trl-sandbox / trl /trainer /ddpo_trainer.py
ivangabriele's picture
feat: initialize project
2f5127c verified
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import textwrap
from collections import defaultdict
from concurrent import futures
from pathlib import Path
from typing import Any, Callable, Optional, Union
from warnings import warn
import torch
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from huggingface_hub import PyTorchModelHubMixin
from transformers import is_wandb_available
from ..models import DDPOStableDiffusionPipeline
from .ddpo_config import DDPOConfig
from .utils import PerPromptStatTracker, generate_model_card, get_comet_experiment_url
if is_wandb_available():
import wandb
logger = get_logger(__name__)
class DDPOTrainer(PyTorchModelHubMixin):
"""
The DDPOTrainer uses Deep Diffusion Policy Optimization to optimise diffusion models.
Note, this trainer is heavily inspired by the work here: https://github.com/kvablack/ddpo-pytorch
As of now only Stable Diffusion based pipelines are supported
Attributes:
**config** (`DDPOConfig`) -- Configuration object for DDPOTrainer. Check the documentation of `PPOConfig` for more
details.
**reward_function** (Callable[[torch.Tensor, tuple[str], tuple[Any]], torch.Tensor]) -- Reward function to be used
**prompt_function** (Callable[[], tuple[str, Any]]) -- Function to generate prompts to guide model
**sd_pipeline** (`DDPOStableDiffusionPipeline`) -- Stable Diffusion pipeline to be used for training.
**image_samples_hook** (Optional[Callable[[Any, Any, Any], Any]]) -- Hook to be called to log images
"""
_tag_names = ["trl", "ddpo"]
def __init__(
self,
config: DDPOConfig,
reward_function: Callable[[torch.Tensor, tuple[str], tuple[Any]], torch.Tensor],
prompt_function: Callable[[], tuple[str, Any]],
sd_pipeline: DDPOStableDiffusionPipeline,
image_samples_hook: Optional[Callable[[Any, Any, Any], Any]] = None,
):
if image_samples_hook is None:
warn("No image_samples_hook provided; no images will be logged")
self.prompt_fn = prompt_function
self.reward_fn = reward_function
self.config = config
self.image_samples_callback = image_samples_hook
accelerator_project_config = ProjectConfiguration(**self.config.project_kwargs)
if self.config.resume_from:
self.config.resume_from = os.path.normpath(os.path.expanduser(self.config.resume_from))
if "checkpoint_" not in os.path.basename(self.config.resume_from):
# get the most recent checkpoint in this directory
checkpoints = list(
filter(
lambda x: "checkpoint_" in x,
os.listdir(self.config.resume_from),
)
)
if len(checkpoints) == 0:
raise ValueError(f"No checkpoints found in {self.config.resume_from}")
checkpoint_numbers = sorted([int(x.split("_")[-1]) for x in checkpoints])
self.config.resume_from = os.path.join(
self.config.resume_from,
f"checkpoint_{checkpoint_numbers[-1]}",
)
accelerator_project_config.iteration = checkpoint_numbers[-1] + 1
# number of timesteps within each trajectory to train on
self.num_train_timesteps = int(self.config.sample_num_steps * self.config.train_timestep_fraction)
self.accelerator = Accelerator(
log_with=self.config.log_with,
mixed_precision=self.config.mixed_precision,
project_config=accelerator_project_config,
# we always accumulate gradients across timesteps; we want config.train.gradient_accumulation_steps to be the
# number of *samples* we accumulate across, so we need to multiply by the number of training timesteps to get
# the total number of optimizer steps to accumulate across.
gradient_accumulation_steps=self.config.train_gradient_accumulation_steps * self.num_train_timesteps,
**self.config.accelerator_kwargs,
)
is_okay, message = self._config_check()
if not is_okay:
raise ValueError(message)
is_using_tensorboard = config.log_with is not None and config.log_with == "tensorboard"
if self.accelerator.is_main_process:
self.accelerator.init_trackers(
self.config.tracker_project_name,
config=dict(ddpo_trainer_config=config.to_dict()) if not is_using_tensorboard else config.to_dict(),
init_kwargs=self.config.tracker_kwargs,
)
logger.info(f"\n{config}")
set_seed(self.config.seed, device_specific=True)
self.sd_pipeline = sd_pipeline
self.sd_pipeline.set_progress_bar_config(
position=1,
disable=not self.accelerator.is_local_main_process,
leave=False,
desc="Timestep",
dynamic_ncols=True,
)
# For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
if self.accelerator.mixed_precision == "fp16":
inference_dtype = torch.float16
elif self.accelerator.mixed_precision == "bf16":
inference_dtype = torch.bfloat16
else:
inference_dtype = torch.float32
self.sd_pipeline.vae.to(self.accelerator.device, dtype=inference_dtype)
self.sd_pipeline.text_encoder.to(self.accelerator.device, dtype=inference_dtype)
self.sd_pipeline.unet.to(self.accelerator.device, dtype=inference_dtype)
trainable_layers = self.sd_pipeline.get_trainable_layers()
self.accelerator.register_save_state_pre_hook(self._save_model_hook)
self.accelerator.register_load_state_pre_hook(self._load_model_hook)
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if self.config.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
self.optimizer = self._setup_optimizer(
trainable_layers.parameters() if not isinstance(trainable_layers, list) else trainable_layers
)
self.neg_prompt_embed = self.sd_pipeline.text_encoder(
self.sd_pipeline.tokenizer(
[""] if self.config.negative_prompts is None else self.config.negative_prompts,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.sd_pipeline.tokenizer.model_max_length,
).input_ids.to(self.accelerator.device)
)[0]
if config.per_prompt_stat_tracking:
self.stat_tracker = PerPromptStatTracker(
config.per_prompt_stat_tracking_buffer_size,
config.per_prompt_stat_tracking_min_count,
)
# NOTE: for some reason, autocast is necessary for non-lora training but for lora training it isn't necessary and it uses
# more memory
self.autocast = self.sd_pipeline.autocast or self.accelerator.autocast
if hasattr(self.sd_pipeline, "use_lora") and self.sd_pipeline.use_lora:
unet, self.optimizer = self.accelerator.prepare(trainable_layers, self.optimizer)
self.trainable_layers = list(filter(lambda p: p.requires_grad, unet.parameters()))
else:
self.trainable_layers, self.optimizer = self.accelerator.prepare(trainable_layers, self.optimizer)
if self.config.async_reward_computation:
self.executor = futures.ThreadPoolExecutor(max_workers=config.max_workers)
if config.resume_from:
logger.info(f"Resuming from {config.resume_from}")
self.accelerator.load_state(config.resume_from)
self.first_epoch = int(config.resume_from.split("_")[-1]) + 1
else:
self.first_epoch = 0
def compute_rewards(self, prompt_image_pairs, is_async=False):
if not is_async:
rewards = []
for images, prompts, prompt_metadata in prompt_image_pairs:
reward, reward_metadata = self.reward_fn(images, prompts, prompt_metadata)
rewards.append(
(
torch.as_tensor(reward, device=self.accelerator.device),
reward_metadata,
)
)
else:
rewards = self.executor.map(lambda x: self.reward_fn(*x), prompt_image_pairs)
rewards = [
(torch.as_tensor(reward.result(), device=self.accelerator.device), reward_metadata.result())
for reward, reward_metadata in rewards
]
return zip(*rewards)
def step(self, epoch: int, global_step: int):
"""
Perform a single step of training.
Args:
epoch (int): The current epoch.
global_step (int): The current global step.
Side Effects:
- Model weights are updated
- Logs the statistics to the accelerator trackers.
- If `self.image_samples_callback` is not None, it will be called with the prompt_image_pairs, global_step, and the accelerator tracker.
Returns:
global_step (int): The updated global step.
"""
samples, prompt_image_data = self._generate_samples(
iterations=self.config.sample_num_batches_per_epoch,
batch_size=self.config.sample_batch_size,
)
# collate samples into dict where each entry has shape (num_batches_per_epoch * sample.batch_size, ...)
samples = {k: torch.cat([s[k] for s in samples]) for k in samples[0].keys()}
rewards, rewards_metadata = self.compute_rewards(
prompt_image_data, is_async=self.config.async_reward_computation
)
for i, image_data in enumerate(prompt_image_data):
image_data.extend([rewards[i], rewards_metadata[i]])
if self.image_samples_callback is not None:
self.image_samples_callback(prompt_image_data, global_step, self.accelerator.trackers[0])
rewards = torch.cat(rewards)
rewards = self.accelerator.gather(rewards).cpu().numpy()
self.accelerator.log(
{
"reward": rewards,
"epoch": epoch,
"reward_mean": rewards.mean(),
"reward_std": rewards.std(),
},
step=global_step,
)
if self.config.per_prompt_stat_tracking:
# gather the prompts across processes
prompt_ids = self.accelerator.gather(samples["prompt_ids"]).cpu().numpy()
prompts = self.sd_pipeline.tokenizer.batch_decode(prompt_ids, skip_special_tokens=True)
advantages = self.stat_tracker.update(prompts, rewards)
else:
advantages = (rewards - rewards.mean()) / (rewards.std() + 1e-8)
# ungather advantages; keep the entries corresponding to the samples on this process
samples["advantages"] = (
torch.as_tensor(advantages)
.reshape(self.accelerator.num_processes, -1)[self.accelerator.process_index]
.to(self.accelerator.device)
)
del samples["prompt_ids"]
total_batch_size, num_timesteps = samples["timesteps"].shape
for inner_epoch in range(self.config.train_num_inner_epochs):
# shuffle samples along batch dimension
perm = torch.randperm(total_batch_size, device=self.accelerator.device)
samples = {k: v[perm] for k, v in samples.items()}
# shuffle along time dimension independently for each sample
# still trying to understand the code below
perms = torch.stack(
[torch.randperm(num_timesteps, device=self.accelerator.device) for _ in range(total_batch_size)]
)
for key in ["timesteps", "latents", "next_latents", "log_probs"]:
samples[key] = samples[key][
torch.arange(total_batch_size, device=self.accelerator.device)[:, None],
perms,
]
original_keys = samples.keys()
original_values = samples.values()
# rebatch them as user defined train_batch_size is different from sample_batch_size
reshaped_values = [v.reshape(-1, self.config.train_batch_size, *v.shape[1:]) for v in original_values]
# Transpose the list of original values
transposed_values = zip(*reshaped_values)
# Create new dictionaries for each row of transposed values
samples_batched = [dict(zip(original_keys, row_values)) for row_values in transposed_values]
self.sd_pipeline.unet.train()
global_step = self._train_batched_samples(inner_epoch, epoch, global_step, samples_batched)
# ensure optimization step at the end of the inner epoch
if not self.accelerator.sync_gradients:
raise ValueError(
"Optimization step should have been performed by this point. Please check calculated gradient accumulation settings."
)
if epoch != 0 and epoch % self.config.save_freq == 0 and self.accelerator.is_main_process:
self.accelerator.save_state()
return global_step
def calculate_loss(self, latents, timesteps, next_latents, log_probs, advantages, embeds):
"""
Calculate the loss for a batch of an unpacked sample
Args:
latents (torch.Tensor):
The latents sampled from the diffusion model, shape: [batch_size, num_channels_latents, height, width]
timesteps (torch.Tensor):
The timesteps sampled from the diffusion model, shape: [batch_size]
next_latents (torch.Tensor):
The next latents sampled from the diffusion model, shape: [batch_size, num_channels_latents, height, width]
log_probs (torch.Tensor):
The log probabilities of the latents, shape: [batch_size]
advantages (torch.Tensor):
The advantages of the latents, shape: [batch_size]
embeds (torch.Tensor):
The embeddings of the prompts, shape: [2*batch_size or batch_size, ...]
Note: the "or" is because if train_cfg is True, the expectation is that negative prompts are concatenated to the embeds
Returns:
loss (torch.Tensor), approx_kl (torch.Tensor), clipfrac (torch.Tensor)
(all of these are of shape (1,))
"""
with self.autocast():
if self.config.train_cfg:
noise_pred = self.sd_pipeline.unet(
torch.cat([latents] * 2),
torch.cat([timesteps] * 2),
embeds,
).sample
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.config.sample_guidance_scale * (
noise_pred_text - noise_pred_uncond
)
else:
noise_pred = self.sd_pipeline.unet(
latents,
timesteps,
embeds,
).sample
# compute the log prob of next_latents given latents under the current model
scheduler_step_output = self.sd_pipeline.scheduler_step(
noise_pred,
timesteps,
latents,
eta=self.config.sample_eta,
prev_sample=next_latents,
)
log_prob = scheduler_step_output.log_probs
advantages = torch.clamp(
advantages,
-self.config.train_adv_clip_max,
self.config.train_adv_clip_max,
)
ratio = torch.exp(log_prob - log_probs)
loss = self.loss(advantages, self.config.train_clip_range, ratio)
approx_kl = 0.5 * torch.mean((log_prob - log_probs) ** 2)
clipfrac = torch.mean((torch.abs(ratio - 1.0) > self.config.train_clip_range).float())
return loss, approx_kl, clipfrac
def loss(
self,
advantages: torch.Tensor,
clip_range: float,
ratio: torch.Tensor,
):
unclipped_loss = -advantages * ratio
clipped_loss = -advantages * torch.clamp(
ratio,
1.0 - clip_range,
1.0 + clip_range,
)
return torch.mean(torch.maximum(unclipped_loss, clipped_loss))
def _setup_optimizer(self, trainable_layers_parameters):
if self.config.train_use_8bit_adam:
import bitsandbytes
optimizer_cls = bitsandbytes.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
return optimizer_cls(
trainable_layers_parameters,
lr=self.config.train_learning_rate,
betas=(self.config.train_adam_beta1, self.config.train_adam_beta2),
weight_decay=self.config.train_adam_weight_decay,
eps=self.config.train_adam_epsilon,
)
def _save_model_hook(self, models, weights, output_dir):
self.sd_pipeline.save_checkpoint(models, weights, output_dir)
weights.pop() # ensures that accelerate doesn't try to handle saving of the model
def _load_model_hook(self, models, input_dir):
self.sd_pipeline.load_checkpoint(models, input_dir)
models.pop() # ensures that accelerate doesn't try to handle loading of the model
def _generate_samples(self, iterations, batch_size):
"""
Generate samples from the model
Args:
iterations (int): Number of iterations to generate samples for
batch_size (int): Batch size to use for sampling
Returns:
samples (list[dict[str, torch.Tensor]]), prompt_image_pairs (list[list[Any]])
"""
samples = []
prompt_image_pairs = []
self.sd_pipeline.unet.eval()
sample_neg_prompt_embeds = self.neg_prompt_embed.repeat(batch_size, 1, 1)
for _ in range(iterations):
prompts, prompt_metadata = zip(*[self.prompt_fn() for _ in range(batch_size)])
prompt_ids = self.sd_pipeline.tokenizer(
prompts,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.sd_pipeline.tokenizer.model_max_length,
).input_ids.to(self.accelerator.device)
prompt_embeds = self.sd_pipeline.text_encoder(prompt_ids)[0]
with self.autocast():
sd_output = self.sd_pipeline(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=sample_neg_prompt_embeds,
num_inference_steps=self.config.sample_num_steps,
guidance_scale=self.config.sample_guidance_scale,
eta=self.config.sample_eta,
output_type="pt",
)
images = sd_output.images
latents = sd_output.latents
log_probs = sd_output.log_probs
latents = torch.stack(latents, dim=1) # (batch_size, num_steps + 1, ...)
log_probs = torch.stack(log_probs, dim=1) # (batch_size, num_steps, 1)
timesteps = self.sd_pipeline.scheduler.timesteps.repeat(batch_size, 1) # (batch_size, num_steps)
samples.append(
{
"prompt_ids": prompt_ids,
"prompt_embeds": prompt_embeds,
"timesteps": timesteps,
"latents": latents[:, :-1], # each entry is the latent before timestep t
"next_latents": latents[:, 1:], # each entry is the latent after timestep t
"log_probs": log_probs,
"negative_prompt_embeds": sample_neg_prompt_embeds,
}
)
prompt_image_pairs.append([images, prompts, prompt_metadata])
return samples, prompt_image_pairs
def _train_batched_samples(self, inner_epoch, epoch, global_step, batched_samples):
"""
Train on a batch of samples. Main training segment
Args:
inner_epoch (int): The current inner epoch
epoch (int): The current epoch
global_step (int): The current global step
batched_samples (list[dict[str, torch.Tensor]]): The batched samples to train on
Side Effects:
- Model weights are updated
- Logs the statistics to the accelerator trackers.
Returns:
global_step (int): The updated global step
"""
info = defaultdict(list)
for _i, sample in enumerate(batched_samples):
if self.config.train_cfg:
# concat negative prompts to sample prompts to avoid two forward passes
embeds = torch.cat([sample["negative_prompt_embeds"], sample["prompt_embeds"]])
else:
embeds = sample["prompt_embeds"]
for j in range(self.num_train_timesteps):
with self.accelerator.accumulate(self.sd_pipeline.unet):
loss, approx_kl, clipfrac = self.calculate_loss(
sample["latents"][:, j],
sample["timesteps"][:, j],
sample["next_latents"][:, j],
sample["log_probs"][:, j],
sample["advantages"],
embeds,
)
info["approx_kl"].append(approx_kl)
info["clipfrac"].append(clipfrac)
info["loss"].append(loss)
self.accelerator.backward(loss)
if self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(
self.trainable_layers.parameters()
if not isinstance(self.trainable_layers, list)
else self.trainable_layers,
self.config.train_max_grad_norm,
)
self.optimizer.step()
self.optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if self.accelerator.sync_gradients:
# log training-related stuff
info = {k: torch.mean(torch.stack(v)) for k, v in info.items()}
info = self.accelerator.reduce(info, reduction="mean")
info.update({"epoch": epoch, "inner_epoch": inner_epoch})
self.accelerator.log(info, step=global_step)
global_step += 1
info = defaultdict(list)
return global_step
def _config_check(self) -> tuple[bool, str]:
samples_per_epoch = (
self.config.sample_batch_size * self.accelerator.num_processes * self.config.sample_num_batches_per_epoch
)
total_train_batch_size = (
self.config.train_batch_size
* self.accelerator.num_processes
* self.config.train_gradient_accumulation_steps
)
if not self.config.sample_batch_size >= self.config.train_batch_size:
return (
False,
f"Sample batch size ({self.config.sample_batch_size}) must be greater than or equal to the train batch size ({self.config.train_batch_size})",
)
if not self.config.sample_batch_size % self.config.train_batch_size == 0:
return (
False,
f"Sample batch size ({self.config.sample_batch_size}) must be divisible by the train batch size ({self.config.train_batch_size})",
)
if not samples_per_epoch % total_train_batch_size == 0:
return (
False,
f"Number of samples per epoch ({samples_per_epoch}) must be divisible by the total train batch size ({total_train_batch_size})",
)
return True, ""
def train(self, epochs: Optional[int] = None):
"""
Train the model for a given number of epochs
"""
global_step = 0
if epochs is None:
epochs = self.config.num_epochs
for epoch in range(self.first_epoch, epochs):
global_step = self.step(epoch, global_step)
def _save_pretrained(self, save_directory):
self.sd_pipeline.save_pretrained(save_directory)
self.create_model_card()
# Ensure the model card is saved along with the checkpoint
def _save_checkpoint(self, model, trial):
if self.args.hub_model_id is None:
model_name = Path(self.args.output_dir).name
else:
model_name = self.args.hub_model_id.split("/")[-1]
self.create_model_card(model_name=model_name)
super()._save_checkpoint(model, trial)
def create_model_card(
self,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None,
tags: Union[str, list[str], None] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
model_name (`str` or `None`, *optional*, defaults to `None`):
Name of the model.
dataset_name (`str` or `None`, *optional*, defaults to `None`):
Name of the dataset used for training.
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
Tags to be associated with the model card.
"""
if not self.is_world_process_zero():
return
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
base_model = self.model.config._name_or_path
else:
base_model = None
tags = tags or set()
if isinstance(tags, str):
tags = {tags}
if hasattr(self.model.config, "unsloth_version"):
tags.add("unsloth")
tags.update(self._tag_names)
citation = textwrap.dedent("""\
@inproceedings{black2024training,
title = {{Training Diffusion Models with Reinforcement Learning}},
author = {Kevin Black and Michael Janner and Yilun Du and Ilya Kostrikov and Sergey Levine},
year = 2024,
booktitle = {The Twelfth International Conference on Learning Representations, {ICLR} 2024, Vienna, Austria, May 7-11, 2024},
publisher = {OpenReview.net},
url = {https://openreview.net/forum?id=YCWjhGrJFD},
}""")
model_card = generate_model_card(
base_model=base_model,
model_name=model_name,
hub_model_id=self.hub_model_id,
dataset_name=dataset_name,
tags=tags,
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
comet_url=get_comet_experiment_url(),
trainer_name="DDPO",
trainer_citation=citation,
paper_title="Training Diffusion Models with Reinforcement Learning",
paper_id="2305.13301",
)
model_card.save(os.path.join(self.args.output_dir, "README.md"))