Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass, field | |
from typing import Any, Optional | |
from transformers import TrainingArguments | |
class KTOConfig(TrainingArguments): | |
r""" | |
Configuration class for the [`KTOTrainer`]. | |
This class includes only the parameters that are specific to KTO training. For a full list of training arguments, | |
please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this class may | |
differ from those in [`~transformers.TrainingArguments`]. | |
Using [`~transformers.HfArgumentParser`] we can turn this class into | |
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the | |
command line. | |
Parameters: | |
max_length (`int` or `None`, *optional*, defaults to `1024`): | |
Maximum length of the sequences (prompt + completion) in the batch. This argument is required if you want | |
to use the default data collator. | |
max_prompt_length (`int` or `None`, *optional*, defaults to `512`): | |
Maximum length of the prompt. This argument is required if you want to use the default data collator. | |
max_completion_length (`int` or `None`, *optional*, defaults to `None`): | |
Maximum length of the completion. This argument is required if you want to use the default data collator | |
and your model is an encoder-decoder. | |
beta (`float`, *optional*, defaults to `0.1`): | |
Parameter controlling the deviation from the reference model. Higher β means less deviation from the | |
reference model. | |
loss_type (`str`, *optional*, defaults to `"kto"`): | |
Type of loss to use. Possible values are: | |
- `"kto"`: KTO loss from the [KTO](https://huggingface.co/papers/2402.01306) paper. | |
- `"apo_zero_unpaired"`: Unpaired variant of APO-zero loss from the [APO](https://huggingface.co/papers/2408.06266) paper. | |
desirable_weight (`float`, *optional*, defaults to `1.0`): | |
Desirable losses are weighed by this factor to counter unequal number of desirable and undesirable paris. | |
undesirable_weight (`float`, *optional*, defaults to `1.0`): | |
Undesirable losses are weighed by this factor to counter unequal number of desirable and undesirable pairs. | |
label_pad_token_id (`int`, *optional*, defaults to `-100`): | |
Label pad token id. This argument is required if you want to use the default data collator. | |
padding_value (`int` or `None`, *optional*, defaults to `None`): | |
Padding value to use. If `None`, the padding value of the tokenizer is used. | |
truncation_mode (`str`, *optional*, defaults to `"keep_end"`): | |
Truncation mode to use when the prompt is too long. Possible values are `"keep_end"` or `"keep_start"`. | |
This argument is required if you want to use the default data collator. | |
generate_during_eval (`bool`, *optional*, defaults to `False`): | |
If `True`, generates and logs completions from both the model and the reference model to W&B or Comet during | |
evaluation. | |
is_encoder_decoder (`bool` or `None`, *optional*, defaults to `None`): | |
When using the `model_init` argument (callable) to instantiate the model instead of the `model` argument, | |
you need to specify if the model returned by the callable is an encoder-decoder model. | |
precompute_ref_log_probs (`bool`, *optional*, defaults to `False`): | |
Whether to precompute reference model log probabilities for training and evaluation datasets. This is | |
useful when training without the reference model to reduce the total GPU memory needed. | |
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): | |
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model from a | |
string. | |
ref_model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): | |
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the reference model | |
from a string. | |
dataset_num_proc: (`int` or `None`, *optional*, defaults to `None`): | |
Number of processes to use for processing the dataset. | |
disable_dropout (`bool`, *optional*, defaults to `True`): | |
Whether to disable dropout in the model and reference model. | |
use_liger_loss (`bool`, *optional*, defaults to `False`): | |
Whether to use Liger loss. It requires liger-kernel to be installed. | |
base_model_attribute_name (`str`, *optional*, defaults to `"model"`): | |
Name of the attribute in the model that contains the base model. This is used to get the base model from | |
the model when the model does not have a `get_decoder` method in the case when `use_liger_loss` is `True`. | |
""" | |
_VALID_DICT_FIELDS = TrainingArguments._VALID_DICT_FIELDS + ["model_init_kwargs", "ref_model_init_kwargs"] | |
# Parameters whose default values are overridden from TrainingArguments | |
learning_rate: float = field( | |
default=1e-6, | |
metadata={"help": "The initial learning rate for AdamW."}, | |
) | |
logging_steps: float = field( | |
default=10, | |
metadata={ | |
"help": ( | |
"Log every X updates steps. Should be an integer or a float in range `[0,1)`. " | |
"If smaller than 1, will be interpreted as ratio of total training steps." | |
) | |
}, | |
) | |
bf16: bool = field( | |
default=True, | |
metadata={ | |
"help": ( | |
"Whether to use bf16 (mixed) precision instead of 32-bit. Requires Ampere or higher NVIDIA " | |
"architecture or using CPU (use_cpu) or Ascend NPU. This is an experimental API and it may change." | |
) | |
}, | |
) | |
max_length: Optional[int] = field( | |
default=1024, | |
metadata={"help": "Maximum length of the sequences (prompt + completion) in the batch."}, | |
) | |
max_prompt_length: Optional[int] = field( | |
default=512, | |
metadata={ | |
"help": "Maximum length of the prompt. This argument is required if you want to use the default data " | |
"collator and your model is an encoder-decoder." | |
}, | |
) | |
max_completion_length: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "Maximum length of the completion. This argument is required if you want to use the default data " | |
"collator and your model is an encoder-decoder." | |
}, | |
) | |
beta: float = field( | |
default=0.1, | |
metadata={ | |
"help": "Parameter controlling the deviation from the reference model. Higher β means less deviation from " | |
"the reference model." | |
}, | |
) | |
loss_type: str = field( | |
default="kto", | |
metadata={ | |
"help": "Type of loss to use.", | |
"choices": ["kto", "apo_zero_unpaired"], | |
}, | |
) | |
desirable_weight: float = field( | |
default=1.0, | |
metadata={ | |
"help": "Desirable losses are weighed by this factor to counter unequal number of desirable and " | |
"undesirable pairs.", | |
}, | |
) | |
undesirable_weight: float = field( | |
default=1.0, | |
metadata={ | |
"help": "Undesirable losses are weighed by this factor to counter unequal number of desirable and " | |
"undesirable pairs.", | |
}, | |
) | |
label_pad_token_id: int = field( | |
default=-100, | |
metadata={ | |
"help": "Label pad token id. This argument is required if you want to use the default data collator." | |
}, | |
) | |
padding_value: Optional[int] = field( | |
default=None, | |
metadata={"help": "Padding value to use. If `None`, the padding value of the tokenizer is used."}, | |
) | |
truncation_mode: str = field( | |
default="keep_end", | |
metadata={ | |
"help": "Truncation mode to use when the prompt is too long.", | |
"choices": ["keep_end", "keep_start"], | |
}, | |
) | |
generate_during_eval: bool = field( | |
default=False, | |
metadata={ | |
"help": "If `True`, generates and logs completions from both the model and the reference model to W&B " | |
"during evaluation." | |
}, | |
) | |
is_encoder_decoder: Optional[bool] = field( | |
default=None, | |
metadata={ | |
"help": "When using the `model_init` argument (callable) to instantiate the model instead of the `model` " | |
"argument, you need to specify if the model returned by the callable is an encoder-decoder model." | |
}, | |
) | |
disable_dropout: bool = field( | |
default=True, | |
metadata={"help": "Whether to disable dropout in the model."}, | |
) | |
precompute_ref_log_probs: bool = field( | |
default=False, | |
metadata={ | |
"help": "Whether to precompute reference model log probabilities for training and evaluation datasets. " | |
"This is useful when training without the reference model to reduce the total GPU memory needed." | |
}, | |
) | |
model_init_kwargs: Optional[dict[str, Any]] = field( | |
default=None, | |
metadata={ | |
"help": "Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model " | |
"from a string." | |
}, | |
) | |
ref_model_init_kwargs: Optional[dict[str, Any]] = field( | |
default=None, | |
metadata={ | |
"help": "Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the " | |
"reference model from a string." | |
}, | |
) | |
dataset_num_proc: Optional[int] = field( | |
default=None, | |
metadata={"help": "Number of processes to use for processing the dataset."}, | |
) | |
use_liger_loss: bool = field( | |
default=False, | |
metadata={"help": "Whether to use Liger loss. It requires liger-kernel to be installed."}, | |
) | |
base_model_attribute_name: str = field( | |
default="model", | |
metadata={ | |
"help": "Name of the attribute in the model that contains the base model. This is used to get the base " | |
"model from the model when the model does not have a `get_decoder` method in the case when " | |
"`use_liger_loss` is `True`." | |
}, | |
) | |