Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass, field | |
from typing import Any, Optional | |
from transformers import TrainingArguments | |
class IterativeSFTConfig(TrainingArguments): | |
r""" | |
Configuration class for the [`IterativeSFTTrainer`]. | |
This class includes only the parameters that are specific to Iterative SFT training. For a full list of training | |
arguments, please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this | |
class may differ from those in [`~transformers.TrainingArguments`]. | |
Using [`~transformers.HfArgumentParser`] we can turn this class into | |
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the | |
command line. | |
Parameters: | |
> Parameters that control the model | |
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): | |
Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model` | |
argument of the [`IterativeSFTTrainer`] is provided as a string. | |
> Parameters that control the data preprocessing | |
max_length (`int` or `None`, *optional*, defaults to `None`): | |
Maximum length of the tokenized sequence. Sequences longer than `max_length` are truncated. | |
truncation_mode (`str`, *optional*, defaults to `"keep_end"`): | |
The truncation mode to use, either `"keep_end"` or `"keep_start"`. | |
optimize_device_cache (`bool`, *optional*, defaults to `False`): | |
Whether to optimize accelerator cache for slightly more memory-efficient training. | |
""" | |
_VALID_DICT_FIELDS = TrainingArguments._VALID_DICT_FIELDS + ["model_init_kwargs"] | |
# Parameters whose default values are overridden from TrainingArguments | |
logging_steps: float = field( | |
default=10, | |
metadata={ | |
"help": ( | |
"Log every X updates steps. Should be an integer or a float in range `[0,1)`. " | |
"If smaller than 1, will be interpreted as ratio of total training steps." | |
) | |
}, | |
) | |
bf16: bool = field( | |
default=True, | |
metadata={ | |
"help": ( | |
"Whether to use bf16 (mixed) precision instead of 32-bit. Requires Ampere or higher NVIDIA " | |
"architecture or using CPU (use_cpu) or Ascend NPU. This is an experimental API and it may change." | |
) | |
}, | |
) | |
# Parameters that control the model | |
model_init_kwargs: Optional[dict[str, Any]] = field( | |
default=None, | |
metadata={ | |
"help": "Keyword arguments for `AutoModelForCausalLM.from_pretrained`, used when the `model` argument of " | |
"the `IterativeSFTTrainer` is provided as a string." | |
}, | |
) | |
# Parameters that control the data preprocessing | |
max_length: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "Maximum length of the tokenized sequence. Sequences longer than `max_length` are truncated." | |
}, | |
) | |
truncation_mode: str = field( | |
default="keep_end", | |
metadata={"help": "The truncation mode to use, either 'keep_end' or 'keep_start'."}, | |
) | |
optimize_device_cache: bool = field( | |
default=False, | |
metadata={"help": "Whether to optimize accelerator cache for slightly more memory-efficient training."}, | |
) | |
def __post_init__(self): | |
super().__post_init__() | |
if self.truncation_mode not in ["keep_end", "keep_start"]: | |
raise ValueError(f"truncation_mode must be either 'keep_end' or 'keep_start', got {self.truncation_mode}") | |