trl-sandbox / trl /trainer /kto_trainer.py
ivangabriele's picture
feat: initialize project
2f5127c verified
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import os
import random
import textwrap
import warnings
from collections import defaultdict
from contextlib import contextmanager, nullcontext
from operator import itemgetter
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Literal, Optional, Union
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from accelerate import PartialState
from accelerate.utils import tqdm
from datasets import Dataset, concatenate_datasets
from torch import autocast
from torch.utils.data import DataLoader, SequentialSampler
from transformers import (
AutoModelForCausalLM,
BaseImageProcessor,
DataCollator,
FeatureExtractionMixin,
PreTrainedModel,
PreTrainedTokenizerBase,
ProcessorMixin,
Trainer,
TrainerCallback,
TrainingArguments,
is_comet_available,
is_wandb_available,
)
from transformers.trainer_utils import EvalLoopOutput, has_length
from transformers.utils import is_peft_available
from ..data_utils import maybe_apply_chat_template, maybe_extract_prompt, maybe_unpair_preference_dataset
from ..import_utils import is_liger_kernel_available
from ..models import create_reference_model, prepare_deepspeed
from .kto_config import KTOConfig
from .utils import (
DPODataCollatorWithPadding,
disable_dropout_in_model,
generate_model_card,
get_comet_experiment_url,
log_table_to_comet_experiment,
pad_to_length,
peft_module_casting_to_bf16,
selective_log_softmax,
)
if is_liger_kernel_available():
from liger_kernel.chunked_loss import LigerFusedLinearKTOLoss
if is_peft_available():
from peft import PeftModel, get_peft_model, prepare_model_for_kbit_training
if is_wandb_available():
import wandb
if TYPE_CHECKING:
from transformers import PreTrainedModel, PreTrainedTokenizer
RUNNING_NAME = "running.pt"
def _get_kl_dataset(batch: dict[str, list[Any]]) -> dict[str, list[Any]]:
"""
Creates mismatched pairs of prompts and completions for the KL dataset by adding a +1 offset to the order of completions.
For best results, the mismatched outputs y' used to estimate the KL term for a batch should be the same set as the matched
outputs y used to estimate the rewards in that batch, just paired with different x.
"""
batch["answer_input_ids"] = [batch["answer_input_ids"][-1]] + batch["answer_input_ids"][:-1]
batch["answer_attention_mask"] = [batch["answer_attention_mask"][-1]] + batch["answer_attention_mask"][:-1]
return batch
def _tokenize(
batch: dict[str, list[Any]],
tokenizer: "PreTrainedTokenizer",
) -> dict[str, list[Any]]:
"""Tokenize a batch from a KTO specific dataset."""
prompt_tokenized = tokenizer(batch["prompt"], add_special_tokens=False)
prompt_input_ids = prompt_tokenized["input_ids"]
prompt_attention_mask = prompt_tokenized["attention_mask"]
prompt_and_completion = [prompt + completion for prompt, completion in zip(batch["prompt"], batch["completion"])]
full_tokenized = tokenizer(prompt_and_completion, add_special_tokens=False)
full_input_ids = full_tokenized["input_ids"]
full_attention_mask = full_tokenized["attention_mask"]
answer_input_ids = [f[len(p) :] for f, p in zip(full_input_ids, prompt_input_ids)]
answer_attention_mask = [f[len(p) :] for f, p in zip(full_attention_mask, prompt_attention_mask)]
# Concat tokens to form `enc(a) + enc(a + b)[len(enc(a)):]`
full_concat_input_ids = [np.concatenate([p, a]) for p, a in zip(prompt_input_ids, answer_input_ids)]
# Prepare input tokens for token by token comparison
full_input_ids = [np.array(f) for f in full_input_ids]
for full, concat in zip(full_input_ids, full_concat_input_ids):
if len(full) != len(concat):
raise ValueError(
"The elements in 'full_input_ids' and 'full_concat_input_ids' must have the same pairwise length."
)
# On some tokenizers, like Llama-2 tokenizer, there are occasions where tokens
# can be merged together when tokenizing prompt+answer. This could result
# on the last token from the prompt being different when tokenized on its own
# vs when done as prompt+answer.
response_token_ids_start_idx = [len(p) for p in prompt_input_ids]
# If tokenized prompt is different than both prompt+answer, then it means the
# last token has changed due to merging.
for idx, (p, f, r) in enumerate(zip(prompt_input_ids, full_input_ids, response_token_ids_start_idx)):
if not np.array_equal(p, f[:r]):
response_token_ids_start_idx[idx] -= 1
prompt_input_ids = [f[:r] for f, r in zip(full_input_ids, response_token_ids_start_idx)]
prompt_attention_mask = [f[:r] for f, r in zip(full_attention_mask, response_token_ids_start_idx)]
for p, m in zip(prompt_input_ids, prompt_attention_mask):
if len(p) != len(m):
raise ValueError("Prompt input ids and attention mask should have the same length.")
answer_input_ids = [f[r:] for f, r in zip(full_input_ids, response_token_ids_start_idx)]
answer_attention_mask = [f[r:] for f, r in zip(full_attention_mask, response_token_ids_start_idx)]
output = dict(
prompt_input_ids=prompt_input_ids,
prompt_attention_mask=prompt_attention_mask,
answer_input_ids=answer_input_ids,
answer_attention_mask=answer_attention_mask,
)
return output
def _process_tokens(example: dict[str, Any], model: "PreTrainedModel" = None, **kwargs) -> dict:
"""Process tokens of a KTO specific dataset.
At this stage, we don't convert to PyTorch tensors yet; we just handle the truncation
in case the prompt + completion responses is/are too long. First
we truncate the prompt; if we're still too long, we truncate the completion.
We also create the labels for the completion responses, which are of length equal to
the sum of the length of the prompt and the completion response, with
label_pad_token_id for the prompt tokens.
"""
prompt = example["prompt"]
completion = example["completion"]
batch = {
f"{kwargs['prefix']}prompt": prompt,
f"{kwargs['prefix']}completion": completion,
f"{kwargs['prefix']}label": example["label"],
}
if not kwargs["is_encoder_decoder"]:
# Check issues below for more details
# 1. https://github.com/huggingface/trl/issues/907
# 2. https://github.com/EleutherAI/lm-evaluation-harness/pull/531#issuecomment-1595586257
# 3. https://github.com/LianjiaTech/BELLE/issues/337
if not isinstance(prompt, str):
raise ValueError(f"prompt should be an str but got {type(prompt)}")
if not isinstance(completion, str):
raise ValueError(f"completion should be an str but got {type(completion)}")
# keys of format prompt_* refers to just the prompt and answer_* refers to just the answer
all_tokens = {
"prompt_input_ids": example["prompt_input_ids"],
"prompt_attention_mask": example["prompt_attention_mask"],
"answer_input_ids": example["answer_input_ids"],
"answer_attention_mask": example["answer_attention_mask"],
}
# calculate max length by checking if BOS/EOS is already there
max_length = kwargs["max_length"]
bos_token_id = kwargs["tokenizer"].bos_token_id
eos_token_id = kwargs["tokenizer"].eos_token_id
if len(all_tokens["prompt_input_ids"]) > 0 and bos_token_id != all_tokens["prompt_input_ids"][0]:
max_length -= 1
if len(all_tokens["answer_input_ids"]) > 0 and eos_token_id != all_tokens["answer_input_ids"][-1]:
max_length -= 1
# if combined sequence is too long (> max_length - 1 for BOS token - 1 for EOS), truncate the prompt
if len(all_tokens["prompt_input_ids"]) + len(all_tokens["answer_input_ids"]) > max_length:
for k in ["prompt_input_ids", "prompt_attention_mask"]:
if kwargs["truncation_mode"] == "keep_start":
all_tokens[k] = all_tokens[k][: kwargs["max_prompt_length"]]
elif kwargs["truncation_mode"] == "keep_end":
all_tokens[k] = all_tokens[k][-kwargs["max_prompt_length"] :]
else:
raise ValueError(f"Unknown truncation mode: {kwargs['truncation_mode']}")
# if that's still too long, truncate the response
if len(all_tokens["prompt_input_ids"]) + len(all_tokens["answer_input_ids"]) > max_length:
for k in ["answer_input_ids", "answer_attention_mask"]:
all_tokens[k] = all_tokens[k][: max_length - kwargs["max_prompt_length"]]
# all input_ids and attention mask as is. We then check if we need to add BOS/EOS tokens
batch[f"{kwargs['prefix']}prompt_input_ids"] = all_tokens["prompt_input_ids"]
batch[f"{kwargs['prefix']}prompt_attention_mask"] = all_tokens["prompt_attention_mask"]
batch[f"{kwargs['prefix']}completion_input_ids"] = (
all_tokens["prompt_input_ids"] + all_tokens["answer_input_ids"]
)
batch[f"{kwargs['prefix']}completion_attention_mask"] = (
all_tokens["prompt_attention_mask"] + all_tokens["answer_attention_mask"]
)
# add BOS, which affects both prompt and the full completion
if bos_token_id is not None:
if len(all_tokens["prompt_input_ids"]) == 0 or bos_token_id != all_tokens["prompt_input_ids"][0]:
batch[f"{kwargs['prefix']}prompt_input_ids"] = [bos_token_id] + batch[
f"{kwargs['prefix']}prompt_input_ids"
]
batch[f"{kwargs['prefix']}prompt_attention_mask"] = [1] + batch[
f"{kwargs['prefix']}prompt_attention_mask"
]
batch[f"{kwargs['prefix']}completion_input_ids"] = [bos_token_id] + batch[
f"{kwargs['prefix']}completion_input_ids"
]
batch[f"{kwargs['prefix']}completion_attention_mask"] = [1] + batch[
f"{kwargs['prefix']}completion_attention_mask"
]
# add EOS, which affects only the full completion
if len(all_tokens["answer_input_ids"]) == 0 or eos_token_id != all_tokens["answer_input_ids"][-1]:
batch[f"{kwargs['prefix']}completion_input_ids"] = batch[f"{kwargs['prefix']}completion_input_ids"] + [
eos_token_id
]
batch[f"{kwargs['prefix']}completion_attention_mask"] = batch[
f"{kwargs['prefix']}completion_attention_mask"
] + [1]
batch[f"{kwargs['prefix']}completion_labels"] = batch[f"{kwargs['prefix']}completion_input_ids"][:]
batch[f"{kwargs['prefix']}completion_labels"][: len(batch[f"{kwargs['prefix']}prompt_input_ids"])] = [
kwargs["label_pad_token_id"]
] * len(batch[f"{kwargs['prefix']}prompt_input_ids"])
else:
completion_tokens = kwargs["tokenizer"](
completion, truncation=True, max_length=kwargs["max_completion_length"], add_special_tokens=True
)
prompt_tokens = kwargs["tokenizer"](
prompt, truncation=True, max_length=kwargs["max_prompt_length"], add_special_tokens=True
)
batch[f"{kwargs['prefix']}prompt_input_ids"] = prompt_tokens["input_ids"]
batch[f"{kwargs['prefix']}prompt_attention_mask"] = prompt_tokens["attention_mask"]
batch[f"{kwargs['prefix']}completion_labels"] = completion_tokens["input_ids"]
batch[f"{kwargs['prefix']}completion_attention_mask"] = completion_tokens["attention_mask"]
if model is not None and hasattr(model, "prepare_decoder_input_ids_from_labels"):
batch[f"{kwargs['prefix']}completion_decoder_input_ids"] = model.prepare_decoder_input_ids_from_labels(
labels=torch.tensor(batch["completion_labels"])
)
return batch
class KTOTrainer(Trainer):
r"""
Initialize KTOTrainer.
Args:
model (`transformers.PreTrainedModel`):
The model to train, preferably an `AutoModelForSequenceClassification`.
ref_model (`PreTrainedModelWrapper`):
Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation and loss. If no
reference model is provided, the trainer will create a reference model with the same architecture as the model to be optimized.
args (`KTOConfig`):
The arguments to use for training.
train_dataset (`datasets.Dataset`):
The dataset to use for training.
eval_dataset (`datasets.Dataset`):
The dataset to use for evaluation.
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*):
Processing class used to process the data. If provided, will be used to automatically process the inputs
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or
reuse the fine-tuned model.
data_collator (`transformers.DataCollator`, *optional*, defaults to `None`):
The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences.
model_init (`Callable[[], transformers.PreTrainedModel]`):
The model initializer to use for training. If None is specified, the default model initializer will be used.
callbacks (`list[transformers.TrainerCallback]`):
The callbacks to use for training.
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`):
The optimizer and scheduler to use for training.
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`):
The function to use to preprocess the logits before computing the metrics.
peft_config (`dict`, defaults to `None`):
The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in a PEFT model.
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*):
The function to use to compute the metrics. Must take a `EvalPrediction` and return
a dictionary string to metric values.
model_adapter_name (`str`, defaults to `None`):
Name of the train target PEFT adapter, when using LoRA with multiple adapters.
ref_adapter_name (`str`, defaults to `None`):
Name of the reference PEFT adapter, when using LoRA with multiple adapters.
"""
_tag_names = ["trl", "kto"]
def __init__(
self,
model: Union[PreTrainedModel, nn.Module, str] = None,
ref_model: Optional[Union[PreTrainedModel, nn.Module, str]] = None,
args: KTOConfig = None,
train_dataset: Optional[Dataset] = None,
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
processing_class: Optional[
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
] = None,
data_collator: Optional[DataCollator] = None,
model_init: Optional[Callable[[], PreTrainedModel]] = None,
callbacks: Optional[list[TrainerCallback]] = None,
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
peft_config: Optional[dict] = None,
compute_metrics: Optional[Callable[[EvalLoopOutput], dict]] = None,
model_adapter_name: Optional[str] = None,
ref_adapter_name: Optional[str] = None,
):
if type(args) is TrainingArguments:
raise ValueError("Please use `KTOConfig` instead TrainingArguments.")
if not isinstance(model, str) and ref_model is model:
raise ValueError(
"`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the "
"same as `model`, you must mass a copy of it, or `None` if you use peft."
)
if args.model_init_kwargs is None:
model_init_kwargs = {}
elif not isinstance(model, str):
raise ValueError("You passed model_kwargs to the KTOTrainer. But your model is already instantiated.")
else:
model_init_kwargs = args.model_init_kwargs
torch_dtype = model_init_kwargs.get("torch_dtype")
if torch_dtype is not None:
# Convert to `torch.dtype` if an str is passed
if isinstance(torch_dtype, str) and torch_dtype != "auto":
torch_dtype = getattr(torch, torch_dtype)
if torch_dtype != "auto" and not isinstance(torch_dtype, torch.dtype):
raise ValueError(
f"Invalid `torch_dtype` passed to the KTOConfig. Expected a string with either `torch.dtype` or 'auto', but got {torch_dtype}."
)
model_init_kwargs["torch_dtype"] = torch_dtype
if args.ref_model_init_kwargs is None:
ref_model_init_kwargs = {}
elif not isinstance(ref_model, str):
raise ValueError(
"You passed ref_model_kwargs to the KTOTrainer. But your ref_model is already instantiated."
)
else:
ref_model_init_kwargs = args.ref_model_init_kwargs
torch_dtype = ref_model_init_kwargs.get("torch_dtype")
if torch_dtype is not None:
# Convert to `torch.dtype` if an str is passed
if isinstance(torch_dtype, str) and torch_dtype != "auto":
torch_dtype = getattr(torch, torch_dtype)
if torch_dtype != "auto" and not isinstance(torch_dtype, torch.dtype):
raise ValueError(
f"Invalid `torch_dtype` passed to the KTOConfig. Expected a string with either `torch.dtype` or 'auto', but got {torch_dtype}."
)
ref_model_init_kwargs["torch_dtype"] = torch_dtype
if isinstance(model, str):
model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs)
if isinstance(ref_model, str):
ref_model = AutoModelForCausalLM.from_pretrained(ref_model, **ref_model_init_kwargs)
# Initialize this variable to False. This helps tracking the case when `peft_module_casting_to_bf16`
# has been called in order to properly call autocast if needed.
self._peft_has_been_casted_to_bf16 = False
if not is_peft_available() and peft_config is not None:
raise ValueError(
"PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it with `pip install peft` to use the PEFT models"
)
elif is_peft_available() and peft_config is not None:
# if model is a peft model and we have a peft_config, we merge and unload it first
if isinstance(model, PeftModel):
model = model.merge_and_unload()
if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False):
_support_gc_kwargs = hasattr(
args, "gradient_checkpointing_kwargs"
) and "gradient_checkpointing_kwargs" in list(
inspect.signature(prepare_model_for_kbit_training).parameters
)
prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing}
if _support_gc_kwargs:
prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs
model = prepare_model_for_kbit_training(model, **prepare_model_kwargs)
elif args.gradient_checkpointing:
# For backward compatibility with older versions of transformers
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
# get peft model with the given config
model = get_peft_model(model, peft_config)
if args.bf16 and getattr(model, "is_loaded_in_4bit", False):
peft_module_casting_to_bf16(model)
# If args.bf16 we need to explicitly call `generate` with torch amp autocast context manager
self._peft_has_been_casted_to_bf16 = True
# For models that use gradient_checkpointing, we need to attach a hook that enables input
# to explicitly have `requires_grad=True`, otherwise training will either silently
# fail or completely fail.
elif args.gradient_checkpointing:
# For backward compatibility with older versions of transformers
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
if args.generate_during_eval and not (is_wandb_available() or is_comet_available()):
raise ValueError(
"`generate_during_eval=True` requires Weights and Biases or Comet to be installed."
" Please install `wandb` or `comet-ml` to resolve."
)
if model is not None:
self.is_encoder_decoder = model.config.is_encoder_decoder
elif args.is_encoder_decoder is None:
raise ValueError("When no model is provided, you need to pass the parameter is_encoder_decoder.")
else:
self.is_encoder_decoder = args.is_encoder_decoder
self.is_peft_model = is_peft_available() and isinstance(model, PeftModel)
self.model_adapter_name = model_adapter_name
self.ref_adapter_name = ref_adapter_name
if ref_model:
self.ref_model = ref_model
elif self.is_peft_model or args.precompute_ref_log_probs:
# The `model` with adapters turned off will be used as the reference model
self.ref_model = None
else:
self.ref_model = create_reference_model(model)
if processing_class is None:
raise ValueError(
"max_length or a processing_class must be specified when using the default DPODataCollatorWithPadding"
)
if args.max_length is None:
warnings.warn(
"When using DPODataCollatorWithPadding, you should set `max_length` in the KTOTrainer's init"
" it will be set to `512` by default, but you should do it yourself in the future.",
UserWarning,
)
max_length = 512
if args.max_length is not None:
max_length = args.max_length
if args.max_prompt_length is None:
warnings.warn(
"When using DPODataCollatorWithPadding, you should set `max_prompt_length` in the KTOTrainer's init"
" it will be set to `128` by default, but you should do it yourself in the future.",
UserWarning,
)
max_prompt_length = 128
if args.max_prompt_length is not None:
max_prompt_length = args.max_prompt_length
max_completion_length = None
if args.max_completion_length is None and self.is_encoder_decoder:
warnings.warn(
"When using DPODataCollatorWithPadding with an encoder decoder architecture, you should set `max_completion_length` in the KTOTrainer's init"
" it will be set to `128` by default, but you should do it yourself in the future.",
UserWarning,
)
max_completion_length = 128
if args.max_completion_length is not None and self.is_encoder_decoder:
max_completion_length = args.max_completion_length
if data_collator is None:
data_collator = DPODataCollatorWithPadding(
pad_token_id=processing_class.pad_token_id,
label_pad_token_id=args.label_pad_token_id,
is_encoder_decoder=self.is_encoder_decoder,
)
if args.remove_unused_columns:
args.remove_unused_columns = False
# warn users
warnings.warn(
"When using DPODataCollatorWithPadding, you should set `remove_unused_columns=False` in your KTOConfig"
" we have set it for you, but you should do it yourself in the future.",
UserWarning,
)
self.use_dpo_data_collator = True
else:
self.use_dpo_data_collator = False
# Disable dropout in the model and reference model
if args.disable_dropout:
disable_dropout_in_model(model)
if self.ref_model is not None:
disable_dropout_in_model(self.ref_model)
self.loss_type = args.loss_type
self.max_length = max_length
self.generate_during_eval = args.generate_during_eval
self.label_pad_token_id = args.label_pad_token_id
self.padding_value = args.padding_value if args.padding_value is not None else processing_class.pad_token_id
self.max_prompt_length = max_prompt_length
self.truncation_mode = args.truncation_mode
self.max_completion_length = max_completion_length
self.processing_class = processing_class
self.precompute_ref_log_probs = args.precompute_ref_log_probs
# Not all losses require a KL calculation
self.calculate_KL = True
if self.loss_type in ["apo_zero_unpaired"]:
self.calculate_KL = False
# Since ref_logs are precomputed on the first call to get_train/eval_dataloader
# keep track of first called to avoid computation of future calls
self._precomputed_train_ref_log_probs = False
self._precomputed_eval_ref_log_probs = False
# metric
self._stored_metrics = defaultdict(lambda: defaultdict(list))
# KTO parameter
self.beta = args.beta
self.desirable_weight = args.desirable_weight
self.undesirable_weight = args.undesirable_weight
self.aux_loss_enabled = getattr(model.config, "output_router_logits", False)
self.aux_loss_coef = getattr(model.config, "router_aux_loss_coef", 0.0)
if self.aux_loss_enabled and self.aux_loss_coef == 0.0:
warnings.warn(
"You set `output_router_logits` to `True` in the model config, but `router_aux_loss_coef` is set to "
"`0.0`, meaning the auxiliary loss will not be used. Either set `router_aux_loss_coef` to a value "
"greater than `0.0`, or set `output_router_logits` to `False` if you don't want to use the auxiliary "
"loss.",
UserWarning,
)
# The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the
# input tensor associated with the key "input_ids". However, in KTO, the sampled data does not include the
# "input_ids" key. Instead, the available keys are "prompt_input_ids" and "completion_input_ids". As a result,
# the trainer issues the warning: "Could not estimate the number of tokens of the input, floating-point
# operations will not be computed." To suppress this warning, we set the "estimate_tokens" key in the model's
# "warnings_issued" dictionary to True. This acts as a flag to indicate that the warning has already been
# issued.
model.warnings_issued["estimate_tokens"] = True
# Compute that only on the main process for faster data processing.
# see: https://github.com/huggingface/trl/pull/1255
with PartialState().main_process_first():
# Extract the prompt if needed
train_dataset = train_dataset.map(
maybe_extract_prompt, num_proc=args.dataset_num_proc, desc="Extracting prompt from train dataset"
)
# Unpair the dataset if needed
train_dataset = maybe_unpair_preference_dataset(
train_dataset, args.dataset_num_proc, desc="Unpairing train dataset"
)
# Apply the chat template if needed
train_dataset = train_dataset.map(
maybe_apply_chat_template,
fn_kwargs={"tokenizer": processing_class},
num_proc=args.dataset_num_proc,
desc="Applying chat template to train dataset",
)
if eval_dataset is not None:
eval_dataset = eval_dataset.map(
maybe_extract_prompt, num_proc=args.dataset_num_proc, desc="Extracting prompt from eval dataset"
)
eval_dataset = maybe_unpair_preference_dataset(
eval_dataset, args.dataset_num_proc, desc="Unpairing eval dataset"
)
eval_dataset = eval_dataset.map(
maybe_apply_chat_template,
fn_kwargs={"tokenizer": processing_class},
num_proc=args.dataset_num_proc,
desc="Applying chat template to eval dataset",
)
# Tokenize and prepare the training datasets
train_dataset = train_dataset.map(
_tokenize,
batched=True,
fn_kwargs={"tokenizer": self.processing_class},
num_proc=args.dataset_num_proc,
desc="Tokenizing train dataset",
)
fn_kwargs = {
"prefix": "",
"is_encoder_decoder": self.is_encoder_decoder,
"tokenizer": self.processing_class,
"max_length": self.max_length,
"truncation_mode": self.truncation_mode,
"label_pad_token_id": self.label_pad_token_id,
"max_prompt_length": self.max_prompt_length,
"max_completion_length": self.max_completion_length,
}
train_dataset = train_dataset.map(
_process_tokens,
fn_kwargs=fn_kwargs,
num_proc=args.dataset_num_proc,
desc="Processing tokenized train dataset",
)
# Tokenize and prepare the eval datasets
if eval_dataset is not None:
eval_dataset = eval_dataset.map(
_tokenize,
fn_kwargs={"tokenizer": self.processing_class},
batched=True,
num_proc=args.dataset_num_proc,
desc="Tokenizing eval dataset",
)
eval_dataset = eval_dataset.map(
_process_tokens,
fn_kwargs=fn_kwargs,
num_proc=args.dataset_num_proc,
desc="Processing tokenized eval dataset",
)
# Get KL datasets if needed
if self.calculate_KL:
if args.per_device_train_batch_size <= 1:
raise ValueError(
"Actual (not effective) batch size must be > 1. KTO will not work properly because the KL term will be equivalent to the implied reward."
)
# create pairs for estimating the KL term by flipping the matched pairs in each batch of size total_batch_size
# i.e., (x_1, y_1), ..., (x_n, y_n) --> (x_1, y_n), ..., (x_n, y_1) = (x'_1, y'_1), ..., (x'_n, y'_n)
train_kl_dataset = train_dataset.map(
_get_kl_dataset,
batched=True,
batch_size=args.per_device_train_batch_size,
num_proc=args.dataset_num_proc,
desc="Extracting KL train dataset",
)
fn_kwargs["prefix"] = "KL_"
train_kl_dataset = train_kl_dataset.map(
_process_tokens,
fn_kwargs=fn_kwargs,
num_proc=args.dataset_num_proc,
remove_columns=[c for c in train_kl_dataset.column_names if c in train_dataset.column_names],
desc="Processing tokenized train KL dataset",
)
# merge the datasets
train_dataset = concatenate_datasets([train_dataset, train_kl_dataset], axis=1)
if eval_dataset is not None:
# Get KL dataset
eval_kl_dataset = eval_dataset.map(
_get_kl_dataset,
batched=True,
batch_size=args.per_device_train_batch_size,
num_proc=args.dataset_num_proc,
desc="Extracting eval KL dataset",
)
eval_kl_dataset = eval_kl_dataset.map(
_process_tokens,
fn_kwargs=fn_kwargs,
num_proc=args.dataset_num_proc,
remove_columns=[c for c in eval_kl_dataset.column_names if c in eval_dataset.column_names],
desc="Processing tokenized eval KL dataset",
)
# merge the datasets
eval_dataset = concatenate_datasets([eval_dataset, eval_kl_dataset], axis=1)
# calculate dataset desirability balance
num_desirable = max(sum(train_dataset["label"]), 1)
num_undesirable = max(len(train_dataset["label"]) - num_desirable, 1) # "label" is binary
if num_desirable != num_undesirable:
# The lower and upper bounds come from Eq. (8) of https://huggingface.co/papers/2402.01306
des_weight_lower_bound = round((num_undesirable * self.undesirable_weight / num_desirable) * 1, 2)
des_weight_upper_bound = round((num_undesirable * self.undesirable_weight / num_desirable) * 1.33, 2)
und_weight_lower_bound = round((num_desirable * self.desirable_weight / num_undesirable) / 1.33, 2)
und_weight_upper_bound = round((num_desirable * self.desirable_weight / num_undesirable) / 1, 2)
des_weight_in_range = des_weight_lower_bound <= self.desirable_weight <= des_weight_upper_bound
und_weight_in_range = und_weight_lower_bound <= self.undesirable_weight <= und_weight_upper_bound
if not (des_weight_in_range or und_weight_in_range):
warnings.warn(
"You have different amounts of desirable/positive and undesirable/negative examples but the "
"weights on the desirable and undesirable losses don't seem to be in an ideal range. Based "
f"on your data, we recommend EITHER "
f"desirable_weight in [{des_weight_lower_bound}, {des_weight_upper_bound}] or "
f"undesirable_weight in [{und_weight_lower_bound}, {und_weight_upper_bound}] (but NOT BOTH). "
"See the documentation on how to optimally set these weights.",
UserWarning,
)
super().__init__(
model=model,
args=args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
processing_class=processing_class,
model_init=model_init,
compute_metrics=compute_metrics,
callbacks=callbacks,
optimizers=optimizers,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
)
# Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the
# model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set
# self.model_accepts_loss_kwargs to False to enable scaling.
self.model_accepts_loss_kwargs = False
# Add tags for models that have been loaded with the correct transformers version
if hasattr(self.model, "add_model_tags"):
self.model.add_model_tags(self._tag_names)
if not hasattr(self, "accelerator"):
raise AttributeError(
"Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`."
)
# Deepspeed Zero-3 does not support precompute_ref_log_probs
if self.is_deepspeed_enabled:
if self.accelerator.state.deepspeed_plugin.zero_stage == 3 and self.precompute_ref_log_probs:
raise ValueError(
"You cannot use `precompute_ref_log_probs=True` with Deepspeed ZeRO-3. Please set `precompute_ref_log_probs=False`."
)
if self.ref_model is None:
if not (self.is_peft_model or self.precompute_ref_log_probs):
raise ValueError(
"No reference model and model is not a Peft model. Try setting `precompute_ref_log_probs=True`"
)
else:
if self.is_deepspeed_enabled:
self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator)
else:
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
# Import Liger loss if enabled
if self.args.use_liger_loss:
if not is_liger_kernel_available():
raise ImportError(
"You set `use_liger_loss=True` but the liger kernel is not available. "
"Please install liger-kernel first: `pip install liger-kernel`"
)
if self.loss_type in ["apo_zero_unpaired"]:
raise ValueError(
"You cannot set `loss_type='apo_zero_unpaired'` with liger-kernel."
"Only KTO loss is supported with liger-kernel."
)
if self.precompute_ref_log_probs:
raise ValueError(
"You cannot use `precompute_ref_log_probs=True` with liger kernel. Please set "
"`precompute_ref_log_probs=False`."
)
if self.is_peft_model or self.ref_adapter_name is not None:
raise ValueError(
"You cannot use `use_liger_loss=True` with Peft models. Please set `use_liger_loss=False`."
)
self.kto_loss_fn = LigerFusedLinearKTOLoss(
ignore_index=self.label_pad_token_id, beta=self.beta, use_ref_model=(self.ref_model is not None)
)
@contextmanager
def null_ref_context(self):
"""Context manager for handling null reference model (that is, peft adapter manipulation)."""
with (
self.accelerator.unwrap_model(self.model).disable_adapter()
if self.is_peft_model and not self.ref_adapter_name
else nullcontext()
):
if self.ref_adapter_name:
self.model.set_adapter(self.ref_adapter_name)
yield
if self.ref_adapter_name:
self.model.set_adapter(self.model_adapter_name or "default")
def get_train_dataloader(self) -> DataLoader:
"""
Returns the training [`~torch.utils.data.DataLoader`].
Subclass of transformers.src.transformers.trainer.get_train_dataloader to precompute `ref_log_probs`.
"""
if self.precompute_ref_log_probs and not self._precomputed_train_ref_log_probs:
dataloader_params = {
"batch_size": self.args.per_device_train_batch_size,
"collate_fn": self.data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
"shuffle": False,
}
# prepare dataloader
data_loader = self.accelerator.prepare(DataLoader(self.train_dataset, **dataloader_params))
reference_completion_logps = []
reference_KL_logps = []
for padded_batch in tqdm(iterable=data_loader, desc="Train dataset reference log probs"):
reference_completion_logp, reference_KL_logp = self.compute_reference_log_probs(padded_batch)
reference_completion_logp = self.accelerator.gather_for_metrics(reference_completion_logp)
reference_completion_logps.append(reference_completion_logp.cpu())
if self.calculate_KL:
reference_KL_logp = self.accelerator.gather_for_metrics(reference_KL_logp)
reference_KL_logps.append(reference_KL_logp.cpu())
self.train_dataset = self.train_dataset.add_column(
name="reference_logps", column=torch.cat(reference_completion_logps).float().numpy()
)
if self.calculate_KL:
self.train_dataset = self.train_dataset.add_column(
name="reference_KL_logps", column=torch.cat(reference_KL_logps).float().numpy()
)
self._precomputed_train_ref_log_probs = True
return super().get_train_dataloader()
def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
"""
Returns the evaluation [`~torch.utils.data.DataLoader`].
Subclass of transformers.src.transformers.trainer.get_eval_dataloader to precompute `ref_log_probs`.
Args:
eval_dataset (`torch.utils.data.Dataset`, *optional*):
If provided, will override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns not accepted
by the `model.forward()` method are automatically removed. It must implement `__len__`.
"""
if eval_dataset is None and self.eval_dataset is None:
raise ValueError("Trainer: evaluation requires an eval_dataset.")
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
if self.precompute_ref_log_probs and not self._precomputed_eval_ref_log_probs:
dataloader_params = {
"batch_size": self.args.per_device_eval_batch_size,
"collate_fn": self.data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
"shuffle": False,
}
# prepare dataloader
data_loader = self.accelerator.prepare(DataLoader(eval_dataset, **dataloader_params))
reference_completion_logps = []
reference_KL_logps = []
for padded_batch in tqdm(iterable=data_loader, desc="Eval dataset reference log probs"):
reference_completion_logp, reference_KL_logp = self.compute_reference_log_probs(padded_batch)
reference_completion_logp = self.accelerator.gather_for_metrics(reference_completion_logp)
reference_completion_logps.append(reference_completion_logp.cpu())
if self.calculate_KL:
reference_KL_logp = self.accelerator.gather_for_metrics(reference_KL_logp)
reference_KL_logps.append(reference_KL_logp.cpu())
eval_dataset = eval_dataset.add_column(
name="reference_logps", column=torch.cat(reference_completion_logps).float().numpy()
)
if self.calculate_KL:
eval_dataset = eval_dataset.add_column(
name="reference_KL_logps", column=torch.cat(reference_KL_logps).float().numpy()
)
# Save calculated reference_chosen_logps and reference_rejected_logps to the eval_dataset for subsequent runs
if self.eval_dataset is not None:
self.eval_dataset = eval_dataset
self._precomputed_eval_ref_log_probs = True
return super().get_eval_dataloader(eval_dataset=eval_dataset)
def compute_reference_log_probs(self, padded_batch: dict) -> dict:
"""Computes log probabilities of the reference model for a single padded batch of a KTO specific dataset."""
with torch.no_grad():
if self.ref_model is None:
with self.null_ref_context():
if self.is_encoder_decoder:
completion_logits = self.model(
padded_batch["prompt_input_ids"],
attention_mask=padded_batch["prompt_attention_mask"],
decoder_input_ids=padded_batch.get("completion_decoder_input_ids"),
labels=padded_batch["completion_labels"],
).logits
if self.calculate_KL:
KL_logits = self.model(
padded_batch["KL_prompt_input_ids"],
attention_mask=padded_batch["KL_prompt_attention_mask"],
decoder_input_ids=padded_batch.get("KL_completion_decoder_input_ids"),
labels=padded_batch["KL_completion_labels"],
).logits
else:
completion_logits = self.model(
padded_batch["completion_input_ids"],
attention_mask=padded_batch["completion_attention_mask"],
).logits
if self.calculate_KL:
KL_logits = self.model(
padded_batch["KL_completion_input_ids"],
attention_mask=padded_batch["KL_completion_attention_mask"],
).logits
else:
if self.is_encoder_decoder:
completion_logits = self.ref_model(
padded_batch["prompt_input_ids"],
attention_mask=padded_batch["prompt_attention_mask"],
decoder_input_ids=padded_batch.get("completion_decoder_input_ids"),
labels=padded_batch["completion_labels"],
).logits
if self.calculate_KL:
KL_logits = self.ref_model(
padded_batch["KL_prompt_input_ids"],
attention_mask=padded_batch["KL_prompt_attention_mask"],
decoder_input_ids=padded_batch.get("KL_completion_decoder_input_ids"),
labels=padded_batch["KL_completion_labels"],
).logits
else:
completion_logits = self.ref_model(
padded_batch["completion_input_ids"], attention_mask=padded_batch["completion_attention_mask"]
).logits
if self.calculate_KL:
KL_logits = self.ref_model(
padded_batch["KL_completion_input_ids"],
attention_mask=padded_batch["KL_completion_attention_mask"],
).logits
completion_logps = self.get_batch_logps(
completion_logits,
padded_batch["completion_labels"],
average_log_prob=False,
is_encoder_decoder=self.is_encoder_decoder,
label_pad_token_id=self.label_pad_token_id,
)
if self.calculate_KL:
KL_logps = self.get_batch_logps(
KL_logits,
padded_batch["KL_completion_labels"],
average_log_prob=False,
is_encoder_decoder=self.is_encoder_decoder,
label_pad_token_id=self.label_pad_token_id,
)
else:
KL_logps = None
return completion_logps, KL_logps
@staticmethod
def get_batch_logps(
logits: torch.FloatTensor,
labels: torch.LongTensor,
average_log_prob: bool = False,
label_pad_token_id: int = -100,
is_encoder_decoder: bool = False,
) -> torch.FloatTensor:
"""Compute the log probabilities of the given labels under the given logits.
Args:
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, vocab_size)
labels: Labels for which to compute the log probabilities. Label tokens with a value of label_pad_token_id are ignored. Shape: (batch_size, sequence_length)
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens.
Returns:
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits.
"""
if logits.shape[:-1] != labels.shape:
raise ValueError("Logits (batch and sequence length dim) and labels must have the same shape.")
if not is_encoder_decoder:
labels = labels[:, 1:].clone()
logits = logits[:, :-1, :]
else:
# Fixes end-dec RuntimeError
labels = labels.clone()
loss_mask = labels != label_pad_token_id
# dummy token; we'll ignore the losses on these tokens later
labels[labels == label_pad_token_id] = 0
per_token_logps = selective_log_softmax(logits, labels)
if average_log_prob:
return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
else:
return (per_token_logps * loss_mask).sum(-1)
def forward(
self, model: nn.Module, batch: dict[str, Union[list, torch.LongTensor]]
) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
KL_logps = self._compute_kl_logps(model, batch)
model_kwargs = (
{
"labels": batch["completion_labels"],
"decoder_input_ids": batch.get("completion_decoder_input_ids"),
}
if self.is_encoder_decoder
else {}
)
if self.aux_loss_enabled:
model_kwargs["output_router_logits"] = True
outputs = model(
batch["completion_input_ids"],
attention_mask=batch["completion_attention_mask"],
**model_kwargs,
)
completion_logits = outputs.logits
completion_logps = self.get_batch_logps(
completion_logits,
batch["completion_labels"],
average_log_prob=False,
is_encoder_decoder=self.is_encoder_decoder,
label_pad_token_id=self.label_pad_token_id,
)
if completion_logps.shape[0] != len(batch["label"]):
raise ValueError(
"There is a mismatch between the number of examples in this batch and the number of "
"examples for which an output sequence was predicted."
)
chosen_idx = [i for i in range(completion_logps.shape[0]) if batch["label"][i] is True]
rejected_idx = [i for i in range(completion_logps.shape[0]) if batch["label"][i] is False]
chosen_logps = completion_logps[chosen_idx, ...]
rejected_logps = completion_logps[rejected_idx, ...]
chosen_logits = completion_logits[chosen_idx, ...]
rejected_logits = completion_logits[rejected_idx, ...]
if self.aux_loss_enabled:
return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, KL_logps, outputs.aux_loss)
else:
return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, KL_logps)
def kto_loss(
self,
policy_chosen_logps: torch.FloatTensor,
policy_rejected_logps: torch.FloatTensor,
policy_KL_logps: torch.FloatTensor,
reference_chosen_logps: torch.FloatTensor,
reference_rejected_logps: torch.FloatTensor,
reference_KL_logps: torch.FloatTensor,
) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
"""Compute the KTO loss for a batch of policy and reference model log probabilities.
Args:
policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (num(chosen) in batch_size,)
policy_rejected_logps: Log probabilities of the policy model for the rejected responses. Shape: (num(rejected) in batch_size,)
policy_KL_logps: Log probabilities of the policy model for the KL responses. Shape: (batch_size,)
reference_chosen_logps: Log probabilities of the reference model for the chosen responses. Shape: (num(chosen) in batch_size,)
reference_rejected_logps: Log probabilities of the reference model for the rejected responses. Shape: (num(rejected) in batch_size,)
reference_KL_logps: Log probabilities of the reference model for the KL responses. Shape: (batch_size,)
Returns:
A tuple of four tensors: (losses, chosen_rewards, rejected_rewards, KL).
The losses tensor contains the KTO loss for each example in the batch.
The chosen_rewards and rejected_rewards tensors contain the rewards for the chosen and rejected responses, respectively.
The KL tensor contains the detached KL divergence estimate between the policy and reference models.
"""
if self.calculate_KL:
kl = (policy_KL_logps - reference_KL_logps).mean().detach()
kl = self.accelerator.gather_for_metrics(kl).mean().clamp(min=0)
else:
kl = torch.zeros(1).to(policy_chosen_logps.device)
# Chosen losses
if policy_chosen_logps.shape[0] != 0 or reference_chosen_logps.shape[0] != 0:
chosen_logratios = policy_chosen_logps - reference_chosen_logps
if self.loss_type == "kto":
# Eqn (7) of the KTO paper (https://huggingface.co/papers/2402.01306)
chosen_losses = 1 - F.sigmoid(self.beta * (chosen_logratios - kl))
elif self.loss_type == "apo_zero_unpaired":
# Unpaired variant of Eqn (7) of the APO paper (https://huggingface.co/papers/2408.06266)
# Use this loss when you believe the chosen outputs are better than your model's default output
chosen_losses = 1 - F.sigmoid(self.beta * chosen_logratios)
chosen_rewards = self.beta * chosen_logratios.detach()
else:
# lists can't be empty -- if they are, then accelerate.gather will hang
chosen_losses = torch.Tensor([]).to(self.accelerator.device)
chosen_rewards = torch.Tensor([]).to(self.accelerator.device)
# Rejected losses
if policy_rejected_logps.shape[0] != 0 or reference_rejected_logps.shape[0] != 0:
rejected_logratios = policy_rejected_logps - reference_rejected_logps
if self.loss_type == "kto":
rejected_losses = 1 - F.sigmoid(self.beta * (kl - rejected_logratios))
elif self.loss_type == "apo_zero_unpaired":
rejected_losses = F.sigmoid(self.beta * rejected_logratios)
rejected_rewards = self.beta * rejected_logratios.detach()
else:
# lists can't be empty -- if they are, then accelerate.gather will hang
rejected_losses = torch.Tensor([]).to(self.accelerator.device)
rejected_rewards = torch.Tensor([]).to(self.accelerator.device)
losses = torch.cat(
(self.desirable_weight * chosen_losses, self.undesirable_weight * rejected_losses),
0,
)
return losses, chosen_rewards, rejected_rewards, kl
def _compute_kl_logps(self, model, batch):
"""Compute KL log probabilities for a given batch."""
KL_logps = None
if self.calculate_KL:
if self.is_encoder_decoder:
KL_model_kwargs = {
"input_ids": batch["KL_prompt_input_ids"],
"attention_mask": batch["KL_prompt_attention_mask"],
"labels": batch["KL_completion_labels"],
"decoder_input_ids": batch.get("KL_completion_decoder_input_ids"),
}
else:
KL_model_kwargs = {
"input_ids": batch["KL_completion_input_ids"],
"attention_mask": batch["KL_completion_attention_mask"],
}
with torch.no_grad():
KL_logits = model(**KL_model_kwargs).logits
KL_logps = self.get_batch_logps(
KL_logits,
batch["KL_completion_labels"],
average_log_prob=False,
is_encoder_decoder=self.is_encoder_decoder,
label_pad_token_id=self.label_pad_token_id,
)
return KL_logps
def _compute_loss_liger(self, model, batch):
"""
Compute the KTO loss using the Liger-Kernel's LigerFusedLinearKTOLoss.
Args:
model: The policy model used for generating log probabilities and outputs. It could be an encoder-decoder model or a regular language model.
batch: A dictionary containing the input data and labels for the batch.
Returns:
A dictionary containing the following keys:
- "loss": The computed KTO loss for the batch.
- "chosen_logits_sum": Sum of the logits for the chosen responses from the policy model.
- "rejected_logits_sum": Sum of the logits for the rejected responses from the policy model.
- "chosen_logps": Log probabilities of the chosen responses from the policy model.
- "rejected_logps": Log probabilities of the rejected responses from the policy model.
- "chosen_rewards": Rewards for the chosen responses.
- "rejected_rewards": Rewards for the rejected responses.
- "kl": The KL divergence between the policy and reference models (detached).
If auxiliary loss is enabled, the dictionary will also include:
- "aux_loss": The auxiliary loss from the model outputs.
"""
policy_KL_logps = self._compute_kl_logps(model, batch)
reference_KL_logps = self._compute_kl_logps(self.ref_model, batch)
if self.calculate_KL:
kl = (policy_KL_logps - reference_KL_logps).mean().detach()
kl = self.accelerator.gather_for_metrics(kl).mean().clamp(min=0)
else:
kl = torch.zeros(1).to(self.accelerator.device)
model_kwargs = (
{
"labels": batch["completion_labels"],
"decoder_input_ids": batch.get("completion_decoder_input_ids"),
}
if self.is_encoder_decoder
else {}
)
if self.aux_loss_enabled:
model_kwargs["output_router_logits"] = True
if self.is_encoder_decoder:
# 1. Get encoder outputs
encoder_outputs = model.get_encoder()(
batch["completion_input_ids"],
attention_mask=batch["completion_attention_mask"],
return_dict=True,
**model_kwargs,
)
# 2. Get decoder outputs
outputs = model.get_decoder()(
input_ids=model_kwargs["decoder_input_ids"],
encoder_hidden_states=encoder_outputs.last_hidden_state,
use_cache=False,
**model_kwargs,
)
# 1. Get reference encoder outputs
ref_encoder_outputs = self.ref_model.get_encoder()(
batch["completion_input_ids"],
attention_mask=batch["completion_attention_mask"],
return_dict=True,
**model_kwargs,
)
# 2. Get reference decoder outputs
ref_outputs = self.ref_model.get_decoder()(
input_ids=model_kwargs["decoder_input_ids"],
encoder_hidden_states=ref_encoder_outputs.last_hidden_state,
use_cache=False,
**model_kwargs,
)
else:
# skip the lm head and get the last hidden state
if hasattr(model, "get_decoder"):
base_model = model.get_decoder()
else:
base_model = getattr(model, self.args.base_model_attribute_name)
outputs = base_model(
batch["completion_input_ids"],
attention_mask=batch["completion_attention_mask"],
use_cache=False,
**model_kwargs,
)
# reference model
if hasattr(self.ref_model, "get_decoder"):
ref_base_model = self.ref_model.get_decoder()
else:
ref_base_model = getattr(self.ref_model, self.args.base_model_attribute_name)
ref_outputs = ref_base_model(
batch["completion_input_ids"],
attention_mask=batch["completion_attention_mask"],
use_cache=False,
**model_kwargs,
)
lm_head = model.get_output_embeddings()
ref_lm_head = self.ref_model.get_output_embeddings()
(
loss,
(
chosen_logps_sum,
rejected_logps_sum,
chosen_logits_sum,
rejected_logits_sum,
chosen_rewards_sum,
rejected_rewards_sum,
),
) = self.kto_loss_fn(
_input=outputs.last_hidden_state[:, :-1] if not self.is_encoder_decoder else outputs.last_hidden_state,
lin_weight=lm_head.weight,
target=batch["completion_labels"][:, 1:],
bias=lm_head.bias if hasattr(lm_head, "bias") else None,
preference_labels=torch.tensor(batch["label"], dtype=torch.bool).to(self.accelerator.device),
ref_input=ref_outputs.last_hidden_state[:, :-1]
if not self.is_encoder_decoder
else outputs.last_hidden_state,
ref_weight=ref_lm_head.weight,
ref_bias=ref_lm_head.bias if hasattr(lm_head, "bias") else None,
kl=kl,
)
output = {
"loss": loss,
"chosen_logits_sum": chosen_logits_sum,
"rejected_logits_sum": rejected_logits_sum,
"chosen_logps_sum": chosen_logps_sum,
"rejected_logps_sum": rejected_logps_sum,
"chosen_rewards_sum": chosen_rewards_sum,
"rejected_rewards_sum": rejected_rewards_sum,
"kl": kl,
}
if self.aux_loss_enabled:
output["aux_loss"] = outputs.aux_loss
return output
def get_batch_loss_metrics(
self,
model,
batch: dict[str, Union[list, torch.LongTensor]],
):
"""Compute the KTO loss and other metrics for the given batch of inputs for train or test."""
metrics = {}
batch = {k: (v.to(self.accelerator.device) if isinstance(v, torch.Tensor) else v) for k, v in batch.items()}
labels = torch.tensor(batch["label"])
num_chosen = labels.sum().to(self.accelerator.device)
num_rejected = (len(labels) - num_chosen).to(self.accelerator.device)
if self.args.use_liger_loss:
model_output = self._compute_loss_liger(model, batch)
losses = model_output["loss"]
policy_chosen_logits = model_output["chosen_logits_sum"]
policy_rejected_logits = model_output["rejected_logits_sum"]
policy_chosen_logps = model_output["chosen_logps_sum"]
policy_rejected_logps = model_output["rejected_logps_sum"]
chosen_rewards = model_output["chosen_rewards_sum"]
rejected_rewards = model_output["rejected_rewards_sum"]
kl = model_output["kl"]
if self.aux_loss_enabled:
aux_loss = model_output["aux_loss"]
else:
forward_output = self.forward(model, batch)
(
policy_chosen_logps,
policy_rejected_logps,
policy_chosen_logits,
policy_rejected_logits,
policy_KL_logps,
) = forward_output[:5]
if self.aux_loss_enabled:
aux_loss = forward_output[5]
# if reference_logps in batch use them, otherwise use the reference model
if "reference_logps" in batch:
chosen_idx = [i for i in range(batch["reference_logps"].shape[0]) if batch["label"][i] is True]
rejected_idx = [i for i in range(batch["reference_logps"].shape[0]) if batch["label"][i] is False]
reference_chosen_logps = batch["reference_logps"][chosen_idx, ...]
reference_rejected_logps = batch["reference_logps"][rejected_idx, ...]
if self.calculate_KL:
reference_KL_logps = batch["reference_KL_logps"]
else:
reference_KL_logps = None
else:
with torch.no_grad():
if self.ref_model is None:
with self.null_ref_context():
(
reference_chosen_logps,
reference_rejected_logps,
_,
_,
reference_KL_logps,
) = self.forward(self.model, batch)[:5]
else:
(
reference_chosen_logps,
reference_rejected_logps,
_,
_,
reference_KL_logps,
) = self.forward(self.ref_model, batch)[:5]
losses, chosen_rewards, rejected_rewards, kl = self.kto_loss(
policy_chosen_logps,
policy_rejected_logps,
policy_KL_logps,
reference_chosen_logps,
reference_rejected_logps,
reference_KL_logps,
)
metrics["kl"] = kl.item()
all_num_chosen = self.accelerator.gather_for_metrics(num_chosen).sum().item()
all_num_rejected = self.accelerator.gather_for_metrics(num_rejected).sum().item()
if all_num_chosen > 0:
metrics["rewards/chosen_sum"] = (
self.accelerator.gather_for_metrics(chosen_rewards.nansum()).nansum().item()
)
metrics["logps/chosen_sum"] = (
self.accelerator.gather_for_metrics(policy_chosen_logps.nansum()).nansum().item()
)
metrics["logits/chosen_sum"] = (
self.accelerator.gather_for_metrics(policy_chosen_logits.nansum()).nansum().item()
)
metrics["count/chosen"] = all_num_chosen
if all_num_rejected > 0:
metrics["rewards/rejected_sum"] = (
self.accelerator.gather_for_metrics(rejected_rewards.nansum()).nansum().item()
)
metrics["logps/rejected_sum"] = (
self.accelerator.gather_for_metrics(policy_rejected_logps.nansum()).nansum().item()
)
metrics["logits/rejected_sum"] = (
self.accelerator.gather_for_metrics(policy_rejected_logits.nansum()).nansum().item()
)
metrics["count/rejected"] = all_num_rejected
loss = losses.nanmean()
if self.aux_loss_enabled:
loss += self.aux_loss_coef * aux_loss
return loss, metrics
def compute_loss(
self,
model: Union[PreTrainedModel, nn.Module],
inputs: dict[str, Union[torch.Tensor, Any]],
return_outputs=False,
num_items_in_batch=None,
) -> Union[torch.Tensor, tuple[torch.Tensor, dict[str, torch.Tensor]]]:
compute_loss_context_manager = (
autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext()
)
with compute_loss_context_manager:
loss, metrics = self.get_batch_loss_metrics(model, inputs)
# Make sure to move the loss to the device the original accumulating loss is at back in the `Trainer` class:
loss = loss.to(self.args.device)
# force log the metrics
if self.accelerator.is_main_process:
self.store_metrics(metrics, train_eval="train")
if return_outputs:
return (loss, metrics)
return loss
def store_metrics(self, metrics: dict[str, float], train_eval: Literal["train", "eval"] = "train") -> None:
for key, value in metrics.items():
self._stored_metrics[train_eval][key].append(value)
def _get_train_sampler(self, dataset: Optional[Dataset] = None) -> Optional[torch.utils.data.Sampler]:
if dataset is None:
dataset = self.train_dataset
if dataset is None or not has_length(dataset):
return None
return SequentialSampler(dataset)
def generate_from_model_and_ref(self, model, batch: dict[str, torch.LongTensor]) -> tuple[str, str]:
"""Generate samples from the model and reference model for the given batch of inputs."""
# If one uses `generate_during_eval` with peft + bf16, we need to explicitly call generate with
# the torch amp context manager as some hidden states are silently casted to full precision.
generate_context_manager = (
autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext()
)
with generate_context_manager:
policy_output = model.generate(
input_ids=batch["prompt_input_ids"],
attention_mask=batch["prompt_attention_mask"],
max_length=self.max_length,
do_sample=True,
pad_token_id=self.processing_class.pad_token_id,
)
# if reference_output in batch use that otherwise use the reference model
if "reference_output" in batch:
reference_output = batch["reference_output"]
else:
if self.ref_model is None:
with self.null_ref_context():
reference_output = self.model.generate(
input_ids=batch["prompt_input_ids"],
attention_mask=batch["prompt_attention_mask"],
max_length=self.max_length,
do_sample=True,
pad_token_id=self.processing_class.pad_token_id,
)
else:
reference_output = self.ref_model.generate(
input_ids=batch["prompt_input_ids"],
attention_mask=batch["prompt_attention_mask"],
max_length=self.max_length,
do_sample=True,
pad_token_id=self.processing_class.pad_token_id,
)
policy_output = pad_to_length(policy_output, self.max_length, self.processing_class.pad_token_id)
policy_output_decoded = self.processing_class.batch_decode(policy_output, skip_special_tokens=True)
reference_output = pad_to_length(reference_output, self.max_length, self.processing_class.pad_token_id)
reference_output_decoded = self.processing_class.batch_decode(reference_output, skip_special_tokens=True)
return policy_output_decoded, reference_output_decoded
def prediction_step(
self,
model: Union[PreTrainedModel, nn.Module],
inputs: dict[str, Union[torch.Tensor, Any]],
prediction_loss_only: bool,
ignore_keys: Optional[list[str]] = None,
):
if ignore_keys is None:
if hasattr(model, "config"):
ignore_keys = getattr(model.config, "keys_to_ignore_at_inference", [])
else:
ignore_keys = []
prediction_context_manager = (
autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext()
)
with torch.no_grad(), prediction_context_manager:
loss, metrics = self.get_batch_loss_metrics(model, inputs)
# force log the metrics
if self.accelerator.is_main_process:
self.store_metrics(metrics, train_eval="eval")
if prediction_loss_only:
return (loss.detach(), None, None)
# logits for the chosen and rejected samples from model
logits_dict = {}
if "logits/chosen_sum" in metrics:
logits_dict["eval_logits/chosen"] = metrics["logits/chosen_sum"]
if "logits/rejected_sum" in metrics:
logits_dict["eval_logits/rejected"] = metrics["logits/rejected_sum"]
logits = [v for k, v in logits_dict.items() if k not in ignore_keys]
logits = torch.tensor(logits, device=self.accelerator.device)
labels = torch.zeros(logits.shape[0], device=self.accelerator.device)
return (loss.detach(), logits, labels)
def evaluation_loop(
self,
dataloader: DataLoader,
description: str,
prediction_loss_only: Optional[bool] = None,
ignore_keys: Optional[list[str]] = None,
metric_key_prefix: str = "eval",
) -> EvalLoopOutput:
"""
Overriding built-in evaluation loop to store metrics for each batch.
Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`.
Works both with or without labels.
"""
# Sample and save to game log if requested (for one batch to save time)
if self.generate_during_eval:
# Generate random indices within the range of the total number of samples
num_samples = len(dataloader.dataset)
random_indices = random.sample(range(num_samples), k=self.args.eval_batch_size)
# Use dataloader.dataset.select to get the random batch without iterating over the DataLoader
random_batch_dataset = dataloader.dataset.select(random_indices)
random_batch = self.data_collator(random_batch_dataset)
random_batch = self._prepare_inputs(random_batch)
target_indicies = [i for i in range(len(random_batch["label"])) if random_batch["label"][i] is False]
target_batch = {
"prompt_input_ids": random_batch["prompt_input_ids"][target_indicies],
"prompt_attention_mask": random_batch["prompt_attention_mask"][target_indicies],
"prompt": itemgetter(*target_indicies)(random_batch["prompt"]),
}
policy_output_decoded, ref_output_decoded = self.generate_from_model_and_ref(self.model, target_batch)
table = pd.DataFrame(
columns=["Prompt", "Policy", "Ref Model"],
data=[
[prompt, pol[len(prompt) :], ref[len(prompt) :]]
for prompt, pol, ref in zip(target_batch["prompt"], policy_output_decoded, ref_output_decoded)
],
)
if "wandb" in self.args.report_to:
wandb.log({"game_log": wandb.Table(data=table)})
if "comet_ml" in self.args.report_to:
log_table_to_comet_experiment(
name="game_log.csv",
table=table,
)
# Base evaluation
initial_output = super().evaluation_loop(
dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix
)
return initial_output
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None:
"""
Log `logs` on the various objects watching training, including stored metrics.
Args:
logs (`dict[str, float]`):
The values to log.
start_time (`float` or `None`, *optional*, defaults to `None`):
Start time of the training.
"""
# logs either has 'loss' or 'eval_loss'
train_eval = "train" if "loss" in logs else "eval"
# train metrics should have no prefix, eval should have 'eval_'
prefix = "eval_" if train_eval == "eval" else ""
# accumulate average metrics from sums and lengths
for split in ["chosen", "rejected"]:
if f"count/{split}" in self._stored_metrics[train_eval]:
count_sum = torch.Tensor(self._stored_metrics[train_eval][f"count/{split}"]).sum().item()
for metric in ["rewards", "logps", "logits"]:
logs[f"{prefix}{metric}/{split}"] = (
torch.Tensor(self._stored_metrics[train_eval][f"{metric}/{split}_sum"]).sum().item()
/ count_sum
)
# delete obsolete metric
del self._stored_metrics[train_eval][f"{metric}/{split}_sum"]
del self._stored_metrics[train_eval][f"count/{split}"]
# calculate reward margin
if f"{prefix}rewards/chosen" in logs and f"{prefix}rewards/rejected" in logs:
logs[f"{prefix}rewards/margins"] = logs[f"{prefix}rewards/chosen"] - logs[f"{prefix}rewards/rejected"]
# Add averaged stored metrics to logs
for key, metrics in self._stored_metrics[train_eval].items():
logs[f"{prefix}{key}"] = torch.Tensor(metrics).mean().item()
del self._stored_metrics[train_eval]
return super().log(logs, start_time)
# Ensure the model card is saved along with the checkpoint
def _save_checkpoint(self, model, trial):
if self.args.hub_model_id is None:
model_name = Path(self.args.output_dir).name
else:
model_name = self.args.hub_model_id.split("/")[-1]
self.create_model_card(model_name=model_name)
super()._save_checkpoint(model, trial)
def create_model_card(
self,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None,
tags: Union[str, list[str], None] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
model_name (`str` or `None`, *optional*, defaults to `None`):
Name of the model.
dataset_name (`str` or `None`, *optional*, defaults to `None`):
Name of the dataset used for training.
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
Tags to be associated with the model card.
"""
if not self.is_world_process_zero():
return
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
base_model = self.model.config._name_or_path
else:
base_model = None
tags = tags or set()
if isinstance(tags, str):
tags = {tags}
if hasattr(self.model.config, "unsloth_version"):
tags.add("unsloth")
tags.update(self._tag_names)
citation = textwrap.dedent("""\
@article{ethayarajh2024kto,
title = {{KTO: Model Alignment as Prospect Theoretic Optimization}},
author = {Kawin Ethayarajh and Winnie Xu and Niklas Muennighoff and Dan Jurafsky and Douwe Kiela},
year = 2024,
eprint = {arXiv:2402.01306},
}""")
model_card = generate_model_card(
base_model=base_model,
model_name=model_name,
hub_model_id=self.hub_model_id,
dataset_name=dataset_name,
tags=tags,
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
comet_url=get_comet_experiment_url(),
trainer_name="KTO",
trainer_citation=citation,
paper_title="KTO: Model Alignment as Prospect Theoretic Optimization",
paper_id="2402.01306",
)
model_card.save(os.path.join(self.args.output_dir, "README.md"))