trl-sandbox / trl /trainer /rloo_trainer.py
ivangabriele's picture
feat: initialize project
2f5127c verified
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import math
import os
import textwrap
import time
from collections import defaultdict
from pathlib import Path
from typing import Callable, Optional, Union
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from accelerate import Accelerator
from accelerate.utils import broadcast, gather_object
from datasets import Dataset
from torch.utils.data import DataLoader
from transformers import (
BaseImageProcessor,
DataCollatorWithPadding,
FeatureExtractionMixin,
GenerationConfig,
PreTrainedTokenizerBase,
ProcessorMixin,
Trainer,
TrainerCallback,
TrainerControl,
is_wandb_available,
)
from transformers.integrations import get_reporting_integration_callbacks
from transformers.trainer import DEFAULT_CALLBACKS, DEFAULT_PROGRESS_CALLBACK
from transformers.trainer_callback import CallbackHandler, ExportableState, PrinterCallback
from transformers.utils import is_rich_available
from ..models.utils import unwrap_model_for_generation
from ..trainer.utils import (
OnlineTrainerState,
batch_generation,
disable_dropout_in_model,
exact_div,
first_true_indices,
forward,
get_reward,
prepare_deepspeed,
print_rich_table,
selective_log_softmax,
truncate_response,
)
from .rloo_config import RLOOConfig
from .utils import empty_cache, generate_model_card, get_comet_experiment_url, log_table_to_comet_experiment
if is_wandb_available():
import wandb
INVALID_LOGPROB = 1.0
class RLOOTrainer(Trainer):
_tag_names = ["trl", "rloo"]
def __init__(
self,
config: RLOOConfig,
processing_class: Optional[
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
],
policy: nn.Module,
ref_policy: nn.Module,
reward_model: Union[nn.Module, Callable[[list[str]], list[float]]],
train_dataset: Dataset,
data_collator: Optional[DataCollatorWithPadding] = None,
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
# less commonly used
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
callbacks: Optional[list[TrainerCallback]] = None,
) -> None:
if ref_policy is policy:
raise ValueError(
"`policy` and `ref_policy` cannot be the same object. If you want `ref_policy` to be the "
"same as `policy`, you must mass a copy of it, or `None` if you use peft."
)
self.args = config
args = config
self.processing_class = processing_class
self.policy = policy
# Define the collator if not provided
if data_collator is None:
data_collator = DataCollatorWithPadding(self.processing_class)
self.policy.generation_config.eos_token_id = (
None # disable `pad_token_id` and `eos_token_id` because we just want to
)
self.policy.generation_config.pad_token_id = None # generate tokens without truncation / padding
self.ref_policy = ref_policy
self.reward_model = reward_model
self.train_dataset = train_dataset
self.train_dataset_len = len(train_dataset)
self.data_collator = data_collator
self.eval_dataset = eval_dataset
self.optimizer, self.lr_scheduler = optimizers
self.optimizer_cls_and_kwargs = None # needed for transformers >= 4.47
#########
# calculate various batch sizes
#########
if args.total_episodes is None: # allow the users to define episodes in terms of epochs.
args.total_episodes = int(args.num_train_epochs * self.train_dataset_len)
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps)
self.accelerator = accelerator
args.world_size = accelerator.num_processes
args.local_batch_size = (
args.per_device_train_batch_size * args.gradient_accumulation_steps * args.num_mini_batches
)
args.micro_batch_size = int(args.per_device_train_batch_size * args.world_size)
args.batch_size = int(args.local_batch_size * args.world_size)
args.mini_batch_size = exact_div(
args.batch_size, args.num_mini_batches, "`batch_size` must be a multiple of `num_mini_batches`"
)
args.local_mini_batch_size = exact_div(
args.local_batch_size, args.num_mini_batches, "`local_batch_size` must be a multiple of `num_mini_batches`"
)
args.num_total_batches = math.ceil(
args.total_episodes / args.batch_size
) # we may train for more than `total_episodes`
time_tensor = torch.tensor(int(time.time()), device=accelerator.device)
time_int = broadcast(time_tensor, 0).item() # avoid different timestamps across processes
args.run_name = f"{args.exp_name}__{args.seed}__{time_int}"
self.local_seed = args.seed + accelerator.process_index * 100003 # Prime
if args.num_sample_generations > 0:
self.sample_generations_freq = max(1, args.num_total_batches // args.num_sample_generations)
self.local_dataloader_batch_size = exact_div(
args.local_batch_size, args.rloo_k, "`local_batch_size` must be a multiple of rloo_k"
) # RLOO logic: needed because RLOO repeats the same prompt args.rloo_k times
#########
# setup model, optimizer, and others
#########
for module in [policy, ref_policy, reward_model]:
if isinstance(module, nn.Module):
disable_dropout_in_model(module)
if args.stop_token and args.stop_token == "eos":
args.stop_token_id = self.processing_class.eos_token_id
self.model = policy
self.create_optimizer_and_scheduler(
num_training_steps=args.num_total_batches
) # note that we are calling `self.lr_scheduler.step()` manually only at the batch level
#########
### trainer specifics
#########
default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to)
self.callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
self.callback_handler = CallbackHandler(
self.callbacks, self.model, self.processing_class, self.optimizer, self.lr_scheduler
)
self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)
self.control = TrainerControl()
self.state = OnlineTrainerState(
is_local_process_zero=self.is_local_process_zero(),
is_world_process_zero=self.is_world_process_zero(),
stateful_callbacks=[
cb for cb in self.callback_handler.callbacks + [self.control] if isinstance(cb, ExportableState)
],
)
self.current_flos = 0
self.hp_search_backend = None
self.is_deepspeed_enabled = getattr(self.accelerator.state, "deepspeed_plugin", None) is not None
self.is_fsdp_enabled = getattr(self.accelerator.state, "fsdp_plugin", None) is not None
# Create distant repo and output directory if needed
self.hub_model_id = None
if self.args.push_to_hub:
self.init_hf_repo()
if self.args.should_save:
os.makedirs(self.args.output_dir, exist_ok=True)
self.backup_model = None
# Add tags for models that have been loaded with the correct transformers version
if hasattr(self.model, "add_model_tags"):
self.model.add_model_tags(self._tag_names)
#########
### setup dataloader
#########
self.dataloader = DataLoader(
self.train_dataset,
batch_size=self.local_dataloader_batch_size,
shuffle=True,
collate_fn=self.data_collator,
drop_last=True, # needed; otherwise the last batch will be of ragged shape
)
# sync random states for DataLoader(shuffle=True) before `accelerator.prepare`
# see https://gist.github.com/vwxyzjn/2581bff1e48e185e0b85b6dfe1def79c
torch.manual_seed(args.seed)
self.model, self.optimizer, self.dataloader = accelerator.prepare(self.model, self.optimizer, self.dataloader)
torch.manual_seed(self.local_seed) # reset the local seed again
self.eval_dataloader = DataLoader(
self.eval_dataset,
batch_size=args.per_device_eval_batch_size,
collate_fn=self.data_collator,
drop_last=True,
) # no need to shuffle eval dataset
self.eval_dataloader = accelerator.prepare(self.eval_dataloader)
if self.is_deepspeed_enabled:
if isinstance(self.reward_model, nn.Module):
self.reward_model = prepare_deepspeed(
self.reward_model, args.per_device_train_batch_size, args.fp16, args.bf16
)
self.ref_policy = prepare_deepspeed(
self.ref_policy, args.per_device_train_batch_size, args.fp16, args.bf16
)
self.deepspeed = self.model
else:
self.ref_policy = self.ref_policy.to(self.accelerator.device)
if isinstance(self.reward_model, nn.Module):
self.reward_model = self.reward_model.to(self.accelerator.device)
def get_train_dataloader(self) -> DataLoader:
return self.dataloader
def get_eval_dataloader(self) -> DataLoader:
return self.eval_dataloader
def train(self):
args = self.args
accelerator = self.accelerator
optimizer = self.optimizer
model = self.model
self.model_wrapped = self.model
ref_policy = self.ref_policy
reward_model = self.reward_model
processing_class = self.processing_class
dataloader = self.dataloader
device = accelerator.device
def repeat_generator():
while True:
yield from dataloader
iter_dataloader = iter(repeat_generator())
generation_config = GenerationConfig(
max_new_tokens=args.response_length,
temperature=(args.temperature + 1e-7),
top_k=0.0,
top_p=1.0,
do_sample=True,
)
accelerator.print("===training policy===")
start_time = time.time()
stats_shape = (args.num_ppo_epochs, args.num_mini_batches, args.gradient_accumulation_steps)
approxkl_stats = torch.zeros(stats_shape, device=device)
pg_clipfrac_stats = torch.zeros(stats_shape, device=device)
pg_loss_stats = torch.zeros(stats_shape, device=device)
vf_clipfrac_stats = torch.zeros(stats_shape, device=device)
entropy_stats = torch.zeros(stats_shape, device=device)
ratio_stats = torch.zeros(stats_shape, device=device)
model.train()
# trainer state initialization
self.state.global_step = 0
self.state.episode = 0
self.state.max_steps = (args.num_total_batches * args.num_mini_batches) // 2
self.state.num_train_epochs = args.total_episodes / self.train_dataset_len
# Compute absolute values for logging, eval, and save if given as ratio
if args.logging_steps is not None:
if args.logging_steps < 1:
self.state.logging_steps = math.ceil(self.state.max_steps * args.logging_steps)
else:
self.state.logging_steps = args.logging_steps
if args.eval_steps is not None:
if args.eval_steps < 1:
self.state.eval_steps = math.ceil(self.state.max_steps * args.eval_steps)
else:
self.state.eval_steps = args.eval_steps
if args.save_steps is not None:
if args.save_steps < 1:
self.state.save_steps = math.ceil(self.state.max_steps * args.save_steps)
else:
self.state.save_steps = args.save_steps
self.control = self.callback_handler.on_train_begin(args, self.state, self.control)
for update in range(1, args.num_total_batches + 1):
self.state.episode += 1 * args.batch_size
data = next(iter_dataloader)
with torch.no_grad():
queries = data["input_ids"].to(device)
queries = queries.repeat(args.rloo_k, 1)
context_length = queries.shape[1]
responses = []
postprocessed_responses = []
logprobs = []
ref_logprobs = []
scores = []
sequence_lengths = []
# Generate responses and compute logprobs
with unwrap_model_for_generation(
self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
) as unwrapped_model:
query_responses, logitss = batch_generation(
unwrapped_model,
queries,
args.local_rollout_forward_batch_size,
processing_class.pad_token_id,
generation_config,
)
# Process responses in batches
for i in range(0, queries.shape[0], args.local_rollout_forward_batch_size):
query = queries[i : i + args.local_rollout_forward_batch_size]
query_response = query_responses[i : i + args.local_rollout_forward_batch_size]
response = query_response[:, context_length:]
logits = logitss[i : i + args.local_rollout_forward_batch_size]
logprob = selective_log_softmax(logits, response)
del logits
empty_cache()
ref_output = forward(ref_policy, query_response, processing_class.pad_token_id)
ref_logits = ref_output.logits[:, context_length - 1 : -1]
ref_logits /= args.temperature + 1e-7
ref_logprob = selective_log_softmax(ref_logits, response)
del ref_output, ref_logits
empty_cache()
# Response Processing 1. truncate response after the first occurrence of `stop_token_id`
postprocessed_response = response
if args.stop_token_id is not None: # handle the edge case when stop_token_id exists but is 0
postprocessed_response = truncate_response(
args.stop_token_id, processing_class.pad_token_id, response
)
# Response Processing 2. run reward model on the truncated responses
postprocessed_query_response = torch.cat((query, postprocessed_response), 1)
sequence_length = first_true_indices(postprocessed_response == processing_class.pad_token_id) - 1
if isinstance(reward_model, nn.Module):
_, score, _ = get_reward(
reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length
)
else:
score = torch.tensor(
reward_model(
processing_class.batch_decode(postprocessed_query_response, skip_special_tokens=True)
),
dtype=torch.float,
).to(device)
# Store batch results
responses.append(response)
postprocessed_responses.append(postprocessed_response)
logprobs.append(logprob)
ref_logprobs.append(ref_logprob)
sequence_lengths.append(sequence_length)
scores.append(score)
# Concatenate all batched results
responses = torch.cat(responses, 0)
postprocessed_responses = torch.cat(postprocessed_responses, 0)
logprobs = torch.cat(logprobs, 0)
ref_logprobs = torch.cat(ref_logprobs, 0)
sequence_lengths = torch.cat(sequence_lengths, 0)
scores = torch.cat(scores, 0)
del (logprob, ref_logprob, score)
empty_cache()
gc.collect()
# Response Processing 3. filter response. Ensure that the sample contains stop_token_id
# responses not passing that filter will receive a low (fixed) score
# only query humans on responses that pass that filter
contain_eos_token = torch.any(postprocessed_responses == processing_class.eos_token_id, dim=-1)
if args.missing_eos_penalty is not None:
scores[~contain_eos_token] -= self.args.missing_eos_penalty
# accelerator.print(f"{scores=}, {(contain_eos_token.sum() / len(contain_eos_token))=}")
# be very careful with `padding_mask_p1`; see https://excalidraw.com/#json=LWnzG4w2k5DjF_EOL_xPt,e2w3a-hFJ_gX5vOfeyXGTw
response_idxs = torch.arange(responses.shape[1], device=responses.device).repeat(responses.shape[0], 1)
padding_mask = response_idxs > sequence_lengths.unsqueeze(1)
logprobs = torch.masked_fill(logprobs, padding_mask, INVALID_LOGPROB)
ref_logprobs = torch.masked_fill(ref_logprobs, padding_mask, INVALID_LOGPROB)
# 4. compute rewards
# Compute KL divergence
kl = logprobs - ref_logprobs
# Normalize rewards
if args.normalize_reward:
scores = (scores - scores.mean()) / (scores.std() + 1e-8)
scores = torch.clamp(scores, -args.reward_clip_range, args.reward_clip_range)
# Compute total reward with KL penalty
if args.token_level_kl:
# Token-level KL penalty: apply KL penalty per token
kl_reward = -args.kl_coef * kl
# Get the index of the last non-padded token for each sequence
eos_indices = padding_mask.size(1) - 1 - padding_mask.long().fliplr().argmax(dim=1, keepdim=True)
last_reward = torch.zeros_like(kl)
# Ensure scores has correct shape and type
scores_shaped = scores.reshape(-1, 1).to(kl.dtype)
last_reward.scatter_(dim=1, index=eos_indices, src=scores_shaped)
# Combine KL reward and last reward
non_score_reward = kl_reward.sum(1) # Keep this for logging
reward = last_reward + kl_reward
rlhf_reward = reward.sum(1) # Sum across sequence length
else:
# Sequence-level KL penalty: sum KL across tokens first
sequence_kl = kl.sum(1)
non_score_reward = -args.kl_coef * sequence_kl
rlhf_reward = non_score_reward + scores
# vectorized RLOO advantages implementation
rlhf_reward = rlhf_reward.reshape(args.rloo_k, -1)
baseline = (rlhf_reward.sum(0) - rlhf_reward) / (args.rloo_k - 1)
advantages = rlhf_reward - baseline
advantages = advantages.flatten()
# Normalize advantages
if args.normalize_advantage:
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
empty_cache()
# Do multiple epochs of PPO training, with a fresh random shuffle in each epoch
for ppo_epoch_idx in range(args.num_ppo_epochs):
b_inds = np.random.permutation(args.local_batch_size)
minibatch_idx = 0
for mini_batch_start in range(0, args.local_batch_size, args.local_mini_batch_size):
mini_batch_end = mini_batch_start + args.local_mini_batch_size
mini_batch_inds = b_inds[mini_batch_start:mini_batch_end]
gradient_accumulation_idx = 0
for micro_batch_start in range(0, args.local_mini_batch_size, args.per_device_train_batch_size):
with accelerator.accumulate(model):
micro_batch_end = micro_batch_start + args.per_device_train_batch_size
micro_batch_inds = mini_batch_inds[micro_batch_start:micro_batch_end]
# Get batch data
mb_advantage = advantages[micro_batch_inds]
mb_responses = responses[micro_batch_inds]
mb_query_responses = query_responses[micro_batch_inds]
mb_logprobs = logprobs[micro_batch_inds]
# Forward pass
output = forward(model, mb_query_responses, processing_class.pad_token_id)
logits = output.logits[:, context_length - 1 : -1]
logits /= args.temperature + 1e-7
# Compute new logprobs
new_logprobs = selective_log_softmax(logits, mb_responses)
new_logprobs = torch.masked_fill(
new_logprobs, padding_mask[micro_batch_inds], INVALID_LOGPROB
)
# Compute probability ratios
new_ratio = (new_logprobs - mb_logprobs).exp()
new_logprobs = new_logprobs.sum(1)
mb_logprobs = mb_logprobs.sum(1)
logprobs_diff = new_logprobs - mb_logprobs
ratio = torch.exp(logprobs_diff)
# PPO clipped loss
pg_losses = -mb_advantage * ratio
pg_losses2 = -mb_advantage * torch.clamp(ratio, 1.0 - args.cliprange, 1.0 + args.cliprange)
pg_loss_max = torch.max(pg_losses, pg_losses2)
pg_loss = pg_loss_max.mean()
# Final loss
loss = pg_loss
# Optimization step
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
with torch.no_grad():
pg_clipfrac = (pg_losses2 > pg_losses).float().mean()
prob_dist = torch.nn.functional.softmax(logits, dim=-1)
entropy = torch.logsumexp(logits, dim=-1) - torch.sum(prob_dist * logits, dim=-1)
approxkl = 0.5 * (logprobs_diff**2).mean()
approxkl_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = approxkl
pg_clipfrac_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = (
pg_clipfrac
)
pg_loss_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = pg_loss
entropy_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = entropy.mean()
ratio_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = new_ratio.mean()
gradient_accumulation_idx += 1
minibatch_idx += 1
# del everything and empty cache
# fmt: off
del (
output, logits, new_logprobs, logprobs_diff, ratio, pg_losses,
pg_losses2, pg_loss, loss, pg_clipfrac, prob_dist, entropy, approxkl,
mb_advantage, mb_responses, mb_query_responses, mb_logprobs,
)
# fmt: on
empty_cache()
# Compute metrics
with torch.no_grad():
mean_kl = kl.sum(1).mean()
mean_entropy = (-logprobs).sum(1).mean()
mean_non_score_reward = non_score_reward.mean()
eps = int(self.state.episode / (time.time() - start_time))
metrics = {}
metrics["eps"] = eps
metrics["objective/kl"] = self.accelerator.gather_for_metrics(mean_kl).mean().item()
metrics["objective/entropy"] = self.accelerator.gather_for_metrics(mean_entropy).mean().item()
metrics["objective/non_score_reward"] = (
self.accelerator.gather_for_metrics(mean_non_score_reward).mean().item()
)
metrics["objective/rlhf_reward"] = self.accelerator.gather_for_metrics(rlhf_reward).mean().item()
metrics["objective/scores"] = self.accelerator.gather_for_metrics(scores.mean()).mean().item()
metrics["policy/approxkl_avg"] = self.accelerator.gather_for_metrics(approxkl_stats).mean().item()
metrics["policy/clipfrac_avg"] = self.accelerator.gather_for_metrics(pg_clipfrac_stats).mean().item()
metrics["loss/policy_avg"] = self.accelerator.gather_for_metrics(pg_loss_stats).mean().item()
metrics["val/clipfrac_avg"] = self.accelerator.gather_for_metrics(vf_clipfrac_stats).mean().item()
metrics["policy/entropy_avg"] = self.accelerator.gather_for_metrics(entropy_stats).mean().item()
metrics["val/ratio"] = self.accelerator.gather_for_metrics(ratio_stats).mean().item()
metrics["val/ratio_var"] = self.accelerator.gather_for_metrics(ratio_stats).var().item()
metrics["val/num_eos_tokens"] = (responses == processing_class.eos_token_id).sum().item()
metrics["lr"] = self.lr_scheduler.get_last_lr()[0]
metrics["episode"] = self.state.episode
self.state.epoch = self.state.episode / (args.rloo_k * self.train_dataset_len) # used by self.log
self.log(metrics)
del kl, mean_kl, mean_entropy, scores
self.lr_scheduler.step()
self.state.global_step += 1
self.control = self.callback_handler.on_step_end(args, self.state, self.control)
if self.control.should_save:
self._save_checkpoint(model, trial=None)
self.control = self.callback_handler.on_save(self.args, self.state, self.control)
empty_cache()
gc.collect()
if args.num_sample_generations > 0 and (update - 1) % self.sample_generations_freq == 0:
self.generate_completions(sampling=True)
# HF trainer specifics
self.control = self.callback_handler.on_train_end(args, self.state, self.control)
if self.control.should_save:
self._save_checkpoint(model, trial=None, metrics=None)
self.control = self.callback_handler.on_save(self.args, self.state, self.control)
def generate_completions(self, sampling: bool = False):
args = self.args
processing_class = self.processing_class
generation_config = GenerationConfig(
max_new_tokens=self.args.response_length,
temperature=(0.01 + 1e-7),
top_k=0.0,
top_p=1.0,
do_sample=True,
)
table = defaultdict(list)
with unwrap_model_for_generation(
self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
) as unwrapped_model:
for batch in self.eval_dataloader:
query = batch["input_ids"]
with torch.no_grad():
context_length = query.shape[1]
query_response, _ = batch_generation(
unwrapped_model,
query,
query.shape[0],
processing_class.pad_token_id,
generation_config,
)
response = query_response[:, context_length:]
postprocessed_response = response
if args.stop_token_id is not None: # handle the edge case when stop_token_id exists but is 0
postprocessed_response = truncate_response(
args.stop_token_id, processing_class.pad_token_id, response
)
table["query"].extend(
gather_object(processing_class.batch_decode(query, skip_special_tokens=True))
)
table["model response"].extend(
gather_object(processing_class.batch_decode(postprocessed_response))
)
postprocessed_query_response = torch.cat((query, postprocessed_response), 1)
if isinstance(self.reward_model, nn.Module):
_, score, _ = get_reward(
self.reward_model,
postprocessed_query_response,
processing_class.pad_token_id,
context_length,
)
else:
score = torch.tensor(
self.reward_model(
processing_class.batch_decode(postprocessed_query_response, skip_special_tokens=True)
),
dtype=torch.float,
).to(postprocessed_query_response.device)
table["score"].extend(self.accelerator.gather_for_metrics(score).float().cpu().numpy())
if sampling:
break
df = pd.DataFrame(table)
if self.accelerator.is_main_process:
if is_rich_available():
print_rich_table(df.iloc[0 : 0 + 5])
if "wandb" in args.report_to:
import wandb
if wandb.run is not None:
wandb.log({"completions": wandb.Table(dataframe=df)})
if "comet_ml" in args.report_to:
log_table_to_comet_experiment(
name="completions.csv",
table=df,
)
# Ensure the model card is saved along with the checkpoint
def _save_checkpoint(self, model, trial):
if self.args.hub_model_id is None:
model_name = Path(self.args.output_dir).name
else:
model_name = self.args.hub_model_id.split("/")[-1]
self.create_model_card(model_name=model_name)
super()._save_checkpoint(model, trial)
def create_model_card(
self,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None,
tags: Union[str, list[str], None] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
model_name (`str` or `None`, *optional*, defaults to `None`):
Name of the model.
dataset_name (`str` or `None`, *optional*, defaults to `None`):
Name of the dataset used for training.
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
Tags to be associated with the model card.
"""
if not self.is_world_process_zero():
return
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
base_model = self.model.config._name_or_path
else:
base_model = None
tags = tags or set()
if isinstance(tags, str):
tags = {tags}
if hasattr(self.model.config, "unsloth_version"):
tags.add("unsloth")
tags.update(self._tag_names)
citation = textwrap.dedent("""\
@inproceedings{ahmadian2024back,
title = {{Back to Basics: Revisiting REINFORCE-Style Optimization for Learning from Human Feedback in LLMs}},
author = {Arash Ahmadian and Chris Cremer and Matthias Gall{\'{e}} and Marzieh Fadaee and Julia Kreutzer and Olivier Pietquin and Ahmet {\"{U}}st{\"{u}}n and Sara Hooker},
year = 2024,
booktitle = {Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), {ACL} 2024, Bangkok, Thailand, August 11-16, 2024},
publisher = {Association for Computational Linguistics},
pages = {12248--12267},
editor = {Lun{-}Wei Ku and Andre Martins and Vivek Srikumar},
}""")
model_card = generate_model_card(
base_model=base_model,
model_name=model_name,
hub_model_id=self.hub_model_id,
dataset_name=dataset_name,
tags=tags,
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
comet_url=get_comet_experiment_url(),
trainer_name="RLOO",
trainer_citation=citation,
paper_title="Back to Basics: Revisiting REINFORCE-Style Optimization for Learning from Human Feedback in LLMs",
paper_id="2402.14740",
)
model_card.save(os.path.join(self.args.output_dir, "README.md"))