Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import os | |
import textwrap | |
import warnings | |
from itertools import chain | |
from pathlib import Path | |
from typing import Callable, Optional, Union | |
import torch | |
import torch.nn as nn | |
from accelerate import PartialState | |
from datasets import Dataset, features | |
from transformers import ( | |
BaseImageProcessor, | |
DataCollator, | |
DataCollatorForTokenClassification, | |
FeatureExtractionMixin, | |
PreTrainedModel, | |
PreTrainedTokenizerBase, | |
ProcessorMixin, | |
Trainer, | |
is_wandb_available, | |
) | |
from transformers.trainer_callback import TrainerCallback | |
from transformers.trainer_utils import EvalPrediction | |
from transformers.utils import is_peft_available | |
from .prm_config import PRMConfig | |
from .utils import compute_accuracy, disable_dropout_in_model, generate_model_card | |
if is_peft_available(): | |
from peft import PeftModel, get_peft_model, prepare_model_for_kbit_training | |
if is_wandb_available(): | |
import wandb | |
class PRMTrainer(Trainer): | |
""" | |
Initialize PRMTrainer. | |
Args: | |
model (`transformers.PreTrainedModel`): | |
The model to train, preferably an `AutoModelForTokenClassification`. | |
args (`PRMConfig`): | |
The arguments to use for training. | |
data_collator (`transformers.DataCollator`): | |
The data collator to use for training. If None is specified, the default data collator (`DataCollatorForTokenClassification`) will be used | |
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. | |
train_dataset (`datasets.Dataset`): | |
The dataset to use for training. | |
eval_dataset (`datasets.Dataset`): | |
The dataset to use for evaluation. | |
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*): | |
Processing class used to process the data. If provided, will be used to automatically process the inputs | |
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or | |
reuse the fine-tuned model. | |
model_init (`Callable[[], transformers.PreTrainedModel]`): | |
The model initializer to use for training. If None is specified, the default model initializer will be used. | |
compute_metrics (`Callable[[transformers.EvalPrediction], dict]`, *optional* defaults to `compute_accuracy`): | |
The metrics to use for evaluation. If no metrics are specified, the default metric (`compute_accuracy`) will be used. | |
callbacks (`list[transformers.TrainerCallback]`): | |
The callbacks to use for training. | |
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): | |
The optimizer and scheduler to use for training. | |
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): | |
The function to use to preprocess the logits before computing the metrics. | |
peft_config (`dict`, defaults to `None`): | |
The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in a PEFT model. | |
""" | |
_tag_names = ["trl", "prm"] | |
def __init__( | |
self, | |
model: Optional[Union[PreTrainedModel, nn.Module]] = None, | |
args: Optional[PRMConfig] = None, | |
data_collator: Optional[DataCollator] = None, | |
train_dataset: Optional[Dataset] = None, | |
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, | |
processing_class: Optional[ | |
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] | |
] = None, | |
model_init: Optional[Callable[[], PreTrainedModel]] = None, | |
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, | |
callbacks: Optional[list[TrainerCallback]] = None, | |
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = ( | |
None, | |
None, | |
), | |
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, | |
peft_config: Optional[dict] = None, | |
): | |
if not is_peft_available() and peft_config is not None: | |
raise ValueError( | |
"PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models" | |
) | |
elif is_peft_available() and peft_config is not None: | |
if not isinstance(model, PeftModel): | |
if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_quantized", False): | |
_supports_gc_kwargs = "gradient_checkpointing_kwargs" in list( | |
inspect.signature(prepare_model_for_kbit_training).parameters | |
) | |
prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing} | |
if not _supports_gc_kwargs and args.gradient_checkpointing_kwargs is not None: | |
warnings.warn( | |
"You passed `gradient_checkpointing_kwargs` in the trainer's kwargs, but your peft version does not support it. " | |
"please update to the latest version of peft to use `gradient_checkpointing_kwargs`." | |
) | |
elif _supports_gc_kwargs and args.gradient_checkpointing_kwargs is not None: | |
prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs | |
model = prepare_model_for_kbit_training(model, **prepare_model_kwargs) | |
model = get_peft_model(model, peft_config) | |
# Disable dropout in the model | |
if args.disable_dropout: | |
disable_dropout_in_model(model) | |
if compute_metrics is None: | |
compute_metrics = compute_accuracy | |
if data_collator is None: | |
if processing_class is None: | |
raise ValueError( | |
"A processing_class must be specified when using the default DataCollatorForTokenClassification" | |
) | |
data_collator = DataCollatorForTokenClassification(processing_class, max_length=args.max_length) | |
if "input_ids" not in train_dataset.column_names: | |
with PartialState().main_process_first(): | |
fn_kwargs = { | |
"tokenizer": processing_class, | |
"step_separator": args.step_separator, | |
"max_length": args.max_length, | |
"max_prompt_length": args.max_prompt_length, | |
"max_completion_length": args.max_completion_length, | |
"train_on_last_step_only": args.train_on_last_step_only, | |
} | |
train_fn_kwargs = {**fn_kwargs, "is_eval": False} | |
train_dataset = train_dataset.map( | |
self.tokenize_row, | |
fn_kwargs=train_fn_kwargs, | |
num_proc=args.dataset_num_proc, | |
remove_columns=train_dataset.features, | |
desc="Tokenizing train dataset", | |
features=features.Features( # needed to avoid map to cast labels to bool | |
{ | |
"labels": features.Sequence(features.Value("int64")), | |
"input_ids": features.Sequence(features.Value("int64")), | |
} | |
), | |
) | |
eval_fn_kwargs = {**fn_kwargs, "is_eval": True} | |
if eval_dataset is not None: | |
eval_dataset = eval_dataset.map( | |
self.tokenize_row, | |
fn_kwargs=eval_fn_kwargs, | |
num_proc=args.dataset_num_proc, | |
remove_columns=eval_dataset.features, | |
desc="Tokenizing eval dataset", | |
features=features.Features( # needed to avoid map to cast labels to bool | |
{ | |
"labels": features.Sequence(features.Value("int64")), | |
"input_ids": features.Sequence(features.Value("int64")), | |
} | |
), | |
) | |
super().__init__( | |
model=model, | |
args=args, | |
data_collator=data_collator, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
processing_class=processing_class, | |
model_init=model_init, | |
compute_metrics=compute_metrics, | |
callbacks=callbacks, | |
optimizers=optimizers, | |
preprocess_logits_for_metrics=preprocess_logits_for_metrics, | |
) | |
# Add tags for models that have been loaded with the correct transformers version | |
if hasattr(self.model, "add_model_tags"): | |
self.model.add_model_tags(self._tag_names) | |
def tokenize_row( | |
features, | |
tokenizer, | |
step_separator, | |
max_length, | |
max_prompt_length, | |
max_completion_length, | |
train_on_last_step_only, | |
is_eval, | |
): | |
r""" | |
Tokenize a row of the dataset. | |
Args: | |
features (`dict[str, str]`): | |
Row of the dataset, should contain the keys `"prompt"`, `"completions"`, and `"labels"`. | |
tokenizer (`PreTrainedTokenizerBase`): | |
Tokenizer used to process the data. | |
step_separator (`str`): | |
Separator between steps in the completion. | |
max_length (`int` or `None`): | |
Maximum length of the sequences (prompt + completion). If `None`, the sequences are not truncated. | |
max_prompt_length (`int` or `None`): | |
Maximum length of the prompt. If `None`, the prompt is not truncated. | |
max_completion_length (`int` or `None`): | |
Maximum length of the completion sequences. If `None`, the completion sequences are not truncated. | |
train_on_last_step_only (`bool`): | |
Whether to train only on the last step. If `True`, the labels are `-100` for all tokens except the last | |
token of the completion. | |
is_eval (`bool`): | |
Whether the function is used to tokenize samples from a training or an evaluation dataset. Used only if `train_on_last_step_only` is set to `True`. | |
Returns: | |
`dict[str, list[int]]`: | |
Tokenized sequences with the keys `"input_ids"`, and `"labels". | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer | |
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B") | |
>>> features = {"prompt": "Which number is larger, 9.8 or 9.11?", | |
... "completions": ["11 is greater than 8.", | |
... "Hence, 9.11 > 9.8."], | |
... "labels": [True, False]} | |
>>> PRMTrainer.tokenize_row(features, tokenizer, "\n", max_completion_length=None, train_on_last_step_only=False, is_eval=False) | |
{'input_ids': [23085, 1372, 374, 8131, 11, 220, 24, 13, 23, 476, 220, 24, 13, 16, 16, 30, 16, 16, 374, 7046, 1091, 220, 23, 13, 198, 39, 763, 11, 220, 24, 13, 16, 16, 861, 220, 24, 13, 23, 13, 198], | |
'labels': [-100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0]} | |
``` | |
""" | |
# Tokenize the prompt and completions | |
prompt_ids = tokenizer(features["prompt"], add_special_tokens=False)["input_ids"] | |
completions_ids = [ | |
tokenizer(completion, add_special_tokens=False)["input_ids"] for completion in features["completions"] | |
] | |
if train_on_last_step_only and not is_eval: | |
labels = [-100] * (len(features["labels"]) - 1) + [int(features["labels"][-1])] | |
else: | |
labels = [int(label) for label in features["labels"]] | |
# Get the ID of the separator token and add it to the completions | |
separator_ids = tokenizer.encode(step_separator, add_special_tokens=False) | |
completions_ids = [completion + separator_ids for completion in completions_ids] | |
# Create the label | |
labels = [[-100] * (len(completion) - 1) + [label] for completion, label in zip(completions_ids, labels)] | |
# Join the completions and labels steps | |
completion_ids = list(chain(*completions_ids)) | |
labels = list(chain(*labels)) | |
if tokenizer.bos_token_id is not None: | |
prompt_ids = [tokenizer.bos_token_id] + prompt_ids | |
# Truncate prompt and completion sequences | |
if max_prompt_length is not None: | |
prompt_ids = prompt_ids[-max_prompt_length:] | |
if max_completion_length is not None: | |
completion_ids = completion_ids[:max_completion_length] | |
labels = labels[:max_completion_length] | |
input_ids = prompt_ids + completion_ids | |
labels = [-100] * len(prompt_ids) + labels | |
if max_length is not None: | |
input_ids = input_ids[:max_length] | |
labels = labels[:max_length] | |
return {"input_ids": input_ids, "labels": labels} | |
# Ensure the model card is saved along with the checkpoint | |
def _save_checkpoint(self, model, trial): | |
if self.args.hub_model_id is None: | |
model_name = Path(self.args.output_dir).name | |
else: | |
model_name = self.args.hub_model_id.split("/")[-1] | |
self.create_model_card(model_name=model_name) | |
super()._save_checkpoint(model, trial) | |
def create_model_card( | |
self, | |
model_name: Optional[str] = None, | |
dataset_name: Optional[str] = None, | |
tags: Union[str, list[str], None] = None, | |
): | |
""" | |
Creates a draft of a model card using the information available to the `Trainer`. | |
Args: | |
model_name (`str` or `None`, *optional*, defaults to `None`): | |
Name of the model. | |
dataset_name (`str` or `None`, *optional*, defaults to `None`): | |
Name of the dataset used for training. | |
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): | |
Tags to be associated with the model card. | |
""" | |
if not self.is_world_process_zero(): | |
return | |
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): | |
base_model = self.model.config._name_or_path | |
else: | |
base_model = None | |
tags = tags or set() | |
if isinstance(tags, str): | |
tags = {tags} | |
if hasattr(self.model.config, "unsloth_version"): | |
tags.add("unsloth") | |
tags.update(self._tag_names) | |
citation = textwrap.dedent("""\ | |
@article{uesato2022solving, | |
title = {{Solving Math Word Problems With Process- and Outcome-Based Feedback}}, | |
author = {Uesato, Jonathan and Kushman, Nate and Kumar, Ramana and Song, Francis and Siegel, Noah and Wang, Lisa and Creswell, Antonia and Irving, Geoffrey and Higgins, Irina}, | |
year = 2022, | |
journal = {arXiv preprint arXiv:2211.14275} | |
}""") | |
model_card = generate_model_card( | |
base_model=base_model, | |
model_name=model_name, | |
hub_model_id=self.hub_model_id, | |
dataset_name=dataset_name, | |
tags=tags, | |
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, | |
trainer_name="PRM", | |
trainer_citation=citation, | |
paper_title="Solving math word problems with process-and outcome-based feedback", | |
) | |
model_card.save(os.path.join(self.args.output_dir, "README.md")) | |