_rejected_logps: torch.FloatTensor, | |
chosen_embeddings: Optional[torch.FloatTensor], | |
rejected_embeddings: Optional[torch.FloatTensor], | |
do_train: bool = True, | |
) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: | |
"""Compute the BCO loss for a batch of policy and reference model log probabilities. | |
Args: | |
policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (num(chosen) in batch_size,) | |
policy_rejected_logps: Log probabilities of the policy model for the rejected responses. Shape: (num(rejected) in batch_size,) | |
reference_chosen_logps: Log probabilities of the reference model for the chosen responses. Shape: (num(chosen) in batch_size,) | |
reference_rejected_logps: Log probabilities of the reference model for the rejected responses. Shape: (num(rejected) in batch_size,) | |
chosen_embeddings: embeddings of desirable prompts | |
rejected_embeddings: embeddings of undesirable prompts | |
Returns: | |
A tuple of four tensors: (losses, chosen_rewards, rejected_rewards, delta). | |
The losses tensor contains the BCO loss for each example in the batch. | |
The chosen_rewards and rejected_rewards tensors contain the rewards for the chosen and rejected responses, respectively. | |
The delta value contains the moving average of all implicit rewards. | |
""" | |
chosen_logratios = policy_chosen_logps - reference_chosen_logps | |
chosen_rewards = self.beta * chosen_logratios | |
rejected_logratios = policy_rejected_logps - reference_rejected_logps | |
rejected_rewards = self.beta * rejected_logratios | |
if do_train: | |
self.running.update(torch.cat((chosen_rewards, rejected_rewards), 0).detach()) | |
delta = torch.as_tensor(self.running.mean, device=chosen_rewards.device) | |
chosen_losses = -F.logsigmoid(chosen_rewards - delta) | |
rejected_losses = -F.logsigmoid(-(rejected_rewards - delta)) | |
if self.match_underlying_distribution: | |
chosen_weight = torch.ones_like(chosen_losses) | |
rejected_weight = self._get_udm_weight(rejected_embeddings) | |
losses = torch.cat((chosen_weight * chosen_losses, rejected_weight * rejected_losses), dim=0) | |
else: | |
losses = torch.cat((chosen_losses, rejected_losses), dim=0) | |
return losses, chosen_rewards, rejected_rewards, delta | |
def get_batch_loss_metrics( | |
self, | |
model, | |
batch: dict[str, Union[list, torch.LongTensor]], | |
do_train: bool = True, | |
): | |
"""Compute the BCO loss and other metrics for the given batch of inputs for train or test.""" | |
metrics = {} | |
batch = {k: (v.to(self.accelerator.device) if isinstance(v, torch.Tensor) else v) for k, v in batch.items()} | |
forward_output = self.forward(model, batch) | |
( | |
policy_chosen_logps, | |
policy_rejected_logps, | |
policy_chosen_logits, | |
policy_rejected_logits, | |
) = forward_output[:4] | |
if self.aux_loss_enabled: | |
aux_loss = forward_output[4] | |
# if reference_logps in batch use them, otherwise use the reference model | |
if "reference_logps" in batch: | |
chosen_idx = [i for i in range(batch["reference_logps"].shape[0]) if batch["label"][i] is True] | |
rejected_idx = [i for i in range(batch["reference_logps"].shape[0]) if batch["label"][i] is False] | |
reference_chosen_logps = batch["reference_logps"][chosen_idx, ...] | |
reference_rejected_logps = batch["reference_logps"][rejected_idx, ...] | |
else: | |
with torch.no_grad(): | |
if self.ref_model is None: | |
with self.null_ref_context(): | |
( | |
reference_chosen_logps, | |
reference_rejected_logps, | |
_, | |
_, | |
) = self.forward(self.model, batch)[:4] | |
else: | |
( | |
reference_chosen_logps, | |
reference_rejected_logps, | |
_, | |
_, | |
) = self.forward(self.ref_model, batch)[:4] | |
chosen_embeddings, rejected_embeddings = self._get_prompt_embeddings(batch) | |
losses, chosen_rewards, rejected_rewards, delta = self.bco_loss( | |
policy_chosen_logps, | |
policy_rejected_logps, | |
reference_chosen_logps, | |
reference_rejected_logps, | |
chosen_embeddings, | |
rejected_embeddings, | |
do_train=do_train, | |
) | |
metrics["delta"] = self.accelerator.gather_for_metrics(delta).mean().item() | |
num_chosen = torch.Tensor([len(chosen_rewards)]).to(self.accelerator.device) | |
num_rejected = torch.Tensor([len(rejected_rewards)]).to(self.accelerator.device) | |
all_num_chosen = self.accelerator.gather_for_metrics(num_chosen).sum().item() | |
all_num_rejected = self.accelerator.gather_for_metrics(num_rejected).sum().item() | |
if all_num_chosen > 0: | |
metrics["rewards/chosen_sum"] = ( | |
self.accelerator.gather_for_metrics(chosen_rewards.nansum()).nansum().item() | |
) | |
metrics["logps/chosen_sum"] = ( | |
self.accelerator.gather_for_metrics(policy_chosen_logps.nansum()).nansum().item() | |
) | |
metrics["logits/chosen_sum"] = ( | |
self.accelerator.gather_for_metrics(policy_chosen_logits.nansum()).nansum().item() | |
) | |
metrics["count/chosen"] = all_num_chosen | |
if all_num_rejected > 0: | |
metrics["rewards/rejected_sum"] = ( | |
self.accelerator.gather_for_metrics(rejected_rewards.nansum()).nansum().item() | |
) | |
metrics["logps/rejected_sum"] = ( | |
self.accelerator.gather_for_metrics(policy_rejected_logps.nansum()).nansum().item() | |
) | |
metrics["logits/rejected_sum"] = ( | |
self.accelerator.gather_for_metrics(policy_rejected_logits.nansum()).nansum().item() | |
) | |
metrics["count/rejected"] = all_num_rejected | |
loss = losses.nanmean() | |
if self.aux_loss_enabled: | |
loss += self.aux_loss_coef * aux_loss | |
return loss, metrics | |
def compute_loss( | |
self, | |
model: Union[PreTrainedModel, nn.Module], | |
inputs: dict[str, Union[torch.Tensor, Any]], | |
return_outputs=False, | |
num_items_in_batch=None, | |
) -> Union[torch.Tensor, tuple[torch.Tensor, dict[str, torch.Tensor]]]: | |
compute_loss_context_manager = ( | |
autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext() | |
) | |
with compute_loss_context_manager: | |
loss, metrics = self.get_batch_loss_metrics(model, inputs) | |
# Make sure to move the loss to the device the original accumulating loss is at back in the `Trainer` class: | |
loss = loss.to(self.args.device) | |
# force log the metrics | |
if self.accelerator.is_main_process: | |
self.store_metrics(metrics, train_eval="train") | |
if return_outputs: | |
return (loss, metrics) | |
return loss | |
def store_metrics(self, metrics: dict[str, float], train_eval: Literal["train", "eval"] = "train") -> None: | |
for key, value in metrics.items(): | |
self._stored_metrics[train_eval][key].append(value) | |
def _get_train_sampler(self, dataset: Optional[Dataset] = None) -> Optional[torch.utils.data.Sampler]: | |
if dataset is None: | |
dataset = self.train_dataset | |
if dataset is None or not has_length(dataset): | |
return None | |
return SequentialSampler(dataset) | |
def generate_from_model_and_ref(self, model, batch: dict[str, torch.LongTensor]) -> tuple[str, str]: | |
"""Generate samples from the model and reference model for the given batch of inputs.""" | |
# If one uses `generate_during_eval` with peft + bf16, we need to explicitly call generate with | |
# the torch amp context manager as some hidden states are silently casted to full precision. | |
generate_context_manager = ( | |
autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext() | |
) | |
with generate_context_manager: | |
policy_output = model.generate( | |
input_ids=batch["prompt_input_ids"], | |
attention_mask=batch["prompt_attention_mask"], | |
max_length=self.max_length, | |
do_sample=True, | |
pad_token_id=self.processing_class.pad_token_id, | |
) | |
# if reference_output in batch use that otherwise use the reference model | |
if "reference_output" in batch: | |
reference_output = batch["reference_output"] | |
else: | |
if self.ref_model is None: | |
with self.null_ref_context(): | |
reference_output = self.model.generate( | |
input_ids=batch["prompt_input_ids"], | |
attention_mask=batch["prompt_attention_mask"], | |
max_length=self.max_length, | |
do_sample=True, | |
pad_token_id=self.processing_class.pad_token_id, | |
) | |
else: | |
reference_output = self.ref_model.generate( | |
input_ids=batch["prompt_input_ids"], | |
attention_mask=batch["prompt_attention_mask"], | |
max_length=self.max_length, | |
do_sample=True, | |
pad_token_id=self.processing_class.pad_token_id, | |
) | |
policy_output = pad_to_length(policy_output, self.max_length, self.processing_class.pad_token_id) | |
policy_output_decoded = self.processing_class.batch_decode(policy_output, skip_special_tokens=True) | |
reference_output = pad_to_length(reference_output, self.max_length, self.processing_class.pad_token_id) | |
reference_output_decoded = self.processing_class.batch_decode(reference_output, skip_special_tokens=True) | |
return policy_output_decoded, reference_output_decoded | |
def prediction_step( | |
self, | |
model: Union[PreTrainedModel, nn.Module], | |
inputs: dict[str, Union[torch.Tensor, Any]], | |
prediction_loss_only: bool, | |
ignore_keys: Optional[list[str]] = None, | |
): | |
if ignore_keys is None: | |
if hasattr(model, "config"): | |
ignore_keys = getattr(model.config, "keys_to_ignore_at_inference", []) | |
else: | |
ignore_keys = [] | |
prediction_context_manager = ( | |
autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext() | |
) | |
with torch.no_grad(), prediction_context_manager: | |
loss, metrics = self.get_batch_loss_metrics(model, inputs, do_train=False) | |
# force log the metrics | |
if self.accelerator.is_main_process: | |
self.store_metrics(metrics, train_eval="eval") | |
if prediction_loss_only: | |
return (loss.detach(), None, None) | |
# logits for the chosen and rejected samples from model | |
logits_dict = {} | |
if "logits/chosen_sum" in metrics: | |
logits_dict["eval_logits/chosen"] = metrics["logits/chosen_sum"] | |
if "logits/rejected_sum" in metrics: | |
logits_dict["eval_logits/rejected"] = metrics["logits/rejected_sum"] | |
logits = [v for k, v in logits_dict.items() if k not in ignore_keys] | |
logits = torch.tensor(logits, device=self.accelerator.device) | |
labels = torch.zeros(logits.shape[0], device=self.accelerator.device) | |
return (loss.detach(), logits, labels) | |
def evaluation_loop( | |
self, | |
dataloader: DataLoader, | |
description: str, | |
prediction_loss_only: Optional[bool] = None, | |
ignore_keys: Optional[list[str]] = None, | |
metric_key_prefix: str = "eval", | |
) -> EvalLoopOutput: | |
""" | |
Overriding built-in evaluation loop to store metrics for each batch. | |
Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`. | |
Works both with or without labels. | |
""" | |
# Sample and save to game log if requested (for one batch to save time) | |
if self.generate_during_eval: | |
# Generate random indices within the range of the total number of samples | |
num_samples = len(dataloader.dataset) | |
random_indices = random.sample(range(num_samples), k=self.args.eval_batch_size) | |
# Use dataloader.dataset.select to get the random batch without iterating over the DataLoader | |
random_batch_dataset = dataloader.dataset.select(random_indices) | |
random_batch = self.data_collator(random_batch_dataset) | |
random_batch = self._prepare_inputs(random_batch) | |
target_indicies = [i for i in range(len(random_batch["label"])) if random_batch["label"][i] is False] | |
target_batch = { | |
"prompt_input_ids": random_batch["prompt_input_ids"][target_indicies], | |
"prompt_attention_mask": random_batch["prompt_attention_mask"][target_indicies], | |
"prompt": itemgetter(*target_indicies)(random_batch["prompt"]), | |
} | |
policy_output_decoded, ref_output_decoded = self.generate_from_model_and_ref(self.model, target_batch) | |
table = pd.DataFrame( | |
columns=["Prompt", "Policy", "Ref Model"], | |
data=[ | |
[prompt, pol[len(prompt) :], ref[len(prompt) :]] | |
for prompt, pol, ref in zip(target_batch["prompt"], policy_output_decoded, ref_output_decoded) | |
], | |
) | |
if "wandb" in self.args.report_to: | |
wandb.log({"game_log": wandb.Table(data=table)}) | |
if "comet_ml" in self.args.report_to: | |
log_table_to_comet_experiment( | |
name="game_log.csv", | |
table=table, | |
) | |
# Base evaluation | |
initial_output = super().evaluation_loop( | |
dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix | |
) | |
return initial_output | |
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None: | |
""" | |
Log `logs` on the various objects watching training, including stored metrics. | |
Args: | |
logs (`dict[str, float]`): | |
The values to log. | |
start_time (`float` or `None`, *optional*, defaults to `None`): | |
Start time of the training. | |
""" | |
# logs either has 'loss' or 'eval_loss' | |
train_eval = "train" if "loss" in logs else "eval" | |
# train metrics should have no prefix, eval should have 'eval_' | |
prefix = "eval_" if train_eval == "eval" else "" | |
# accumulate average metrics from sums and lengths | |
for split in ["chosen", "rejected"]: | |
if f"count/{split}" in self._stored_metrics[train_eval]: | |
count_sum = torch.Tensor(self._stored_metrics[train_eval][f"count/{split}"]).sum().item() | |
for metric in ["rewards", "logps", "logits"]: | |
logs[f"{prefix}{metric}/{split}"] = ( | |
torch.Tensor(self._stored_metrics[train_eval][f"{metric}/{split}_sum"]).sum().item() | |
/ count_sum | |
) | |
# delete obsolete metric | |
del self._stored_metrics[train_eval][f"{metric}/{split}_sum"] | |
del self._stored_metrics[train_eval][f"count/{split}"] | |
# calculate reward margin | |
if f"{prefix}rewards/chosen" in logs and f"{prefix}rewards/rejected" in logs: | |
logs[f"{prefix}rewards/margins"] = logs[f"{prefix}rewards/chosen"] - logs[f"{prefix}rewards/rejected"] | |
# Add averaged stored metrics to logs | |
for key, metrics in self._stored_metrics[train_eval].items(): | |
logs[f"{prefix}{key}"] = torch.Tensor(metrics).mean().item() | |
del self._stored_metrics[train_eval] | |
return super().log(logs, start_time) | |
# Ensure the model card is saved along with the checkpoint | |
def _save_checkpoint(self, model, trial): | |
if self.args.hub_model_id is None: | |
model_name = Path(self.args.output_dir).name | |
else: | |
model_name = self.args.hub_model_id.split("/")[-1] | |
self.create_model_card(model_name=model_name) | |
super()._save_checkpoint(model, trial) | |
def create_model_card( | |
self, | |
model_name: Optional[str] = None, | |
dataset_name: Optional[str] = None, | |
tags: Union[str, list[str], None] = None, | |
): | |
""" | |
Creates a draft of a model card using the information available to the `Trainer`. | |
Args: | |
model_name (`str` or `None`, *optional*, defaults to `None`): | |
Name of the model. | |
dataset_name (`str` or `None`, *optional*, defaults to `None`): | |
Name of the dataset used for training. | |
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): | |
Tags to be associated with the model card. | |
""" | |
if not self.is_world_process_zero(): | |
return | |
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): | |
base_model = self.model.config._name_or_path | |
else: | |
base_model = None | |
tags = tags or set() | |
if isinstance(tags, str): | |
tags = {tags} | |
if hasattr(self.model.config, "unsloth_version"): | |
tags.add("unsloth") | |
tags.update(self._tag_names) | |
citation = textwrap.dedent("""\ | |
@article{jung2024binary, | |
title = {{Binary Classifier Optimization for Large Language Model Alignment}}, | |
author = {Seungjae Jung and Gunsoo Han and Daniel Wontae Nam and Kyoung{-}Woon On}, | |
year = 2024, | |
eprint = {arXiv:2404.04656} | |
}""") | |
model_card = generate_model_card( | |
base_model=base_model, | |
model_name=model_name, | |
hub_model_id=self.hub_model_id, | |
dataset_name=dataset_name, | |
tags=tags, | |
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, | |
comet_url=get_comet_experiment_url(), | |
trainer_name="BCO", | |
trainer_citation=citation, | |
paper_title="Binary Classifier Optimization for Large Language Model Alignment", | |
paper_id="2404.04656", | |
) | |
model_card.save(os.path.join(self.args.output_dir, "README.md")) | |