Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import os | |
import random | |
import textwrap | |
import warnings | |
from collections import defaultdict | |
from contextlib import nullcontext | |
from pathlib import Path | |
from typing import Any, Callable, Literal, Optional, Union | |
import numpy as np | |
import pandas as pd | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from accelerate import PartialState | |
from datasets import Dataset | |
from torch import autocast | |
from torch.utils.data import DataLoader | |
from transformers import ( | |
AutoModelForCausalLM, | |
BaseImageProcessor, | |
DataCollator, | |
FeatureExtractionMixin, | |
PreTrainedModel, | |
PreTrainedTokenizerBase, | |
ProcessorMixin, | |
Trainer, | |
is_comet_available, | |
is_torch_xla_available, | |
is_wandb_available, | |
) | |
from transformers.trainer_callback import TrainerCallback | |
from transformers.trainer_utils import EvalLoopOutput | |
from transformers.utils import is_peft_available, is_torch_fx_proxy | |
from ..data_utils import maybe_apply_chat_template, maybe_extract_prompt | |
from .orpo_config import ORPOConfig | |
from .utils import ( | |
DPODataCollatorWithPadding, | |
add_bos_token_if_needed, | |
add_eos_token_if_needed, | |
disable_dropout_in_model, | |
generate_model_card, | |
get_comet_experiment_url, | |
log_table_to_comet_experiment, | |
pad_to_length, | |
peft_module_casting_to_bf16, | |
selective_log_softmax, | |
) | |
if is_peft_available(): | |
from peft import PeftModel, get_peft_model, prepare_model_for_kbit_training | |
if is_wandb_available(): | |
import wandb | |
if is_torch_xla_available(): | |
import torch_xla.core.xla_model as xm | |
class ORPOTrainer(Trainer): | |
r""" | |
Initialize ORPOTrainer. | |
Args: | |
model (`transformers.PreTrainedModel`): | |
The model to train, preferably an `AutoModelForSequenceClassification`. | |
args (`ORPOConfig`): | |
The ORPO config arguments to use for training. | |
data_collator (`transformers.DataCollator`): | |
The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used | |
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. | |
train_dataset (`datasets.Dataset`): | |
The dataset to use for training. | |
eval_dataset (`datasets.Dataset`): | |
The dataset to use for evaluation. | |
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*): | |
Processing class used to process the data. If provided, will be used to automatically process the inputs | |
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or | |
reuse the fine-tuned model. | |
model_init (`Callable[[], transformers.PreTrainedModel]`): | |
The model initializer to use for training. If None is specified, the default model initializer will be used. | |
callbacks (`list[transformers.TrainerCallback]`): | |
The callbacks to use for training. | |
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): | |
The optimizer and scheduler to use for training. | |
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): | |
The function to use to preprocess the logits before computing the metrics. | |
peft_config (`dict`, defaults to `None`): | |
The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in a PEFT model. | |
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): | |
The function to use to compute the metrics. Must take a `EvalPrediction` and return | |
a dictionary string to metric values. | |
""" | |
_tag_names = ["trl", "orpo"] | |
def __init__( | |
self, | |
model: Optional[Union[PreTrainedModel, nn.Module, str]] = None, | |
args: Optional[ORPOConfig] = None, | |
data_collator: Optional[DataCollator] = None, | |
train_dataset: Optional[Dataset] = None, | |
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, | |
processing_class: Optional[ | |
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] | |
] = None, | |
model_init: Optional[Callable[[], PreTrainedModel]] = None, | |
callbacks: Optional[list[TrainerCallback]] = None, | |
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), | |
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, | |
peft_config: Optional[dict] = None, | |
compute_metrics: Optional[Callable[[EvalLoopOutput], dict]] = None, | |
): | |
if args.model_init_kwargs is None: | |
model_init_kwargs = {} | |
elif not isinstance(model, str): | |
raise ValueError("You passed model_kwargs to the ORPOTrainer. But your model is already instantiated.") | |
else: | |
model_init_kwargs = args.model_init_kwargs | |
torch_dtype = model_init_kwargs.get("torch_dtype") | |
if torch_dtype is not None: | |
# Convert to `torch.dtype` if an str is passed | |
if isinstance(torch_dtype, str) and torch_dtype != "auto": | |
torch_dtype = getattr(torch, torch_dtype) | |
if torch_dtype != "auto" and not isinstance(torch_dtype, torch.dtype): | |
raise ValueError( | |
f"Invalid `torch_dtype` passed to the ORPOConfig. Expected a string with either `torch.dtype` or 'auto', but got {torch_dtype}." | |
) | |
model_init_kwargs["torch_dtype"] = torch_dtype | |
if isinstance(model, str): | |
model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs) | |
# Initialize this variable to False. This helps tracking the case when `peft_module_casting_to_bf16` | |
# has been called in order to properly call autocast if needed. | |
self._peft_has_been_casted_to_bf16 = False | |
if not is_peft_available() and peft_config is not None: | |
raise ValueError( | |
"PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models" | |
) | |
elif is_peft_available() and peft_config is not None: | |
# if model is a peft model and we have a peft_config, we merge and unload it first | |
if isinstance(model, PeftModel): | |
model = model.merge_and_unload() | |
if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False): | |
_support_gc_kwargs = hasattr( | |
args, "gradient_checkpointing_kwargs" | |
) and "gradient_checkpointing_kwargs" in list( | |
inspect.signature(prepare_model_for_kbit_training).parameters | |
) | |
prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing} | |
if _support_gc_kwargs: | |
prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs | |
model = prepare_model_for_kbit_training(model, **prepare_model_kwargs) | |
elif args.gradient_checkpointing: | |
# For backward compatibility with older versions of transformers | |
if hasattr(model, "enable_input_require_grads"): | |
model.enable_input_require_grads() | |
else: | |
def make_inputs_require_grad(module, input, output): | |
output.requires_grad_(True) | |
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
# get peft model with the given config | |
model = get_peft_model(model, peft_config) | |
if args.bf16 and getattr(model, "is_loaded_in_4bit", False): | |
peft_module_casting_to_bf16(model) | |
# If args.bf16 we need to explicitly call `generate` with torch amp autocast context manager | |
self._peft_has_been_casted_to_bf16 = True | |
# For models that use gradient_checkpointing, we need to attach a hook that enables input | |
# to explicitly have `requires_grad=True`, otherwise training will either silently | |
# fail or completely fail. | |
elif args.gradient_checkpointing: | |
# For backward compatibility with older versions of transformers | |
if hasattr(model, "enable_input_require_grads"): | |
model.enable_input_require_grads() | |
else: | |
def make_inputs_require_grad(module, input, output): | |
output.requires_grad_(True) | |
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
if args.generate_during_eval and not (is_wandb_available() or is_comet_available()): | |
raise ValueError( | |
"`generate_during_eval=True` requires Weights and Biases or Comet to be installed." | |
" Please install `wandb` or `comet-ml` to resolve." | |
) | |
if model is not None: | |
self.is_encoder_decoder = model.config.is_encoder_decoder | |
elif args.is_encoder_decoder is None: | |
raise ValueError("When no model is provided, you need to pass the parameter is_encoder_decoder.") | |
else: | |
self.is_encoder_decoder = args.is_encoder_decoder | |
if self.is_encoder_decoder: | |
self.decoder_start_token_id = model.config.decoder_start_token_id | |
self.pad_token_id = model.config.pad_token_id | |
if processing_class is None: | |
raise ValueError("processing_class must be specified to tokenize a ORPO dataset.") | |
if args.max_length is None: | |
warnings.warn( | |
"`max_length` is not set in the ORPOConfig's init" | |
" it will default to `512` by default, but you should do it yourself in the future.", | |
UserWarning, | |
) | |
max_length = 512 | |
else: | |
max_length = args.max_length | |
if args.max_prompt_length is None: | |
warnings.warn( | |
"`max_prompt_length` is not set in the ORPOConfig's init" | |
" it will default to `128` by default, but you should do it yourself in the future.", | |
UserWarning, | |
) | |
max_prompt_length = 128 | |
else: | |
max_prompt_length = args.max_prompt_length | |
if args.max_completion_length is None and self.is_encoder_decoder: | |
warnings.warn( | |
"When using an encoder decoder architecture, you should set `max_completion_length` in the ORPOConfig's init" | |
" it will default to `128` by default, but you should do it yourself in the future.", | |
UserWarning, | |
) | |
self.max_completion_length = 128 | |
else: | |
self.max_completion_length = args.max_completion_length | |
if data_collator is None: | |
data_collator = DPODataCollatorWithPadding( | |
pad_token_id=processing_class.pad_token_id, | |
label_pad_token_id=args.label_pad_token_id, | |
is_encoder_decoder=self.is_encoder_decoder, | |
) | |
if args.remove_unused_columns: | |
args.remove_unused_columns = False | |
# warn users | |
warnings.warn( | |
"When using DPODataCollatorWithPadding, you should set `remove_unused_columns=False` in your TrainingArguments" | |
" we have set it for you, but you should do it yourself in the future.", | |
UserWarning, | |
) | |
self.use_dpo_data_collator = True | |
else: | |
self.use_dpo_data_collator = False | |
# Disable dropout in the model and reference model | |
if args.disable_dropout: | |
disable_dropout_in_model(model) | |
self.max_length = max_length | |
self.generate_during_eval = args.generate_during_eval | |
self.label_pad_token_id = args.label_pad_token_id | |
self.padding_value = args.padding_value if args.padding_value is not None else processing_class.pad_token_id | |
self.max_prompt_length = max_prompt_length | |
self.truncation_mode = args.truncation_mode | |
self.processing_class = processing_class | |
self.beta = args.beta | |
self.aux_loss_enabled = getattr(model.config, "output_router_logits", False) | |
self.aux_loss_coef = getattr(model.config, "router_aux_loss_coef", 0.0) | |
if self.aux_loss_enabled and self.aux_loss_coef == 0.0: | |
warnings.warn( | |
"You set `output_router_logits` to `True` in the model config, but `router_aux_loss_coef` is set to " | |
"`0.0`, meaning the auxiliary loss will not be used. Either set `router_aux_loss_coef` to a value " | |
"greater than `0.0`, or set `output_router_logits` to `False` if you don't want to use the auxiliary " | |
"loss.", | |
UserWarning, | |
) | |
self._stored_metrics = defaultdict(lambda: defaultdict(list)) | |
# The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the | |
# input tensor associated with the key "input_ids". However, in ORPO, the sampled data does not include the | |
# "input_ids" key. Instead, the available keys are "prompt_input_ids", "chosen_input_ids", and | |
# "rejected_input_ids". As a result, the trainer issues the warning: "Could not estimate the number of tokens | |
# of the input, floating-point operations will not be computed." To suppress this warning, we set the | |
# "estimate_tokens" key in the model's "warnings_issued" dictionary to True. This acts as a flag to indicate | |
# that the warning has already been issued. | |
model.warnings_issued["estimate_tokens"] = True | |
# Compute that only on the main process for faster data processing. | |
# see: https://github.com/huggingface/trl/pull/1255 | |
with PartialState().main_process_first(): | |
# Extract the prompt if needed, and apply the chat template if needed | |
train_dataset = train_dataset.map(maybe_extract_prompt, num_proc=args.dataset_num_proc) | |
train_dataset = train_dataset.map( | |
maybe_apply_chat_template, fn_kwargs={"tokenizer": processing_class}, num_proc=args.dataset_num_proc | |
) | |
train_dataset = train_dataset.map(self.tokenize_row, num_proc=args.dataset_num_proc) | |
if eval_dataset is not None: | |
eval_dataset = eval_dataset.map(maybe_extract_prompt, num_proc=args.dataset_num_proc) | |
eval_dataset = eval_dataset.map( | |
maybe_apply_chat_template, | |
fn_kwargs={"tokenizer": processing_class}, | |
num_proc=args.dataset_num_proc, | |
) | |
eval_dataset = eval_dataset.map(self.tokenize_row, num_proc=args.dataset_num_proc) | |
super().__init__( | |
model=model, | |
args=args, | |
data_collator=data_collator, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
processing_class=processing_class, | |
model_init=model_init, | |
compute_metrics=compute_metrics, | |
callbacks=callbacks, | |
optimizers=optimizers, | |
preprocess_logits_for_metrics=preprocess_logits_for_metrics, | |
) | |
# Add tags for models that have been loaded with the correct transformers version | |
if hasattr(self.model, "add_model_tags"): | |
self.model.add_model_tags(self._tag_names) | |
if not hasattr(self, "accelerator"): | |
raise AttributeError( | |
"Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`." | |
) | |
def build_tokenized_answer(self, prompt, answer): | |
""" | |
Llama tokenizer does satisfy `enc(a + b) = enc(a) + enc(b)`. | |
It does ensure `enc(a + b) = enc(a) + enc(a + b)[len(enc(a)):]`. | |
Reference: | |
https://github.com/EleutherAI/lm-evaluation-harness/pull/531#issuecomment-1595586257 | |
""" | |
full_tokenized = self.processing_class(prompt + answer, add_special_tokens=False) | |
prompt_input_ids = self.processing_class(prompt, add_special_tokens=False)["input_ids"] | |
answer_input_ids = full_tokenized["input_ids"][len(prompt_input_ids) :] | |
answer_attention_mask = full_tokenized["attention_mask"][len(prompt_input_ids) :] | |
# Concat tokens to form `enc(a) + enc(a + b)[len(enc(a)):]` | |
full_concat_input_ids = np.concatenate([prompt_input_ids, answer_input_ids]) | |
# Prepare input tokens for token by token comparison | |
full_input_ids = np.array(full_tokenized["input_ids"]) | |
if len(full_input_ids) != len(full_concat_input_ids): | |
raise ValueError("Prompt input ids and answer input ids should have the same length.") | |
# On some tokenizers, like Llama-2 tokenizer, there are occasions where tokens | |
# can be merged together when tokenizing prompt+answer. This could result | |
# on the last token from the prompt being different when tokenized on its own | |
# vs when done as prompt+answer. | |
response_token_ids_start_idx = len(prompt_input_ids) | |
# If tokenized prompt is different than both prompt+answer, then it means the | |
# last token has changed due to merging. | |
if prompt_input_ids != full_tokenized["input_ids"][:response_token_ids_start_idx]: | |
response_token_ids_start_idx -= 1 | |
prompt_input_ids = full_tokenized["input_ids"][:response_token_ids_start_idx] | |
prompt_attention_mask = full_tokenized["attention_mask"][:response_token_ids_start_idx] | |
if len(prompt_input_ids) != len(prompt_attention_mask): | |
raise ValueError("Prompt input ids and attention mask should have the same length.") | |
answer_input_ids = full_tokenized["input_ids"][response_token_ids_start_idx:] | |
answer_attention_mask = full_tokenized["attention_mask"][response_token_ids_start_idx:] | |
return dict( | |
prompt_input_ids=prompt_input_ids, | |
prompt_attention_mask=prompt_attention_mask, | |
input_ids=answer_input_ids, | |
attention_mask=answer_attention_mask, | |
) | |
def tokenize_row(self, feature, model: Optional[Union[PreTrainedModel, nn.Module]] = None) -> dict: | |
"""Tokenize a single row from a ORPO specific dataset. | |
At this stage, we don't convert to PyTorch tensors yet; we just handle the truncation | |
in case the prompt + chosen or prompt + rejected responses is/are too long. First | |
we truncate the prompt; if we're still too long, we truncate the chosen/rejected. | |
We also create the labels for the chosen/rejected responses, which are of length equal to | |
the sum of the length of the prompt and the chosen/rejected response, with | |
label_pad_token_id for the prompt tokens. | |
""" | |
batch = {} | |
prompt = feature["prompt"] | |
chosen = feature["chosen"] | |
rejected = feature["rejected"] | |
if not self.is_encoder_decoder: | |
# Check issues below for more details | |
# 1. https://github.com/huggingface/trl/issues/907 | |
# 2. https://github.com/EleutherAI/lm-evaluation-harness/pull/531#issuecomment-1595586257 | |
# 3. https://github.com/LianjiaTech/BELLE/issues/337 | |
if not isinstance(prompt, str): | |
raise ValueError(f"prompt should be an str but got {type(prompt)}") | |
prompt_tokens = self.processing_class(prompt, add_special_tokens=False) | |
prompt_tokens = {f"prompt_{k}": v for k, v in prompt_tokens.items()} | |
if not isinstance(chosen, str): | |
raise ValueError(f"chosen should be an str but got {type(chosen)}") | |
chosen_tokens = self.build_tokenized_answer(prompt, chosen) | |
if not isinstance(rejected, str): | |
raise ValueError(f"rejected should be an str but got {type(rejected)}") | |
rejected_tokens = self.build_tokenized_answer(prompt, rejected) | |
# Last prompt token might get merged by tokenizer and | |
# it should not be included for generation if that happens | |
prompt_len_input_ids = len(prompt_tokens["prompt_input_ids"]) | |
chosen_prompt_len_input_ids = len(chosen_tokens["prompt_input_ids"]) | |
rejected_prompt_len_input_ids = len(rejected_tokens["prompt_input_ids"]) | |
prompt_len_input_ids = min(chosen_prompt_len_input_ids, rejected_prompt_len_input_ids) | |
for k, v in prompt_tokens.items(): | |
prompt_tokens[k] = v[:prompt_len_input_ids] | |
# Make sure prompts only have one different token at most an | |
# and length only differs by 1 at most | |
num_diff_tokens = sum( | |
[a != b for a, b in zip(chosen_tokens["prompt_input_ids"], rejected_tokens["prompt_input_ids"])] | |
) | |
num_diff_len = abs(chosen_prompt_len_input_ids - rejected_prompt_len_input_ids) | |
if num_diff_tokens > 1 or num_diff_len > 1: | |
raise ValueError( | |
"Chosen and rejected prompt_input_ids might only differ on the " | |
"last token due to tokenizer merge ops." | |
) | |
# add BOS token to head of prompt. Avoid adding if it's already there | |
prompt_tokens, chosen_tokens, rejected_tokens = add_bos_token_if_needed( | |
self.processing_class.bos_token_id, | |
prompt_len_input_ids, | |
prompt_tokens, | |
chosen_prompt_len_input_ids, | |
chosen_tokens, | |
rejected_prompt_len_input_ids, | |
rejected_tokens, | |
) | |
# add EOS token to end of answer. Avoid adding if it's already there | |
chosen_tokens, rejected_tokens = add_eos_token_if_needed( | |
self.processing_class.eos_token_id, chosen_tokens, rejected_tokens | |
) | |
longer_response_length = max(len(chosen_tokens["input_ids"]), len(rejected_tokens["input_ids"])) | |
# if combined sequence is too long, truncate the prompt | |
for answer_tokens in [chosen_tokens, rejected_tokens, prompt_tokens]: | |
if len(answer_tokens["prompt_input_ids"]) + longer_response_length > self.max_length: | |
if self.truncation_mode == "keep_start": | |
for k in ["prompt_input_ids", "prompt_attention_mask"]: | |
answer_tokens[k] = answer_tokens[k][: self.max_prompt_length] | |
elif self.truncation_mode == "keep_end": | |
for k in ["prompt_input_ids", "prompt_attention_mask"]: | |
answer_tokens[k] = answer_tokens[k][-self.max_prompt_length :] | |
else: | |
raise ValueError(f"Unknown truncation mode: {self.truncation_mode}") | |
# if that's still too long, truncate the response | |
for answer_tokens in [chosen_tokens, rejected_tokens]: | |
if len(answer_tokens["prompt_input_ids"]) + longer_response_length > self.max_length: | |
for k in ["input_ids", "attention_mask"]: | |
answer_tokens[k] = answer_tokens[k][: self.max_length - self.max_prompt_length] | |
# Create labels | |
chosen_sequence_tokens = { | |
k: chosen_tokens[f"prompt_{k}"] + chosen_tokens[k] for k in ["input_ids", "attention_mask"] | |
} | |
rejected_sequence_tokens = { | |
k: rejected_tokens[f"prompt_{k}"] + rejected_tokens[k] for k in ["input_ids", "attention_mask"] | |
} | |
chosen_sequence_tokens["labels"] = chosen_sequence_tokens["input_ids"][:] | |
chosen_sequence_tokens["labels"][: len(chosen_tokens["prompt_input_ids"])] = [ | |
self.label_pad_token_id | |
] * len(chosen_tokens["prompt_input_ids"]) | |
rejected_sequence_tokens["labels"] = rejected_sequence_tokens["input_ids"][:] | |
rejected_sequence_tokens["labels"][: len(rejected_tokens["prompt_input_ids"])] = [ | |
self.label_pad_token_id | |
] * len(rejected_tokens["prompt_input_ids"]) | |
for k, toks in { | |
"chosen_": chosen_sequence_tokens, | |
"rejected_": rejected_sequence_tokens, | |
"": prompt_tokens, | |
}.items(): | |
for type_key, tokens in toks.items(): | |
if type_key == "token_type_ids": | |
continue | |
batch[f"{k}{type_key}"] = tokens | |
else: | |
chosen_tokens = self.processing_class( | |
chosen, truncation=True, max_length=self.max_completion_length, add_special_tokens=True | |
) | |
rejected_tokens = self.processing_class( | |
rejected, truncation=True, max_length=self.max_completion_length, add_special_tokens=True | |
) | |
prompt_tokens = self.processing_class( | |
prompt, truncation=True, max_length=self.max_prompt_length, add_special_tokens=True | |
) | |
batch["chosen_labels"] = chosen_tokens["input_ids"] | |
batch["rejected_labels"] = rejected_tokens["input_ids"] | |
batch["prompt_input_ids"] = prompt_tokens["input_ids"] | |
batch["prompt_attention_mask"] = prompt_tokens["attention_mask"] | |
if model is not None and hasattr(model, "prepare_decoder_input_ids_from_labels"): | |
batch["rejected_decoder_input_ids"] = model.prepare_decoder_input_ids_from_labels( | |
labels=torch.tensor(batch["rejected_labels"]) | |
) | |
batch["chosen_decoder_input_ids"] = model.prepare_decoder_input_ids_from_labels( | |
labels=torch.tensor(batch["chosen_labels"]) | |
) | |
if is_torch_xla_available(): | |
# Pad the sequences to global max_length to avoid TorchXLA recompilation | |
for k in batch: | |
if "labels" in k or self.is_encoder_decoder: | |
pad_value = self.label_pad_token_id | |
elif k.endswith("_input_ids"): | |
pad_value = self.padding_value | |
elif k.endswith("_attention_mask"): | |
pad_value = 0 | |
batch[k] = batch[k] + [pad_value] * (self.max_length - len(batch[k])) | |
return batch | |
def concatenated_inputs( | |
batch: dict[str, Union[list, torch.LongTensor]], | |
is_encoder_decoder: bool = False, | |
label_pad_token_id: int = -100, | |
padding_value: int = 0, | |
device: Optional[torch.device] = None, | |
) -> dict[str, torch.LongTensor]: | |
"""Concatenate the chosen and rejected inputs into a single tensor. | |
Args: | |
batch: A batch of data. Must contain the keys 'chosen_input_ids' and 'rejected_input_ids', which are tensors of shape (batch_size, sequence_length). | |
is_encoder_decoder: Whether the model is an encoder-decoder model. | |
label_pad_token_id: The label pad token id. | |
padding_value: The padding value to use for the concatenated inputs_ids. | |
device: The device for the concatenated inputs. | |
Returns: | |
A dictionary containing the concatenated inputs under the key 'concatenated_input_ids'. | |
""" | |
concatenated_batch = {} | |
if is_encoder_decoder: | |
max_length = max(batch["chosen_labels"].shape[1], batch["rejected_labels"].shape[1]) | |
else: | |
max_length = max(batch["chosen_input_ids"].shape[1], batch["rejected_input_ids"].shape[1]) | |
for k in batch: | |
if k.startswith("chosen") and isinstance(batch[k], torch.Tensor): | |
if "labels" in k or is_encoder_decoder: | |
pad_value = label_pad_token_id | |
elif k.endswith("_input_ids"): | |
pad_value = padding_value | |
elif k.endswith("_attention_mask"): | |
pad_value = 0 | |
concatenated_key = k.replace("chosen", "concatenated") | |
concatenated_batch[concatenated_key] = pad_to_length(batch[k], max_length, pad_value=pad_value) | |
for k in batch: | |
if k.startswith("rejected") and isinstance(batch[k], torch.Tensor): | |
if "labels" in k or is_encoder_decoder: | |
pad_value = label_pad_token_id | |
elif k.endswith("_input_ids"): | |
pad_value = padding_value | |
elif k.endswith("_attention_mask"): | |
pad_value = 0 | |
concatenated_key = k.replace("rejected", "concatenated") | |
concatenated_batch[concatenated_key] = torch.cat( | |
( | |
concatenated_batch[concatenated_key], | |
pad_to_length(batch[k], max_length, pad_value=pad_value), | |
), | |
dim=0, | |
).to(device=device) | |
if is_encoder_decoder: | |
concatenated_batch["concatenated_input_ids"] = batch["prompt_input_ids"].repeat(2, 1).to(device=device) | |
concatenated_batch["concatenated_attention_mask"] = ( | |
batch["prompt_attention_mask"].repeat(2, 1).to(device=device) | |
) | |
return concatenated_batch | |
def odds_ratio_loss( | |
self, | |
policy_chosen_logps: torch.FloatTensor, | |
policy_rejected_logps: torch.FloatTensor, | |
) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: | |
"""Compute ORPO's odds ratio (OR) loss for a batch of policy and reference model log probabilities. | |
Args: | |
policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (batch_size,) | |
policy_rejected_logps: Log probabilities of the policy model for the rejected responses. Shape: (batch_size,) | |
Returns: | |
A tuple of three tensors: (losses, chosen_rewards, rejected_rewards). | |
The losses tensor contains the ORPO loss for each example in the batch. | |
The chosen_rewards and rejected_rewards tensors contain the rewards for the chosen and rejected responses, respectively. | |
The log odds ratio of the chosen responses over the rejected responses ratio for logging purposes. | |
The `log(sigmoid(log_odds_chosen))` for logging purposes. | |
""" | |
# Derived from Eqs. (4) and (7) from https://huggingface.co/papers/2403.07691 by using log identities and exp(log(P(y|x)) = P(y|x) | |
log_odds = (policy_chosen_logps - policy_rejected_logps) - ( | |
torch.log1p(-torch.exp(policy_chosen_logps)) - torch.log1p(-torch.exp(policy_rejected_logps)) | |
) | |
ratio = F.logsigmoid(log_odds) | |
losses = self.beta * ratio | |
chosen_rewards = self.beta * (policy_chosen_logps.to(self.accelerator.device)).detach() | |
rejected_rewards = self.beta * (policy_rejected_logps.to(self.accelerator.device)).detach() | |
return losses, chosen_rewards, rejected_rewards, torch.mean(ratio), torch.mean(log_odds) | |
def get_batch_logps( | |
logits: torch.FloatTensor, | |
labels: torch.LongTensor, | |
average_log_prob: bool = False, | |
label_pad_token_id: int = -100, | |
is_encoder_decoder: bool = False, | |
) -> torch.FloatTensor: | |
"""Compute the log probabilities of the given labels under the given logits. | |
Args: | |
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, vocab_size) | |
labels: Labels for which to compute the log probabilities. Label tokens with a value of label_pad_token_id are ignored. Shape: (batch_size, sequence_length) | |
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens. | |
label_pad_token_id: The label pad token id. | |
is_encoder_decoder: Whether the model is an encoder-decoder model. | |
Returns: | |
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits. | |
""" | |
if logits.shape[:-1] != labels.shape: | |
raise ValueError("Logits (batch and sequence length dim) and labels must have the same shape.") | |
if not is_encoder_decoder: | |
labels = labels[:, 1:].clone() | |
logits = logits[:, :-1, :] | |
loss_mask = labels != label_pad_token_id | |
# dummy token; we'll ignore the losses on these tokens later | |
labels = torch.where(labels == label_pad_token_id, 0, labels) | |
per_token_logps = selective_log_softmax(logits, labels) | |
if average_log_prob: | |
return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1) | |
else: | |
return (per_token_logps * loss_mask).sum(-1) | |
def concatenated_forward( | |
self, model: nn.Module, batch: dict[str, Union[list, torch.LongTensor]] | |
) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: | |
"""Run the given model on the given batch of inputs, concatenating the chosen and rejected inputs together. | |
We do this to avoid doing two forward passes, because it's faster for FSDP. | |
""" | |
concatenated_batch = self.concatenated_inputs( | |
batch, | |
is_encoder_decoder=self.is_encoder_decoder, | |
label_pad_token_id=self.label_pad_token_id, | |
padding_value=self.padding_value, | |
device=self.accelerator.device, | |
) | |
len_chosen = batch["chosen_labels"].shape[0] | |
model_kwargs = ( | |
{ | |
"decoder_input_ids": self._shift_right(concatenated_batch["concatenated_labels"]), | |
} | |
if self.is_encoder_decoder | |
else {} | |
) | |
if self.aux_loss_enabled: | |
model_kwargs["output_router_logits"] = True | |
outputs = model( | |
concatenated_batch["concatenated_input_ids"], | |
attention_mask=concatenated_batch["concatenated_attention_mask"], | |
use_cache=False, | |
**model_kwargs, | |
) | |
all_logits = outputs.logits | |
def cross_entropy_loss(logits, labels): | |
if not self.is_encoder_decoder: | |
# Shift so that tokens < n predict n | |
logits = logits[..., :-1, :].contiguous() | |
labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = nn.CrossEntropyLoss() | |
logits = logits.view(-1, logits.shape[-1]) | |
labels = labels.view(-1) | |
# Enable model parallelism | |
labels = labels.to(logits.device) | |
loss = loss_fct(logits, labels) | |
return loss | |
if self.is_encoder_decoder: | |
labels = concatenated_batch["concatenated_labels"].clone() | |
else: | |
labels = concatenated_batch["concatenated_input_ids"].clone() | |
attention_mask = concatenated_batch["concatenated_attention_mask"] | |
labels = torch.where(attention_mask == 1, labels, self.label_pad_token_id) | |
# orpo chosen nll loss is computed over the full prompt and response | |
chosen_nll_loss = cross_entropy_loss(all_logits[:len_chosen], labels[:len_chosen]) | |
all_logps = self.get_batch_logps( | |
all_logits, | |
concatenated_batch["concatenated_labels"], | |
average_log_prob=True, | |
is_encoder_decoder=self.is_encoder_decoder, | |
label_pad_token_id=self.label_pad_token_id, | |
) | |
chosen_logps = all_logps[:len_chosen] | |
rejected_logps = all_logps[len_chosen:] | |
if not self.is_encoder_decoder: | |
chosen_logits = all_logits[:len_chosen, :-1, :] | |
rejected_logits = all_logits[len_chosen:, :-1, :] | |
else: | |
chosen_logits = all_logits[:len_chosen] | |
rejected_logits = all_logits[len_chosen:] | |
if self.aux_loss_enabled: | |
return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_nll_loss, outputs.aux_loss) | |
return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_nll_loss) | |
def get_batch_loss_metrics( | |
self, | |
model, | |
batch: dict[str, Union[list, torch.LongTensor]], | |
train_eval: Literal["train", "eval"] = "train", | |
): | |
"""Compute the ORPO loss and other metrics for the given batch of inputs for train or test.""" | |
metrics = {} | |
forward_output = self.concatenated_forward(model, batch) | |
( | |
policy_chosen_logps, | |
policy_rejected_logps, | |
policy_chosen_logits, | |
policy_rejected_logits, | |
policy_nll_loss, | |
) = forward_output[:5] | |
if self.aux_loss_enabled: | |
aux_loss = forward_output[5] | |
losses, chosen_rewards, rejected_rewards, log_odds_ratio, log_odds_chosen = self.odds_ratio_loss( | |
policy_chosen_logps, policy_rejected_logps | |
) | |
# full ORPO loss | |
loss = policy_nll_loss - losses.mean() | |
reward_accuracies = (chosen_rewards > rejected_rewards).float() | |
prefix = "eval_" if train_eval == "eval" else "" | |
metrics[f"{prefix}rewards/chosen"] = self.accelerator.gather_for_metrics(chosen_rewards).mean() | |
metrics[f"{prefix}rewards/rejected"] = self.accelerator.gather_for_metrics(rejected_rewards).mean() | |
metrics[f"{prefix}rewards/accuracies"] = self.accelerator.gather_for_metrics(reward_accuracies).mean() | |
metrics[f"{prefix}rewards/margins"] = self.accelerator.gather_for_metrics( | |
chosen_rewards - rejected_rewards | |
).mean() | |
metrics[f"{prefix}logps/rejected"] = self.accelerator.gather_for_metrics(policy_rejected_logps).detach().mean() | |
metrics[f"{prefix}logps/chosen"] = self.accelerator.gather_for_metrics(policy_chosen_logps).detach().mean() | |
metrics[f"{prefix}logits/rejected"] = self.accelerator.gather_for_metrics( | |
policy_rejected_logits.detach().mean() | |
).mean() | |
metrics[f"{prefix}logits/chosen"] = self.accelerator.gather_for_metrics( | |
policy_chosen_logits.detach().mean() | |
).mean() | |
metrics[f"{prefix}nll_loss"] = self.accelerator.gather_for_metrics(policy_nll_loss).detach().mean() | |
metrics[f"{prefix}log_odds_ratio"] = self.accelerator.gather_for_metrics(log_odds_ratio).detach().mean() | |
metrics[f"{prefix}log_odds_chosen"] = self.accelerator.gather_for_metrics(log_odds_chosen).detach().mean() | |
if is_torch_xla_available(): | |
xm.mark_step() # needed because .item() calls | |
for k, v in metrics.items(): | |
metrics[k] = v.item() | |
if self.aux_loss_enabled: | |
loss += self.aux_loss_coef * aux_loss | |
return loss, metrics | |
def compute_loss( | |
self, | |
model: Union[PreTrainedModel, nn.Module], | |
inputs: dict[str, Union[torch.Tensor, Any]], | |
return_outputs=False, | |
num_items_in_batch=None, | |
) -> Union[torch.Tensor, tuple[torch.Tensor, dict[str, torch.Tensor]]]: | |
compute_loss_context_manager = ( | |
autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext() | |
) | |
with compute_loss_context_manager: | |
loss, metrics = self.get_batch_loss_metrics(model, inputs, train_eval="train") | |
# Make sure to move the loss to the device the original accumulating loss is at back in the `Trainer` class: | |
loss = loss.to(self.args.device) | |
# force log the metrics | |
self.store_metrics(metrics, train_eval="train") | |
if return_outputs: | |
return (loss, metrics) | |
return loss | |
def generate_from_model(self, model, batch: dict[str, torch.LongTensor]) -> str: | |
"""Generate samples from the model and reference model for the given batch of inputs.""" | |
# If one uses `generate_during_eval` with peft + bf16, we need to explicitly call generate with | |
# the torch amp context manager as some hidden states are silently casted to full precision. | |
generate_context_manager = ( | |
autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext() | |
) | |
with generate_context_manager: | |
policy_output = model.generate( | |
input_ids=batch["prompt_input_ids"], | |
attention_mask=batch["prompt_attention_mask"], | |
max_length=self.max_length, | |
do_sample=True, | |
pad_token_id=self.processing_class.pad_token_id, | |
) | |
policy_output = pad_to_length(policy_output, self.max_length, self.processing_class.pad_token_id) | |
policy_output_decoded = self.processing_class.batch_decode(policy_output, skip_special_tokens=True) | |
return policy_output_decoded | |
def prediction_step( | |
self, | |
model: Union[PreTrainedModel, nn.Module], | |
inputs: dict[str, Union[torch.Tensor, Any]], | |
prediction_loss_only: bool, | |
ignore_keys: Optional[list[str]] = None, | |
): | |
if not self.use_dpo_data_collator: | |
warnings.warn( | |
"prediction_step is only implemented for DPODataCollatorWithPadding, and you passed a datacollator that is different than " | |
"DPODataCollatorWithPadding - you might see unexpected behavior. Alternatively, you can implement your own prediction_step method if you are using a custom data collator" | |
) | |
if ignore_keys is None: | |
if hasattr(model, "config"): | |
ignore_keys = getattr(model.config, "keys_to_ignore_at_inference", []) | |
else: | |
ignore_keys = [] | |
prediction_context_manager = ( | |
autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext() | |
) | |
with torch.no_grad(), prediction_context_manager: | |
loss, metrics = self.get_batch_loss_metrics(model, inputs, train_eval="eval") | |
# force log the metrics | |
self.store_metrics(metrics, train_eval="eval") | |
if prediction_loss_only: | |
return (loss.detach(), None, None) | |
# logits for the chosen and rejected samples from model | |
logits_dict = { | |
"eval_logits/chosen": metrics["eval_logits/chosen"], | |
"eval_logits/rejected": metrics["eval_logits/rejected"], | |
} | |
logits = [v for k, v in logits_dict.items() if k not in ignore_keys] | |
logits = torch.tensor(logits, device=self.accelerator.device) | |
labels = torch.zeros(logits.shape[0], device=self.accelerator.device) | |
return (loss.detach(), logits, labels) | |
def store_metrics(self, metrics: dict[str, float], train_eval: Literal["train", "eval"] = "train") -> None: | |
for key, value in metrics.items(): | |
self._stored_metrics[train_eval][key].append(value) | |
def evaluation_loop( | |
self, | |
dataloader: DataLoader, | |
description: str, | |
prediction_loss_only: Optional[bool] = None, | |
ignore_keys: Optional[list[str]] = None, | |
metric_key_prefix: str = "eval", | |
) -> EvalLoopOutput: | |
""" | |
Overriding built-in evaluation loop to store metrics for each batch. | |
Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`. | |
Works both with or without labels. | |
""" | |
# Sample and save to game log if requested (for one batch to save time) | |
if self.generate_during_eval: | |
# Generate random indices within the range of the total number of samples | |
num_samples = len(dataloader.dataset) | |
random_indices = random.sample(range(num_samples), k=self.args.eval_batch_size) | |
# Use dataloader.dataset.select to get the random batch without iterating over the DataLoader | |
random_batch_dataset = dataloader.dataset.select(random_indices) | |
random_batch = self.data_collator(random_batch_dataset) | |
random_batch = self._prepare_inputs(random_batch) | |
policy_output_decoded = self.generate_from_model(self.model, random_batch) | |
table = pd.DataFrame( | |
columns=["Prompt", "Policy"], | |
data=[ | |
[prompt, pol[len(prompt) :]] for prompt, pol in zip(random_batch["prompt"], policy_output_decoded) | |
], | |
) | |
if "wandb" in self.args.report_to: | |
wandb.log({"game_log": wandb.Table(data=table)}) | |
if "comet_ml" in self.args.report_to: | |
log_table_to_comet_experiment( | |
name="game_log.csv", | |
table=table, | |
) | |
# Base evaluation | |
initial_output = super().evaluation_loop( | |
dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix | |
) | |
return initial_output | |
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None: | |
""" | |
Log `logs` on the various objects watching training, including stored metrics. | |
Args: | |
logs (`dict[str, float]`): | |
The values to log. | |
start_time (`float` or `None`, *optional*, defaults to `None`): | |
Start time of the training. | |
""" | |
# logs either has 'loss' or 'eval_loss' | |
train_eval = "train" if "loss" in logs else "eval" | |
# Add averaged stored metrics to logs | |
for key, metrics in self._stored_metrics[train_eval].items(): | |
logs[key] = torch.tensor(metrics).mean().item() | |
del self._stored_metrics[train_eval] | |
return super().log(logs, start_time) | |
def _shift_right(self, input_ids): | |
if self.decoder_start_token_id is None: | |
raise ValueError( | |
"model.config.decoder_start_token_id has to be defined. It is usually set to the pad_token_id." | |
) | |
# shift inputs to the right | |
if is_torch_fx_proxy(input_ids): | |
# Item assignment is not supported natively for proxies. | |
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), self.decoder_start_token_id) | |
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) | |
else: | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() | |
shifted_input_ids[..., 0] = self.decoder_start_token_id | |
if self.pad_token_id is None: | |
raise ValueError("model.config.pad_token_id has to be defined.") | |
# replace possible -100 values in labels by `pad_token_id` | |
shifted_input_ids.masked_fill_(shifted_input_ids == -100, self.pad_token_id) | |
return shifted_input_ids | |
# Ensure the model card is saved along with the checkpoint | |
def _save_checkpoint(self, model, trial): | |
if self.args.hub_model_id is None: | |
model_name = Path(self.args.output_dir).name | |
else: | |
model_name = self.args.hub_model_id.split("/")[-1] | |
self.create_model_card(model_name=model_name) | |
super()._save_checkpoint(model, trial) | |
def create_model_card( | |
self, | |
model_name: Optional[str] = None, | |
dataset_name: Optional[str] = None, | |
tags: Union[str, list[str], None] = None, | |
): | |
""" | |
Creates a draft of a model card using the information available to the `Trainer`. | |
Args: | |
model_name (`str` or `None`, *optional*, defaults to `None`): | |
Name of the model. | |
dataset_name (`str` or `None`, *optional*, defaults to `None`): | |
Name of the dataset used for training. | |
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): | |
Tags to be associated with the model card. | |
""" | |
if not self.is_world_process_zero(): | |
return | |
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): | |
base_model = self.model.config._name_or_path | |
else: | |
base_model = None | |
tags = tags or set() | |
if isinstance(tags, str): | |
tags = {tags} | |
if hasattr(self.model.config, "unsloth_version"): | |
tags.add("unsloth") | |
tags.update(self._tag_names) | |
citation = textwrap.dedent("""\ | |
@article{hong2024orpo, | |
title = {{ORPO: Monolithic Preference Optimization without Reference Model}}, | |
author = {Jiwoo Hong and Noah Lee and James Thorne}, | |
year = 2024, | |
eprint = {arXiv:2403.07691} | |
}""") | |
model_card = generate_model_card( | |
base_model=base_model, | |
model_name=model_name, | |
hub_model_id=self.hub_model_id, | |
dataset_name=dataset_name, | |
tags=tags, | |
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, | |
comet_url=get_comet_experiment_url(), | |
trainer_name="ORPO", | |
trainer_citation=citation, | |
paper_title="ORPO: Monolithic Preference Optimization without Reference Model", | |
paper_id="2403.07691", | |
) | |
model_card.save(os.path.join(self.args.output_dir, "README.md")) | |